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ABSTRACT
We investigate quasi-two-dimensional buckled colloidal monolayers on a triangular lattice with tunable depletion interactions. Without
depletion attraction, the experimental system provides a colloidal analog of the well-known geometrically frustrated Ising antiferromag-
net [Y. Han et al., Nature 456, 898–903 (2008)]. In this contribution, we show that the added depletion attraction can influence both the
magnitude and sign of an Ising spin coupling constant. As a result, the nearest-neighbor Ising “spin” interactions can be made to vary from
antiferromagnetic to para- and ferromagnetic. Using a simple theory, we compute an effective Ising nearest-neighbor coupling constant, and
we show how competition between entropic effects permits for the modification of the coupling constant. We then experimentally demon-
strate depletion-induced modification of the coupling constant, including its sign, and other behaviors. Depletion interactions are induced
by rod-like surfactant micelles that change length with temperature and thus offer means for tuning the depletion attraction in situ. Buck-
led colloidal suspensions exhibit a crossover from an Ising antiferromagnetic to paramagnetic phase as a function of increasing depletion
attraction. Additional dynamical experiments reveal structural arrest in various regimes of the coupling-constant, driven by different mecha-
nisms. In total, this work introduces novel colloidal matter with “magnetic” features and complex dynamics rarely observed in traditional spin
systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146155

I. INTRODUCTION

Over the years, experiments with model colloidal suspensions
have generated fundamental insights about melting in two- and
three-dimensions (2D and 3D),2–7 crystal physics,8–10 nucleation
kinetics,11–16 and the nature and mechanics of disordered solids
(glasses).17–28 These investigations with colloids are complementary

to studies of atomic systems because the length- and time-scales in
suspension permit direct visualization and tracking of constituents
with single-particle resolution.29 Such studies often unify the soft-
and hard-matter phenomenology and explore ideas from statistical
mechanics.

One fascinating model system along these lines is the buckled
colloidal monolayer,30–37 which consists of a packing of colloidal
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particles confined by two walls whose separation is ∼1.5 parti-
cle diameters. This quasi-2D buckled monolayer of particles on a
triangular lattice provides a colloidal analog of the classic frus-
trated antiferromagnetic Ising model, which was first studied by
Wannier38 and has been realized in a variety of experiments and
simulations.39–66 In this system, up and down out-of-plane particle
displacements are analogous to Ising spins that point, respectively,
up and down; the free volume (entropy) of each particle depends
on the out-of-plane position of its nearest neighbors and is max-
imum when neighboring particles buckle in opposite directions.
Moreover, by varying the colloid sphere diameter while holding
wall separation constant, it is possible to tune nearest-neighbor
free-volume differences and thereby vary the effective antiferro-
magnetic coupling constant. Experiments and theory based on this
colloidal system have probed “spin” configurations, “spin” dynam-
ics, and lattice distortions as a function of interaction strength and
frustration.1,55,67–72

In this contribution, we introduce a quasi-2D buckled mono-
layer system that enables tuning of the sign and magnitude of the
Ising spin coupling constant in situ. As a result, the nearest-neighbor
“spin” interactions can vary from antiferromagnetic to para- and
ferromagnetic. We demonstrate this basic phenomenon in experi-
ments that employ suspensions of nearly hard-sphere particles of
fixed diameter and rod-like micelles whose length can be tuned by
varying temperature.73–76 The rod-like micelles induce a short-range
depletion attraction between nearest-neighbor particle pairs with
attraction strength that varies with micelle length; this depletion
force is nearly zero at low temperature, large at high temperature,
and monotonic in-between. The effective Ising coupling constant is
set by a combination of the original antiferromagnetic free volume
effect (without depletion), which prefers oppositely buckled neigh-
bors, and the depletion attraction, which prefers neighbors with the
same buckling. By using temperature to tune depletion attraction
strength, we demonstrate modulation of the effective Ising cou-
pling constant, even changing its sign, and we generate experimental
state diagrams for the system. We also measure particle dynamics,
i.e., spin-flip autocorrelation functions as a function of depletion
attraction strength.

In parallel, we develop theoretical models to elucidate these
effects. A comparison of the experiment and the simplest theory
not only corroborates major concepts but also reveals complexities
of the colloid system beyond what can be described by the sim-
plest models. Depletion-driven wall interactions, for example, affect
energetics and kinetics and introduce new physics. Therefore, for
comparison with the experiment, we incorporate some of these fea-
tures into a more sophisticated and realistic theoretical model, which
we use to calculate phase diagrams as a function of temperature,
packing, and the ratio of cell-thickness to particle-diameter. In total,
this work takes first steps toward the creation of colloidal matter with
“magnetic” features rarely observed in traditional atomic systems. In
addition to equilibrium behavior, the experiments initiate the inves-
tigation of the microscopic kinetics and non-equilibrium dynamics
of the “magnetic” colloidal matter.

The remainder of this paper is organized as follows. Section II A
introduces the central concept with a very simple hard-sphere model
in quasi-1D; this model shows how the Ising coupling constant
can be tuned from antiferromagnetic to the para- and ferromag-
netic regimes via the modification of geometrical parameters and

short-range depletion attraction. Then, we introduce and discuss
more comprehensive quasi-2D models with and without wall attrac-
tion; these models provide context for an experimental comparison.
Section III details the experimental methods. Section IV presents the
primary experimental phase-diagram and quantitative results and
briefly discusses dynamical observations. Section V summarizes the
findings and suggests directions for future work.

II. THEORY
A. Quasi 1D: Introduction to basic effect

Here, we introduce a simple model first developed for hard-
spheres that we generalize to include arbitrary interparticle poten-
tials. The simple model serves to clarify the physical concepts,
especially how the Ising coupling constant varies with depletion
attraction strength. In Sec. II B, we develop a realistic model that
captures more features of our experimental system, including its
many-body free energy; using the realistic model, we work out phase
diagrams with and without wall interactions. For the reader who
is not interested in detailed modeling, we recommend perusing the
phase diagrams in Sec. II B and then skipping to Secs. III and IV.

The experiments employ hard-sphere colloidal particles
arranged on a triangular lattice in the xy-plane (the transverse plane)
with in-plane nearest-neighbor spacing, L; the particles have dia-
meter D (see Fig. 1). The particles are confined vertically by two
walls, i.e., confined in the out-of-plane z-direction. The wall sepa-
ration (sample thickness) is H. Typically, the thickness-to-diameter
ratio, H/D, is ∼ 1.5 or smaller, and the system volume fraction is
nearly closed-packed. We first analyze the colloidal system with-
out depletion interactions (closely following prior work1,68); then,
we add small micellar depletants into the system and elucidate new
features.

With only hard-core repulsive interactions between spheres
(and between spheres and walls), the particles seek to maximize
their free volume or translational entropy. Thus, neighboring par-
ticles tend to move out-of-plane (buckle) in opposite directions.
We coarse grain single-particle microstates with the particle cen-
ter above and below the lattice plane, respectively, into the “up”
and “down” macrostates. We assign to each particle a spin value of
+1 if the z-component of the particle’s position is above the mid-
plane of the sample cell (z = H/2) and a spin value of −1 otherwise.
Qualitatively, nearest neighbors behave like Ising spins that inter-
act antiferromagnetically with a coupling constant, J. Specifically,
the interaction energy between neighboring particles is −Jsisj, where
si and sj denote the spins assigned to particles i and j and J < 0.
Generally, we will employ this theoretical model (or more complex
versions of the model) to find a spin coupling constant J such that the
free energy of the particle lattice best resembles the energy of an Ising
lattice with an equivalent spin configuration {si}. Previous work,
which reduced the many-body partition function to a single-particle
one, has shown for hard-spheres that J quantitatively depends on
H/D and L/D.1,67,68

We next generalize this theoretical approach67,68 to include
interparticle interactions beyond that of hard spheres. Specifi-
cally, we will show how short-range attractive interactions between
spheres due to added depletants can cause the sign and magnitude
of J to change.
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FIG. 1. Quasi-1D model. (a) (Top-down view) A particle and its nearest neighbors in quasi-2D. The red rectangle outlines the central particle and two equally spaced neighbors
in quasi-1D. (b) and (c) (Side view) Correspondence between Ising spins and the particle z-position. In (b), the central particle is buckled out-of-plane in the vertical direction;
{− + −} describes the configuration with the “up” central particle spin state. In (c), {− − −} describes the configuration with the “down” central particle spin state. (d) and
(e) (Side views) Free areas associated with “up” and “down” states of the central particle. The central particle’s free area, A+ (A−), is shown in yellow (green), when buckled
up (down). The edge of the lower (upper) wall is at z = 0 (z = H). The black dashed line at z = H/2 separates up/down free areas. Dark blue circles represent the cores of
the central particle’s nearest neighbors (with center-to-center separation, 2L). Light blue circles represent areas inaccessible to the geometric center of the central particle.
x = 0 is located midway between the outer particles.

The analysis builds on the quasi-1D model of Shokef and co-
workers for confined and frustrated colloidal Ising antiferromagnets
on a triangular lattice.67,68 This quasi-1D model focuses on three
particles in the hexagonal cell [collinear particles enclosed by a red
rectangle in Fig. 1(a)] and computes the relative free area (or free vol-
ume) of the central particle in its up vs down state. The microstate of
the ith particle is specified by its position in the xz-plane, (xi, zi); the
system microstate involves all particles (1 ≤ i ≤ N) on the lattice.

The colloid problem is next transformed to a corresponding
problem with Ising-like spin configurations. Each particle i is spec-
ified by the z-component of its “spin” si, where si = ±1. Here, x
describes the in-plane position of the central particle (x = 0 corre-
sponds to the horizontal position of the center of the central particle
located midway between the outer particles); z is the out-of-plane
position of the central particle constrained by walls at z = 0 and
z = H. When a particle is above (below) the vertical center of the cell
(z = H/2), it is in the spin-up (spin-down) state, si = +1 (si = −1).
Note that if the central particle’s two outer neighbors are in opposite
spin states, e.g., {− − +} or {− + +}, then the accessible areas associ-
ated with the central particle being up vs down are equal. However,
when two neighbors are in the same spin state, e.g., both spin-
down, then the buckled-up central particle, {− + −}, has more free
area [shaded yellow, Fig. 1(b)] than a buckled-down central particle
{− − −} [shaded green, Fig. 1(c)].

Shokef and Lubensky67 showed that this hard-sphere system
has an effective antiferromagnetic interaction (J < 0) with

βJ = −1
4

ln(A+
A−
) < 0. (1)

Here, β ≡ 1/kBT, kB is the Boltzmann constant, T is the temperature,
and A+ (A−) is the free area available to the central particle when it
resides in a vertical plane opposite from (the same as) its two neigh-
bors; see Fig. 1(d). The coupling constant, J, can be changed in mag-
nitude by modifying system geometry, i.e., H, D, and L. Although
approximate, this model largely accounts for observed phenomena.1
If we permit lattice distortion, the model also elucidates stripe and
zigzag spin configurations observed experimentally.1,55

We next extend the quasi-1D model to the more general sit-
uation wherein interparticle interactions are different from hard-
spheres. For clarity, the analysis will focus on the case where both
outer neighbors are in spin-down states [Fig. 1(d)].

Consider the probability for the central particle to be either
spin-up or spin-down. Then, the probability of the central particle
i being in a particular “spin” configuration is

p(si; H, D, L) =𝒵(si; H, D, L)/𝒵. (2)

𝒵(±1; H, D, L) is the integral of the Boltzmann weight over the
accessible area, A±, of the central particle in the up/down spin state.
The “total” partition function is

𝒵 ≡𝒵(+1; H, D, L) +𝒵(−1; H, D, L). (3)

It is needed for normalization.
More explicitly, the numerators in Eq. (2) are

𝒵(+1; H, D, L) = 𝒞
H−D/2

∫
H/2

2
xmax(z)

∫
0

e−βU(x,z) dx dz, (4)
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𝒵(−1; H, D, L) = 𝒞
H/2

∫
D

2
xmax(z)

∫
0

e−βU(x,z) dx dz. (5)

The constant 𝒞 accounts for the contribution of the integration
over momentum and other constants. The integrand in Eqs. (4)
and (5) contains a Boltzmann factor involving the potential energy,
U(x, z), felt by the central particle due to its two neighbors. In con-
trast to the hard-sphere case, these potentials can be non-zero even
when the central particle does not overlap physically with neigh-
boring particles (or walls). The upper limit, xmax(z), represents the
maximum in-plane displacement the particles can have such that
they do not overlap physically with their neighbors; xmax(z) is a
function of the out-of-plane (vertical) position, z. (Note that we inte-
grate over positive x and account for the bilateral symmetry with a
factor of 2.)

In the hard-sphere case (without depletants), U(x, z) = 0
within the accessible area of the central particle. Therefore, the value
of the Boltzmann weight becomes unity and Eqs. (4) and (5) become
the total accessible area to the central particle in the up and down
spin state, respectively. Accordingly, the probability that the central
particle resides in an up spin state is

𝒵(+1; H, D, L)/𝒵 = A+/Atot , (6)

and the probability that the central particle resides in a down-spin
state is

𝒵(−1; H, D, L)/𝒵 = A−/Atot. (7)

Atot ≡ A+ + A− is the total free area available to the central parti-
cle. The Ising coupling constant, J, is determined from the ratio of
accessible free areas,

p(+1)
p(−1) =

e−2βJ

e2βJ =
A+
A−

. (8)

Rearrangement of this equation gives Eq. (1).
We next include depletion interactions in Eqs. (4) and (5).

In the experiments, rod-like surfactant micelles are employed
as depletants, and we control the strength and range of the
depletion interaction by tuning the rod length (see Fig. 2 and
Sec. III for details). Importantly, the numerical values of the
Boltzmann weights will no longer be either zero or unity. The
depth of the depletion attraction potential is an increasing func-
tion of the depletant volume-fraction ϕd, which (in practice) can
be made roughly constant; the depth is also an increasing func-
tion of cylinder major axis length, ℓ, which can be controlled by
temperature.

An analytical expression for this depletion potential has been
worked out77 and can be written in the following form:

βUattr(r; ℓ, d, R, ϕd) = ϕd
Rℓ
d2 Q(r; ℓ, d). (9)

The function Q(r; ℓ, d) is given in the supplementary material,
Sec. S1. The colloidal particle radius is R = D/2. Uattr(r; ℓ, d, R, ϕd)
is infinite when particles touch, zero at long range, and nega-
tive when particle surfaces are separated by a distance less than
∼ℓ. Thus, U(x, z) need not be zero, and the Boltzmann weight

FIG. 2. Schematic illustrating the depletion interaction between colloidal particles
of radius R = D/2 in a suspension of rod-like micelles with major axis length ℓ,
minor axis length d, and fixed micelle volume fraction ϕd . The depletion attraction
effect arises because the micelles cannot reside in regions of excluded volume
(light purple regions surrounding the colloidal particles). Unlike spherical deple-
tants, rods can be excluded from the shaded regions due to their center-of-mass
position and/or due to the orientation of their major axis. These effects are approx-
imately captured in the schematic. The purple shaded region extends radially by
half the rod major-axis length from the large sphere surface. Rods with center-
of-mass located at the edge of this region can lie along any angular orientation;
rods with center-of-mass located inside the edge can only orient along a subset
of angles. Note, further, that the rod center-of-mass can never reside at a loca-
tion less than the half rod minor-axis length from the large sphere surface, which
is represented by the green shaded region that extends radially from the large
sphere surface. Thus, rods can exist in the overlapping excluded volumes of this
image but only for a finite set of angular orientations. (a) At low temperature, ℓ and
d are approximately equal, the micelles are nearly spherical, and the regions of
excluded volume are very thin. (b) At higher temperatures, ℓ increases, but d does
not change. The regions of excluded volume increase relative to (a); moreover, the
pair-potential depth at contact also increases relative to (a).

need not be unity when the particles do not physically overlap.
In this case, Boltzmann integrals will no longer give true physical
areas.

As a result, we obtain a modified version of Eq. (1) that relates
J to a ratio of effective areas defined by the integrals in Eqs. (4)
and (5),

βJ = −1
4

ln
⎛
⎝

Aeff
+

Aeff
−

⎞
⎠

. (10)

The ratio of effective areas is obtained by the evaluation of
the integrals weighted by the depletion potential. In practice, at
low temperature and relatively low volume-fraction [Fig. 2(a)], the
rods are very short, and the interaction between the large particles
(with diameter D) is hard-sphere-like. Then, Aeff

+
/Aeff
−
≈ A+/A− > 1

[Fig. 1(d)] and J < 0. The system is antiferromagnetic.
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FIG. 3. Results of simple quasi-1D model calculations illustrate the temperature-
dependent relationship between the Ising coupling constant and the ratio of
effective areas. The yellow (green) region represents the effective area, from
the Boltzmann-weighted integral, for a buckled-up (buckled-down) central parti-
cle. From left to right, ℓ is 4.3, 16.3, and 20 nm, respectively. For the calculations,
we assumed a depletant volume fraction, ϕ = 0.0049; a depletant cylinder minor
axis length, d = 4.3 nm; a colloidal particle diameter, D = 1.0 μm; and a ratio of
lattice spacing to particle diameter, L/D = 1.01. The vertical axis corresponds to
height (z) within the sample.

However, when the sample temperature increases [Fig. 2(b)],
the rod length increases. When the rod length increases, the inter-
particle potential well-depth and the range of the potential increase.
This effect causes the ratio of the effective areas to vary. At high
temperature, the ratio Aeff

+
/Aeff
−
< 1 [Fig. 1(e)] and the Ising coupling

constant J > 0. Thus, the sign of the effective Ising coupling constant
can be changed from negative to positive by increasing the deple-
tion interaction strength. This increasing nearest-neighbor particle
interaction will thus transform the sample from antiferromagnetic to

paramagnetic states (and to a ferromagnetic state when βJ ≥ 0.275;
see Appendix C).

In Fig. 3, we display the results of numerical calculations based
on this simple quasi-1D model with the depletion interaction due
to cylindrical micelles at a fixed volume fraction. At low tempera-
ture, when the depletants are approximately small spheres, Aeff

+
/Aeff
−

gives a 69% (31%) probability of being buckled-up (buckled-down)
and βJ < 0. At slightly higher temperatures with the same volume
fraction, the depletants become more rod-like, the effective areas
become comparable, and βJ ≈ 0. Finally, when the micelles become
long rods at high temperatures, the probability of the central par-
ticle buckling-up (buckling-down) is 34% (66%) and βJ > 0. Thus,
the simple model clearly suggests that depletion attraction facilitates
variation of the Ising coupling constant from negative to positive
values (passing through zero).

B. Realistic quasi-2D models, phase diagrams
1. Quasi-2D and bulk interactions

The quasi-1D model introduced in Sec. II A illustrates key
concepts but has significant limitations. It ignored the many-body
nature of the Hamiltonian of the particle system, and the model was
quasi-1D. A more realistic calculation should extend this problem to
three dimensions (3D) and should aim to recover system free energy
contributions due to more degrees of freedom of the central particle
neighbors (e.g., nearest and next-nearest neighbors). To this end, we
extend the model to quasi-2D, we take into account the free energy
of the central particle and its nearest neighbors, and we compute βJ
from a statistical average over all the possible neighbor configura-
tions, i.e., k possible configurations. To account for the free energy
of the central particle and its nearest neighbors, we must include the
state of all particles in the central particle’s nearest and next-nearest
neighbor rings; this gives 218 possible values of k. For each k, an opti-
mal Jk can be computed that is associated with the energy difference
of the configuration k with the central particle buckled up vs down

FIG. 4. (a) Quasi-2D phase diagrams for
H/D = 1.2, 1.3, and 1.5, respectively.
Blue color corresponds to the antiferro-
magnetic region (AF), beige corresponds
to the paramagnetic region (P), and red
corresponds to the ferromagnetic region
(F). Red and blue dashed lines indicate
the relatively small shift “where” transi-
tions occur when depletion attractions
to the wall are included. The blue (red)
dashed line is the wall-induced shift for
the AF–P (P–F) transition. The white
dashed line indicates the constant L/D
for which the curves in (b) are obtained.
(b) Number of similar bonds ⟨Ns⟩ and βJ
plotted as a function of depletion attrac-
tion strength βUmin at fixed L/D = 1.01.
Black dashed (solid) lines indicate the
behavior with (without) wall attractions.
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(details in Appendix B). To compute the ensemble averaged J for the
quasi-2D system, we average over all possible values of Jk,

J = ∑k Jkwk

∑k wk
, (11)

where wk is the Boltzmann weight for observing the kth con-
figuration. This approach incorporates the relative probability of
observing each nearest-neighbor spin configuration.

We carried out these calculations computationally using the
depletion potential for cylindrical micelles. Figure 4(a) shows pre-
dictions of this more realistic quasi-2D model as a function of
depletion attraction strength (βUmin) and diameter-normalized lat-
tice spacing (L/D) and cell thickness (H/D). βUmin increases from
left-to-right in the plot; note that both the magnitude of the deple-
tion attraction and the temperature increase moving left-to-right.
The color scale in the phase diagrams corresponds to different
regimes of the predicted Ising coupling constant. The blue region
corresponds to the frustrated antiferromagnetic (AF) phase where
−3 < βJ < 0; beige corresponds to the paramagnetic phase (P) where
0 < βJ < 0.275, and red corresponds to the ferromagnetic phase (F)
where βJ ≥ 0.27578,79 (see also Appendix C). Generally, the system
starts in the AF region at low temperature, where the depletion
attraction is very small, and evolves from AF (J < 0) to P (J > 0) as
the magnitude of the attractive depletion interaction increases. Note
that, for fixed H/D, a larger depletion attraction is required to reach
the (AF–P) crossover for increasing L/D. Note also that, for fixed
L/D, a larger depletion attraction is required to reach the (AF–P)
crossover for increasing H/D.

We quantitatively characterize “magnetic” order in the sam-
ples using the ensemble-averaged number of similar bonds, ⟨Ns⟩.
Here, bonds refer to nearest-neighbor pairs involving particles i
and j. A similar bond between two particles occurs when a par-
ticle and its neighbor are in the same Ising spin state (sisj = 1); a
dissimilar bond occurs when a particle and its neighbor are in oppo-
site Ising spin states (sisj = −1). Notably, ⟨Ns⟩ is a measurable and
calculable parameter that helps identify the crossover from anti-to
para-to ferromagnetic phases. ⟨Ns⟩ also helps distinguish strong vs
weak coupling in samples with the same magnetic classification. In
Fig. 5(a), all possible nearest-neighbor configurations for a central
particle in the spin-up state are shown, and the number of simi-
lar bonds for the central particle is indicated. An equivalent set of
configurations can be constructed for a central particle in the spin-
down state. (As an aside, the term frustrated bond and the number
of frustrated bonds, ⟨N f ⟩, are sometimes used in the literature; note
that a similar bond is equivalent to a frustrated bond for spins in the
antiferromagnetic phase.)

Figure 4(b) shows the relationship between ⟨Ns⟩, βJ, and βUmin
for a fixed lattice spacing of L/D = 1.01 [indicated by the white
dashed line in Fig. 4(a)]. To obtain these curves, theoretical para-
meters [βUattr(r; ϕd, ℓ, d), H/D, L/D] are input into our numerical
model, and βJ is computed. This model prediction for the coupling
constant, βJ, is then inserted into Wannier’s analytic theory38,80 to
derive a value for ⟨Ns⟩. Theoretical curves, such as those in Fig. 4(b),
will be used later [Fig. 5(b)] to characterize experimental data.

A few features from Fig. 5 are worth noting for future analy-
sis. The realistic theory demonstrates that for smaller H/D, a smaller
depletion attraction is needed to reach the AF–P crossover; it also

FIG. 5. (a) Configurations of a central particle and its nearest neighbors; the index
indicates the number of similar bonds (neighbors with parallel spins). Due to the
rotational and inversion symmetry, 13 distinct configurations arise. (b) Number of
similar bonds ⟨Ns⟩ and βJ vs depletion attraction strength, βUmin. The black line
is theory from our quasi-2D model, including wall interactions; the theory specifies
βJ vs Umin extracted from our quasi-2D model, including wall interactions, with
parameters H/D = 1.2, L/D = 1.01, and ϕd = 0.0049. Circles are the experimen-
tal data specified by the ⟨Ns⟩ vs Umin axes; black solid (open) circles indicate data
from equilibrium (non-equilibrium) samples. Note that there is a 1:1 correspon-
dence between the ⟨Ns⟩ and βJ vertical axes; they are vertically aligned so that
the corresponding values of ⟨Ns⟩ and βJ arise in Wannier’s theory under the same
conditions.

explicitly reveals that the number of similar bonds increases rapidly
in the paramagnetic regime. For larger H/D, a larger depletion
attraction is required to reach the AF–P crossover; note also that,
for larger H/D, a more gradual increase in ⟨Ns⟩ is found in the
paramagnetic regime compared to smaller H/D. Qualitatively, these
trends can be understood to be a consequence of the fractionally less
close-particle-contact that arises as L/D and H/D increase; with a
fractionally less close-particle-contact, the importance of the deple-
tion attraction is reduced (since depletion occurs when particles are
in close contact). Put another way, when particles have more room
to move, then the influence of the short-range depletion attraction is
reduced.

2. Wall interactions
The presence of the wall introduces energetic changes, which

can affect trends. In dilute systems, the particle–wall depletion
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attraction is approximately twice as strong as the depletion attrac-
tion between two particles in the bulk suspension; this effect has
been measured and can be understood from purely geometric
considerations.73,81–84 This effect further modifies the ratio of effec-
tive free volumes (Veff

+
/Veff
−
) associated with buckling up vs down;

for example, when all of the nearest neighbors are on the top wall,
then the central particle will have access to a different patch of the
physical area on the top wall compared to the bottom wall. This
behavior tends to enhance the primary depletion effect discussed in
Sec. II A (see the supplementary material, Fig. S4) and leads to a
small shift in the crossover condition from one magnetic phase to
another (see blue and red dashed lines in Fig. 4). Specifically, for the
case where all of the central particle’s nearest neighbors are up, the
depletion effect is stronger for the particle on the top wall compared
to the bottom wall. Therefore, the coupling constant βJ becomes
more positive. As a result, the AF–P crossover region shifts to the
left in the phase diagram (dashed lines in Fig. 4), indicating that the
AF–P transition will occur at lower βUmin (lower temperature).

Since the phase diagram depends on the free energy difference,
the basic features of the phase diagram are largely unchanged by the
wall attraction. However, the energy barrier for a particle to escape
from the wall, and thus flip from one wall to the other, is made much
larger by the wall depletion attraction. As a result, the system dynam-
ics will become slower with the increasing attraction strength. This
phenomenon has important practical consequences for experiments,
which we will discuss in Sec. IV.

III. EXPERIMENTAL METHODS
This section discusses the samples and experimental execu-

tion. In addition, we provide details about image analysis, image
processing techniques, and measurements of interparticle potentials
(depletion attraction strength).

A. Particles and particle preparation
The colloidal particles employed in the experiments were

polystyrene microspheres (Thermo Fisher Scientific) with a
manufacturer-measured diameter, D = 1.0 ± 0.01 μm. To prepare
the sample, the microspheres were rinsed in ultrapure water
(18.2 MΩ), and aggregates were removed by repeated centrifu-
gation. The cleaned particles were then resuspended in 55 mM
aqueous solutions of the surfactant hexaethylene glycol monodode-
cyl ether (C12E6). C12E6 self-assembles into rod-like micelles with
temperature-dependent length that permits for temperature-tuning
of the depletion attraction between colloidal particles. NaCl was
added to the solution at a concentration of 2 mM, which gives a
Debye screening length of κ−1 ≈ 7 nm.

B. Sample cell preparation and sample observation
Sample cells were constructed by sandwiching the suspension

between two 20 × 50 mm2 glass coverslips (No. 1.5, 170 μm-thick,
Electron Microscopy Sciences). The coverslips were cleaned to
remove impurities from their surfaces by soaking each slip in base
solution for >30 min. The base solution contained 5 g of sodium
hydroxide (NaOH) in a solvent consisting of 20 ml of ultrapure
water (18.2 MΩ) and 30 ml of ethanol. After soaking, the coverslips

were washed with ultrapure water and then with isopropyl alcohol,
and finally, they were dried with compressed air.

The coverslips were separated/spaced via the application of two
rows and three columns of UV glue drops (Norland adhesive 65)
onto the bottom cover slip. After drying, the coverslips were aligned
and sandwiched at a small angle; binding was achieved via capil-
lary forces. Approximately 25 μl of the sample solution was pipetted
into the sample cell, and then, the remaining peripheral openings
were sealed. Finally, the resulting quasi-2D sample wedge-cell was
mounted onto a glass slide for improved stability.

These sample cell units were imaged via transmission light
microscopy on the stage of an inverted microscope (Leica DMIRB)
and were viewed through a 100× oil-immersion objective. The sam-
ple temperature was controlled by a heater (peCon GmbH) on the
objective, with 0.1 ○C resolution. Colloidal particle positions and
brightness (intensity) were collected by video microscopy using a
CCD camera (UNIQ, UP-685-CL) with a resolution of 659× 494 pix-
els at a frame rate of 27.5 frames per second. Particle position and
motions are analyzed with standard particle tracking methods and
algorithms.29

C. Temperature-tunable depletion interparticle
potentials and wall interactions

The depletion interaction potential between colloidal parti-
cles, U(r), depends on the concentration and character of tiny
suspended depletants. For the case of the C12E6 surfactant, the
surfactant molecules self-assemble into micelles, and the geomet-
ric shape of these micelles affects both the strength and range of
the depletion attraction.73,76,81,84–86 Specifically, C12E6 assembles into
nanometer-size micelles that evolve from sphere-like for T < 20 ○C
to rod-like for T > 20 ○C.76,87 The length of the micelle minor axis
is d = 4.3 nm; it does not change with temperature. However, the
micelle major axis length, ℓ, grows with the increasing temperature.
This effect enables control of the attraction strength between col-
loidal particles in situ, which is critical for tuning the Ising coupling
constant.

Experimentally, we derived the normalized depletion pair
potential, βU(r), from measurements of the radial distribution func-
tion, g(r), in samples at low particle packing fraction (ϕp ∼ 0.013).
For analysis, we assumed U(r) = −kBT ln g(r); use of dilute samples
reduces the influence of many-body interactions and ameliorates
the need to invert the data using integral equations. This proce-
dure for extracting βU(r) is outlined in detail for C12E6 by Gratale
et al.76 Figure S2 of the supplementary material displays the result-
ing data and shows that βUmin, the absolute value of the maximum
attraction depth of βU(r), becomes larger with the increasing tem-
perature. Note that, even at our lowest temperature, the depletion
attraction is non-zero; thus, the experimental conditions at low tem-
perature differ somewhat from the expectations of our theoretical
models.

Additionally, as described in Sec. II B 2, depletion interactions
between walls and particles can become significant at high tempera-
tures. The particle–wall attraction at contact is approximately twice
that of between two particles in the bulk. This effect has a small influ-
ence on the equilibrium phase diagram. However, particles can also
become kinetically arrested, i.e., because the energy barrier to escape
from the wall is large. Our experiments revealed this kinetic arrest.
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D. Average number of similar neighbor bonds (⟨N s ⟩)
and magnetic state

For system characterization and comparison of experiment to
theory, we analyzed up/down spin data for the whole sample (see
Appendix A). Specifically, from the images, we derived the average
number of similar neighbor bonds, ⟨Ns⟩, and its variance. We found
that ⟨Ns⟩-based metrics are robust to sample systematics compared
to other possible variables. In the supplementary material, Sec. S2,
we briefly describe some systematic effects that drove our decision
to focus on ⟨Ns⟩.

E. Wall- and lattice-spacing measurements
The Ising coupling constant depends on the ratio of the wall-

and lattice-spacing to the particle diameter (H/D and L/D). We
discuss our procedures to measure H, D, L, H/D, and L/D in the
supplementary material (Sec. S4). In practice, H/D for the different
samples was 1.23 ± 0.08, 1.29 ± 0.08, and 1.55 ± 0.07. For L/D, the
mean value averaged across samples was 1.01. The variation of H/D
across the field-of-view is small (∼5%); this leads to a relatively small
variation of the coupling constant (±10%), which does not change
any of our conclusions about systematic coupling constant variation
and transitions.

F. Temperature variation procedures
To demonstrate general ideas about Ising coupling constant

variation, we collected data at discrete temperatures and employed
an experimental protocol to attenuate the effects of dynamic arrest.
Equilibrium behavior was only truly achievable in lower temperature
regimes.

At low temperatures, the dynamics were fast, and the samples
rapidly equilibrated. Therefore, before every temperature change,
we opted to allow the sample to equilibrate at the lowest temper-
ature (in the antiferromagnetic phase). Thereafter, we ramped the
sample temperature rapidly to a higher value, and we collected sam-
ple images following the realization of the higher temperature for
∼12 min. After completion of the high-temperature video, we rapidly
lowered the sample back to the lowest temperature and allowed
the sample to equilibrate before initiating the next temperature
jump.

A typical temperature cycle example follows below. We first
chose a sample with particular H/D and L/D. We then cooled it
to 21 ○C and acquired video microscopy data. Next, the temper-
ature was rapidly increased to a higher temperature (e.g., 31○C),
and another video stream was collected after the sample reached
steady-state at this temperature. Then, the sample was cooled back
to 21○C; data were collected; and after equilibration, the jump cycle
was repeated for other target temperatures. Note that this proce-
dure generated the most data at 21○C. Target temperatures were
acquired in the following order: 31, 29, 27, 25, 23, and again at
31○C. Although imperfect, this approach enabled us to start all sam-
ples in approximately the same fluctuating AF phase. Of course, the
approach to steady-state, especially for high temperature samples,
which do not equilibrate, is influenced by the microstates the system
passes through during this process.

The same temperature cycling was repeated for different H/D.
In total, we explored six different temperatures (21, 23, 25, 27, 29,

31○C) at three different H/D, taking a series of images/movies at
27.5 fps for 20 000 frames (∼12 min).

G. Numerical calculations
Calculation of the Ising coupling constant, βJ, requires numer-

ical integration of 𝒵({+}), 𝒵({−}), and 𝒵. To this end, we
developed a custom Python code to calculate integrals in quasi-1D
and quasi-2D. For the calculations, the Boltzmann weight utilizes
the depletion potential (defined in the supplementary material, Sec.
S1), which depends on surfactant volume fraction (ϕd), micelle
rod-length (ℓ), and diameter (d). The integrals thus depend on
geometric parameters H, L, and D and surfactant parameters ϕd, ℓ,
and d. Details about the numerical integrations are supplied in the
supplementary material, Sec. S3.

IV. RESULTS AND DISCUSSION
A. Samples with small thickness-to-diameter ratio:
Experiment and model comparison
1. Static structural properties

We first examine the buckled colloidal system under conditions
where we expect the free-volume modeling to be most accurate, i.e.,
experiments with the smallest H/D (Fig. 6). In the low-temperature
range, the static structural properties of this sample exhibit many
anticipated features, notably a change in the sign of the coupling
coefficient. At higher temperatures, the large depletion attraction to
the sample walls introduces significant dynamic arrest, and there-
fore, these samples cannot fully equilibrate. In this subsection, we
present and discuss findings about the static structure. Later, we will
discuss dynamics and the behaviors of colloidal systems with larger
H/D, which can deviate more from the model assumption of a static
in-plane lattice.

Experimental images (Fig. 6) qualitatively show the basic effect.
The structures evolve from distributions of short stripes and zigzags
to clusters of the same spin, i.e., as the temperature is increased.
More quantitatively, in Ising systems, when the spins are very weakly
interacting, we expect that ⟨Ns⟩ = 3. However, when the coupling
becomes strong, the “ideal” Ising system behaves differently for anti-
ferromagnetic (J < 0) vs paramagnetic/ferromagnetic interactions
(J > 0). Ideal frustrated antiferromagnetic systems on a fixed lat-
tice (and even on lattices that can mechanically deform) will exhibit
2 ≤ ⟨Ns⟩ ≲ 3. As the temperature approaches zero, a frustrated anti-
ferromagnet without lattice distortion will have ⟨Ns⟩ close to 2; for
lattices that can deform, well-known stripe and zigzag configura-
tions arise and also give ⟨Ns⟩ close to 2.1,67,68 On the other hand,
with a positive coupling constant (J > 0), the spins prefer to align
parallel. For the paramagnetic phase (0 < βJ < 0.275), we expect
3 ≲ ⟨Ns⟩ ≲ 5, and for the ferromagnetic phase (βJ ≥ 0.275), we
expect ⟨Ns⟩ ≳ 5.38,80 Note that the largest changes of ⟨Ns⟩ per unit
change of βJ occur in the paramagnetic phase.

In Fig. 5(b), both experimental data and model predictions are
plotted vs the strength of the depletion attraction (βUmin). The data
(solid and open circles) represent experimental measurements of
⟨Ns⟩. The black solid circles are derived from experiments where
the particles freely move between the up and down states and the
samples equilibrate. The open circles, by contrast, are derived from
experiments at higher temperatures where attractive forces between
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FIG. 6. Experimental images (contrast enhanced for visual clarity) of a buckled monolayer of colloidal spheres with temperature-dependent depletion interactions. The
bright particles are buckled up with a spin assignment of si = +1, and the dark particles are buckled down with spin assignment si = −1. The data are from samples with
confinement thickness, H/D ∼ 1.23, at temperatures of (a) 21, (b) 23, (c) 25, (d) 27, (e) 29, and (f) 31 ○C.

the particles and the walls are strong; in these cases, dynamic arrest
hinders particle motion, and the samples do not equilibrate. On this
plot, ⟨Ns⟩ is extracted from the experiment via particle tracking, and
Umin is experimentally measured. Additionally, an expected βJ is
extracted from Wannier’s Ising model solution (right vertical axis)
corresponding to ⟨Ns⟩ on the left vertical axis (Appendix D). The
solid line is derived from our quasi-2D theoretical model, including
wall interactions (see Sec. II A).

Figure 5(b) shows that at the lowest depletion attraction (low-
est temperature), where βUmin ≈ −1.7, the number of similar bonds
⟨Ns⟩ < 3 and βJ < 0. These samples are clearly in the antiferro-
magnetic phase. When the attraction is increased to βUmin ≈ −2.2,
then the number of similar bonds ⟨Ns⟩ ≈ 3.2 and βJ > 0. These data
demonstrate that the sample has evolved from the antiferromagnetic
regime to the paramagnetic regime [Fig. 6(b)]. The experimental
data thus show the Ising coupling constant transitions from neg-
ative to positive values, consistent with our theoretical model and
exhibiting our primary expectation.

At higher attraction strengths where the depletion attraction
becomes more dominant, βUmin ≈ −2.7 to −4.3, ⟨Ns⟩ ≈ 3.9–4.4,
and βJ ≈ 0.19–0.24. In this case, the system is approaching the
paramagnetic–ferromagnetic crossover. Note, however, at 29 and
31 ○C, the number of similar bonds stays nearly the same; this is
because the large depletion attraction between the particles and
walls induces dynamical arrest, preventing the sample from reach-
ing equilibrium. Due to the dynamical arrest, the particles under
these conditions do not flip enough to significantly rearrange. This
effect prevents the observation of the P–F crossover. Model predic-
tions deviate from experimental observations at high temperatures
because arrested dynamics prevent equilibration.

The structural observations related to ⟨Ns⟩ provide experimen-
tal evidence for the crossover from one magnetic phase with J < 0
to another with J > 0. A second measurable morphological para-

meter worthy of quantitative exploration is the variance of ⟨Ns⟩, i.e.,
var(Ns) = ⟨N2

s ⟩ − ⟨Ns⟩2. The variance is plotted vs ⟨Ns⟩ in Fig. 7. In
Fig. 7, the solid line shows the behavior predicted by the Ising model.
The measured data for samples with all H/D are also shown. Here,
we focus on the smallest H/D (blue triangles). At small and inter-
mediate depletion attraction, its variance ranges from var(Ns) ≈ 1.3
to var(Ns) ≈ 2.0, following predictions of the Ising model in both
the antiferromagnetic and paramagnetic regimes. At the higher tem-
peratures, however, when the sample experiences dynamic arrest,

FIG. 7. Variance of the number of similar bonds var(Ns) vs the number of sim-
ilar bonds ⟨Ns⟩. The solid line gives the predicted behavior based on the Ising
model. Data for all samples are shown. The blue triangles, orange pentagons, and
green circles show results for the samples with different H/D. AF, P, and F denote
antiferromagnetic, paramagnetic, and ferromagnetic regimes.
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var(Ns) ≈ 2.7; clearly, the samples in this higher temperature range
have been quenched into local free energy minima with many
particles remaining stuck at the walls. At these higher temperatures,
we can visually confirm the paramagnetic phase (J > 0, below the
P–F transition) from the presence of large clusters of particles with
similar spin, but clearly, the high temperature samples are out-of-
equilibrium and do not conform to expectations of the Ising model.
Thus, the variance data for small H/D are largely consistent with our
findings (and expectations) based on ⟨Ns⟩ alone.

2. Dynamics and structural arrest
We next examine the temporal dynamics of samples with

H/D = 1.23. We focus on the simplest temporal fluctuations:
single-particle spin-flip dynamics.

To quantitatively analyze spin-flip dynamics, we collect single-
particle “spin” trajectories as a function of time. We determine si(t)
for each particle i in the video field-of-view. Using these trajectories,
we compute the single-particle spin-flip temporal autocorrelation
function,

C(t) = ⟨si(t)si(0)⟩ − ⟨si⟩2

⟨s2
i ⟩ − ⟨si⟩2

. (12)

Here, the angled brackets indicate averages over all particles.
We fit the resultant curves to a stretched-exponential, C(t)
= exp[−(t/τ)γ]. From the fits, we extract a relaxation time, τ,
and stretching factor, γ. The data and fitting results are shown in
Fig. 8, and the corresponding best-fit parameters are tabulated in
the supplementary material, Table S1. Stretched exponentials have
0 < γ < 1 and can be indicative of heterogeneity amongst single-
particle relaxation times.

When βUmin is comparatively small, C(t) decays rapidly and is
roughly exponential. In this regime, the relaxation time τ increases
with depletion attraction strength (i.e., increasing temperature), and
the temporal fluctuations are significant, enabling the system to
reach equilibrium. At higher temperatures (starting for depletion
attraction strength, βUmin ≈ −3.3 at T = 27 ○C), the system becomes
dynamically arrested. Dynamic arrest sets in when the system is deep

FIG. 8. Single-particle “spin” autocorrelation functions, C(t) vs lag time t, along
with stretched exponential best fits for H/D = 1.23. Note that a curve is obtained
for each experiment; there are additional curves at 21 and 31 ○C as a conse-
quence of the repeated temperature jumps. Best fit parameters are tabulated in
Table S1.

in the paramagnetic regime, relatively close to the ferromagnetic
phase.

The attenuation of fluctuations at higher temperature is pri-
marily due to the depletion attraction between the particles and
the wall. This depletion attraction energy for particles near walls
has been studied73,77,81–84 and is expected to be approximately
twice that of two colloidal particles in the bulk. The local energy
barrier for wall escape (near both walls) becomes significant for
T > 27 ○C, and the system is effectively quenched into a local
minimum of the free energy landscape at some point during the
sample processing (during the temperature jump). At the highest
temperatures, the samples exhibit structures akin to frozen-in non-
equilibrium paramagnetic phases. Dynamic arrest prevents tran-
sition to the ferromagnetic phase. Interestingly, wall interactions
only slightly affect the equilibrium free energy (see dashed lines
in Fig. 4), but they dramatically affect spin-flip rates. This phe-
nomenology is consistent with the conclusions we arrived at from
analysis of structural data. It provides an interesting physics con-
trast between the colloidal “magnetic” system and the atomic spin
systems.

B. Samples with large wall separations
1. Static structural properties

In this final subsection, we summarize the behaviors of the
colloidal systems with larger H/D (H/D = 1.29, 1.55). At larger
H/D, the samples more readily accommodate lattice distortions, and
therefore, their behavior will deviate from that of systems with a
fixed in-plane lattice. As a result, we anticipate that the simple free-
volume models will be less realistic for larger H/D, and the analogies
to atomic Ising spin systems will be weaker. Nevertheless, these sys-
tems exhibit interesting similarities and differences compared to
samples with H/D = 1.23 and the more idealized models. We first
describe structural behavior.

For the system with H/D = 1.29, Figs. 9(a) and 9(b) pro-
vide images at different temperatures that qualitatively reveal the
existence of a structural crossover where the coupling-constant
changes sign. The images suggest evolution from the frustrated
antiferromagnet to paramagnet. More quantitatively, for the low-
est temperature (21 ○C), βUmin ≈ −1.7, ⟨Ns⟩ ≈ 2.5, and βJ ≈ −0.29.
For the highest temperature (31 ○C), ⟨Ns⟩ = 3.3 at βUmin ≈ −4.3, and
βJ ≈ 0.07. The crossover from the negative to positive coupling con-
stant occurs between 23 and 25 ○C. This structural behavior is
consistent with the theoretical expectation that the AF–P crossover
transition will arise but will slightly shift (see Fig. 4) to occur at
greater depletion attraction compared to samples with smaller H/D.
When more free volume is accessible to the particles (with increasing
H/D), the fraction of phase-space for which the depletion attrac-
tion is important is reduced, and the crossover shifts to require more
depletion attraction.

The orange pentagons in Fig. 7 show the variance vs the num-
ber of similar bonds for H/D = 1.29. At low depletion attraction
(21 ○C) [Fig. 9(a)], ⟨Ns⟩ ≈ 2.5 and var(Ns) = 0.73. This difference
reflects a morphology of stripes and zig-zags that differs from that
of samples with H/D = 1.23, which has shorter and more randomly
oriented stripes. The observed small ⟨Ns⟩ and var(Ns) is consis-
tent with the emergence of the zigzag-stripe ordered ground state
that is expected to occur when lattice distortion can partially relieve
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FIG. 9. Experimental images (contrast enhanced for visual clarity) of a buckled monolayer at wall-to-wall separation H/D ∼ 1.29 [(a) and (b)] and H/D ∼ 1.55 [(d) and
(e)] at temperatures [(a) and (d)] 21 ○C and [(b) and (e)] 27 ○C. (c) and (f) Spin-flip autocorrelation functions for H/D ≈ 1.29 and H/D ≈ 1.55, respectively, with stretched
exponential best-fits. Note that the vertical scales in (c) and (f) are different. Best fit parameters are tabulated in Table S1.

frustration.88–90 The rest of the var(Ns) vs ⟨Ns⟩ data falls nicely on
the predictions of the Ising model and exhibits the transition from a
frustrated antiferromagnet to a paramagnet. At the highest temper-
ature [Fig. 9(b)], the images show substantial clusters of buckled-up
(or buckled-down) particles residing in the same plane, as might
be expected in the paramagnetic phase, and traces of zigzag-stripe
configurations perhaps where the lattice has distorted for some
uncontrolled reason.

The system with H/D = 1.55 exhibits zigzag-stripe configura-
tions exclusively [see Figs. 9(d) and 9(e)]. ⟨Ns⟩ < 3 for all tempera-
tures, and var(Ns) ≈ 0.31 − 0.84, is small for all temperatures (see
green circles in Fig. 7). Superficially, the ⟨Ns⟩ and var(Ns) data
fall roughly on the predicted Ising model curve, and the primary
structural observations in the frustrated antiferromagnetic state are
consistent with prior work.1,67 However, in practice (see below),
these samples experience dynamic arrest at all temperatures. More
careful examination of Fig. 7 reveals significant fractional devia-
tion from the Ising model predictions for relatively small ⟨Ns⟩ and
var(Ns); the deviation is less obvious than the case of the smallest
H/D sample in the paramagnetic regime perhaps because the frac-
tional changes of ⟨Ns⟩ and var(Ns) per unit change of βJ are large in
the paramagnetic regime.

2. Dynamic properties
Figure 9(c) shows spin-flip autocorrelation functions for

H/D = 1.29 samples. These autocorrelation functions exhibit trends
similar to those of the H/D = 1.23 sample. That is, we observe a low-
temperature regime with roughly exponential dynamics that decay
rapidly and thus allow the system to evolve to equilibrium states, but
at higher temperatures, the samples exhibit dynamic arrest due to
the depletion attraction of particles to the walls.

By contrast, the dynamics for the samples with H/D = 1.55 are
very slow and non-exponential at all temperatures [see Fig. 9(f)].

This behavior is qualitatively different from the two systems with
smaller H/D. The dynamics at low temperatures are slow because
the system resides in the strongly frustrated antiferromagnet regime.
The dynamics at the high temperatures are slow too, and like the
samples with smaller H/D, this arrest effect is due to the strong
depletion attraction of the particles to the walls. Thus, although the
coupling constant varies with temperature, this system is quenched
into deep minima of the frustrated antiferromagnet free energy
landscape for all temperatures (but the dynamics are slow for differ-
ent reasons at different temperatures). Again, the colloidal sample
exhibits interesting differences with respect to traditional atomic
magnetic systems.

V. CONCLUSIONS
In this contribution, we have shown how quasi-2D buckled col-

loidal monolayers on a triangular lattice can be induced to exhibit
antiferromagnetic and para- and ferromagnetic behavior. A novel
colloidal Ising system was created via the introduction of short-
range, temperature-tunable entropic depletion attractions. Note that
here we employed temperature-sensitive rod-like micelles as deple-
tants, but, in principle, other depletants could work as well, e.g.,
microgel spheres whose size is temperature-dependent. We devel-
oped theoretical models with varying degrees of complexity that
predict these effects, and we experimentally demonstrated the ideas
using video microscopy. The structural experiments corroborated
the central ideas. Additional dynamical measurements of sample
spin-flip temporal autocorrelation functions showed that dynamic
arrest is an intrinsic feature of the buckled colloid with depletion
that arises when entropic attraction to the sample walls becomes
important. The colloidal system thus offers interesting similarities
and differences with respect to traditional atomic Ising systems and
even to active matter systems91,92 that are exciting to understand.
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Another potentially interesting connection worth exploring con-
cerns the similarities of the present system to glassy systems that
exhibit the reentrant glass phenomenon,17,18,25,26 e.g., which is also
driven by increasingly strong depletion interactions.

In future experiments, it should be possible to ameliorate
particle–wall attractions, which will facilitate cleaner studies of the
nature of the crossover from one phase to another, as well as a
better comparison of systems with rigid lattices vs deformable lat-
tices. Moreover, it should be interesting to study “spin” structure and
dynamics near defects, such as grain boundaries, and thereby exam-
ine the role of disorder in influencing relaxation, frustration, and
phase behavior; potentially, it may even be possible to use optical
traps to create systems that have some spin-glass character. Finally,
deeper examination of system dynamics (beyond single-spin flip-
ping) using analysis techniques developed for protein systems is
under way and could prove interesting.

SUPPLEMENTARY MATERIAL

See the supplementary material for the analytical form of the
pair potential (depletion potential), discussion of stuck particles,
details of numerical calculations, and details of experimental mea-
surements (i.e., βUmin measurement, L/D, H/D, and extracted fit
parameters from spin-flip autocorrelation functions).
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APPENDIX A: SPIN ASSIGNMENT

Bright and dark particles populate each image. Bright particles
(near the top cover slip) are located in the microscope’s focal plane,
and the dark particles (near the bottom cover slip) are slightly out of
focus. We determine the up–down assignments associated with the
two “Ising” (buckled) states, si ± 1, by creating a two-dimensional
histogram of particle brightness (intensity), I, vs time. At each time,
t, the ensemble of particle brightness’ exhibits a bimodal distribu-
tion (see the supplementary material, Fig. S3). To assign a particle
as “spin” up or down, a threshold brightness, Icut(t), is calculated
using the two peaks in I(t). In practice, we typically find that the
two peaks are at the 25th and 75th percentiles of the I(t) distribu-
tion; the up/down cut is set halfway between these two peaks. To
check that our assignments are correct, we overlaid these assign-
ments with experimental images and manually inspected them to
confirm matching.

APPENDIX B: REALISTIC MODELS IN QUASI-2D:
FORMULATION AND CALCULATIONS

In our more realistic calculation, the system free energy is com-
puted from the product of the phase space of the central particle and
that of its first nearest neighbors. This scheme requires averaging
over all possible up/down configurations of the first and the sec-
ond nearest neighbors of the central particle (see the supplementary
material, Fig. S6). The second nearest neighbors must be included
because the energy of a first nearest neighbor depends on the con-
figuration of its own neighbors (which includes the central particle
and some of the first and second nearest neighbors of the central
particle). The realistic approach is briefly outlined below.

We first write the partition function for a single particle as a
three-dimensional integral,

𝒵(si;𝒩 i) = ∫
V(si ,𝒩 i)

e−βU(r⃗ ;𝒩 i)dr⃗. (B1)

Here, 𝒩 i represents the set of spins of the six nearest neighbors of
particle i. V(si,𝒩 i) is the volume of the cage made by the nearest
neighbors of particle i; particle i is free to move in this cage but
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restricted to z > H/2 (z ≤ H/2) if si = +1 (si = −1). U(r⃗𝒩 i) is the
potential felt by particle i at position r⃗ due to its six neighbors and the
two walls (all of which, for our case, could be mediated via depletion
interactions). To simplify the decoupling of this integral, we make
the approximation that particle i’s nearest neighbors remain exactly
on their lattice positions at z = H −D/2 (z = D/2) when their spins
are +1 (−1).

We approximate the bulk partition function of N particles as a
product over the partition function of each particle in the cage of its
nearest neighbors,

𝒵tot(S) =
N

∏
i
𝒵(si;𝒩 i). (B2)

Here, S represents a specified set of all N spins spanning the system,
and again, 𝒩 i is the set of six nearest neighbors of particle i.

The total free energy of the whole system is then

F(S) = −kBT log𝒵tot(S). (B3)

Our goal is to describe the system with an Ising model and to
choose the optimal J such that the Ising energy term,

E(S; J) ≡ −J∑
⟨sis j⟩

sis j , (B4)

provides a good approximation for F(S) up to a constant indepen-
dent of spin configuration. To accomplish this goal, we require that
our Ising energy, with optimized J, should approximately capture the
energy differences between any two global spin states (i.e., between
“typical” global spin states) wherein only the central particle has
flipped. We require

E(S+k ; J) − E(S−k ; J) ≈ F(S+k ) − F(S−k ) for all k. (B5)

Here, S+k (S−k ) denotes the global spin state wherein the central parti-
cle is up (down). The state of the remaining (neighboring) particles is
indexed by k, which can take on one of 2N−1 possible configurations.
Note that when Eq. (B5) is true, it follows that F(S) ≈ F(S; J) + const
for all states S.

In writing single particle partition functions of the form in
Eq. (B1), we have assumed that particles are free to move only within
the cage of their static nearest neighbors whose z-positions are deter-
mined by their spins. Therefore, flipping the spin of the central
particle affects only the partition function of the central particle and
those of its six nearest neighbors. Furthermore, computation of the
partition functions of the six nearest neighbors only requires knowl-
edge of the spin state of the central particle and those of the 18
particles comprising the first and second nearest-neighbor rings.

Thus, to compute the free energy differences corresponding to
a single spin flip, we need to only consider the combined 18 spins of
the first and second nearest-neighbor rings. Accordingly, our state
index k need to only index the state of these 18 particles and will
take on one of 218 possible configurations.

Our calculation task reduces to finding a value of J that best
satisfies Eq. (B5) for all 218 possible values of k. For each k, there is
an optimal Jk, which we determine from

Jk =
F(S+k ) − F(S−k )

∑⟨i j⟩ sis j ∣S+k −∑⟨i j⟩ sis j ∣S−k
. (B6)

As explained earlier, when the central particle flips, only the
partition function of the central particle and those of its six nearest
neighbors change. Accordingly, we can write F(S±k ) in a form that
involves a computable product of partition functions,

F(S±k ) = −kBT log
⎡⎢⎢⎢⎣
𝒵(±1;𝒩)∏

i∈𝒩
𝒵(si;𝒩 i)

⎤⎥⎥⎥⎦
. (B7)

Here, 𝒩 represents the set of nearest neighbors of the central
particle.

To compute the optimal J for the whole system, we average
over all values of k (i.e., over all possible configurations of the 18
neighbors),

J = ∑k Jkwk

∑k wk
, (B8)

where

wk ≡𝒵(S+k ) +𝒵(S−k ) (B9)

is the Boltzmann weight for observing a particular configuration
out to the second nearest neighbors; the weight accounts for cases
where the center particle is up and down. This approach [Eq. (B8)]
effectively incorporates the relative probability of observing each
nearest-neighbor spin configuration.

Note that the above sums exclude k that correspond to spin
states where three of the six central bonds are similar (i.e., frustrated
for the antiferromagnet). For these nearest-neighbor configurations,
there is no energy difference when the central particle flips, and
the denominator of Eq. (B6) is zero. For examples of the above
computations, see the supplementary material, Fig. S7.

APPENDIX C: PARAMAGNETIC TO FERROMAGNETIC
TRANSITION

In Wannier’s treatment of the triangular Ising antiferromagnet
problem,38 the Curie point, i.e., the transition between paramag-
netic and ferromagnetic states, is given by setting μ, a convenience
parameter defined by Wannier, equal to zero. μ is defined in
Eq. (36) of Wannier’s paper: μ = 1 − 2 tanh 2βJ. Solving for βJ, we get
βJ = 1

2 tanh−1 1
2 ≈ 0.275. Thus, the value of βJ above which the sys-

tem transitions to the ferromagnetic state is βJ ≈ 0.275. (Note that we
have replaced Wannier’s symbol L with βJ, and therefore, Wannier’s
definition of L is equivalent to our definition of βJ.)

APPENDIX D: RELATIONSHIP BETWEEN MEAN
NUMBER OF SIMILAR BONDS (⟨N s ⟩) AND WANNIER’S
ENERGY EXPRESSION

Wannier derived an expression80 for the total free energy of
the system, U, normalized by − 2

NJ as a function of βJ: f (βJ) ≡ −2U
NJ .

Here, U ≡ J
2 ∑ sis j and i, j are neighboring spins that are summed

over (note that Wannier’s definition of J carries an extra factor of 2
compared to ours.) Additionally,∑ sisj = nd − ns, where nd (ns) rep-
resents the total number of dissimilar (similar) bonds in the sample.
Since every bond is either dissimilar or similar and since there are
three bonds per N particles, nd = 3N − ns. (Note that the number of
bonds attached to each particle is 6; however, in each unit cell, there
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is one particle and three bonds, so the number of bonds per particle is
3.) Thus, ∑ sisj = 3N − 2ns, U = J

2(3 N − 2ns), and f (βJ) = 2 ns
N − 3.

As defined in Sec. II B, ⟨Ns⟩ is the mean number of similar bonds
attached to each particle, which has a maximum value of 6. Since
⟨Ns⟩ = 2ns/N, ⟨Ns⟩ can be related to Wannier’s energy expression:
⟨Ns⟩ = f (βJ) + 3.

APPENDIX E: EXPERIMENTAL PHASE BEHAVIOR

With caveats about dynamic arrest, we attempted to combine
all of the experimental data into a single plot (i.e., data from all
H/D and temperatures). For this task, we started with the measured
⟨Ns⟩ for each H/D and temperature. For each measured ⟨Ns⟩, a one-
to-one correspondence with βJ can be established using Wannier’s
theoretical calculation (see Appendix D). Note that by using ⟨Ns⟩
(rather than temperature) to characterize each experimental system,
this data presentation is in some sense less sensitive to dynamic
arrest; the arrested systems are effectively trapped at lower tem-
peratures (with corresponding lower ⟨Ns⟩). The use of ⟨Ns⟩ thus
approximately assigns an “equilibrium” state at a lower temperature
to the sample.

Based on this approach, in the supplementary material, Fig. S5,
we show a master plot of all samples (all possible H/D and tem-
peratures). The master plot also contains Wannier’s theory curve
(Appendix D). With this plot, it is apparent that the experimental
samples collectively span from the antiferromagnetic to paramag-
netic regime (approaching the ferromagnetic regime). Thus, with
caveats about the lack of equilibration due to dynamic arrest, this
master plot further corroborates our central idea.
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