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Phonons in two-dimensional colloidal crystals with bond-strength disorder
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We study phonon modes in two-dimensional colloidal crystals composed of soft microgel particles with
hard polystyrene particle dopants distributed randomly on the triangular lattice. This experimental approach
produces close-packed lattices of spheres with random bond strength disorder, i.e., the effective springs coupling
nearest neighbors are very stiff, very soft, or of intermediate stiffness. Particle tracking video microscopy and
covariance matrix techniques are then employed to derive the phonon modes of the corresponding “shadow”
crystals with bond strength disorder as a function of increasing dopant concentration. At low frequencies,
hard and soft particles participate equally in the phonon modes, and the samples exhibit Debye-like density
of states behavior characteristic of crystals. For mid- and high-frequency phonons, the relative participation
of hard versus soft particles in each mode is found to vary systematically with dopant concentration.
Additionally, a few localized modes, primarily associated with hard particle motions, are found at the highest
frequencies.
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Macroscopic properties of disordered materials often differ
from those of their crystalline counterparts [1–4], and the
search for the microscopic origin of these differences is
an interesting and ongoing enterprise [5–12]. A variety of
disordered solids, ranging from metallic to colloidal glasses,
have been found to exhibit similar vibrational properties
[13–22]. Notable among these features is the so-called “boson
peak,” corresponding to an excess number of low-frequency
phonon modes compared to Debye predictions for crystals
[23], and the presence of floppy, quasilocalized modes [24–31].
Thus far, most of this research has focused on materials
wherein the microscopic constituents are structurally dis-
ordered. Structurally disordered solids typically form from
rapidly quenched atomic and molecular liquids [32,33] and,
in the case of colloids, from densely packed rapidly loaded
and/or polydisperse suspensions [1,2,24,34–43].

Besides structural disorder, other kinds of disorder are
present in nature. Disorder can be introduced into a crystalline
material, for example, via heterogenous interactions or bonds
between constituent particles [44]. Interestingly, simulations
and numerical studies suggest that similarities and differences
exist between systems with pure structural disorder versus
bond disorder [45–49], but experimental studies of such
systems are lacking. Further, because the simulations and
numerical studies have primarily focused on the shape of the
density of states, e.g., in searches for insight into the origin
of the boson peak, little is known about the behavior of the
individual particles that make up such systems. Thus, experi-
ments that derive information about individual particle motions
can provide complementary insights and can help to elucidate
similarities and differences between structurally disordered
versus bond-interaction disordered systems, including their
relationship to underlying ordered phases.

To this end, we study and report on the vibrational properties
of colloidal crystals with bond disorder confined in quasi-

two-dimensional chambers. These colloids are composed
primarily of soft poly(N-isopropylacrylamide) (PNIPAM)
microgel particles, with hard polystyrene (PS) particle dopants
distributed randomly on the lattice. Importantly, soft and hard
spheres in the crystal have the same diameter. As a result, 2D
structurally ordered lattices are produced with a distribution
of bond strengths; nearest-neighbor bonds are either very stiff,
very soft, or of intermediate stiffness. Video microscopy is
employed to track the motion of all particles, and particle
displacement covariances are used to derive the phonon
modes of the corresponding “shadow” crystals with the same
geometric configuration and interactions as the experimental
colloidal system, but absent damping. Thus, we explore the
phonon modes in crystals with bond strength disorder as a
function of increasing dopant concentration.

The experiments reveal that the vibrational density of states
in bond strength disordered crystals is modified by doping
with small numbers of especially stiff particles. However,
these bond disordered crystals were not found to exhibit the
classic phonon behavior of structurally disordered glasses. For
example, the low-frequency Boson peak is not apparent in
any of the samples studied. Nevertheless, the shape of the
phonon density of states (DOS), and the relative participation
of hard versus soft particles in each mode, is found to
vary systematically in the intermediate- and high-frequency
phonon ranges. At low frequencies, all samples exhibit phonon
DOS with Debye law scaling characteristic of crystalline
systems; additionally, both hard and soft particles participate
equally in these low-frequency phonon modes. At intermediate
frequencies, the phonon DOS exhibits a regime with numbers
of modes per unit frequency clearly in excess of Debye
scaling predictions, and the characteristic frequency of the
high-frequency regime decreases with increasing dopant con-
centration. Interestingly, intermediate modes recruit greater
participation of soft particles, while high-frequency modes
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FIG. 1. (Color online) Images of a soft PNIPAM particle colloidal
crystal doped with (a) 0%, (b) 2%, (c) 11%, and (d) 21% hard
polystyrene (PS) particles. The white spheres are PS particles, and
the gray spheres are PNIPAM particles. Scale bars are 10 μm.
(e) The orientational correlation function, g6(r), of all crystals studied.
Symbols represent local maxima and the dashed lines represent the
full correlation function.

recruit greater participation of hard particles. Thus, three
frequency regimes are identified. Low frequencies feature soft
and hard particles behaving similarly; intermediate frequencies
are dominated by soft particle motions, and high frequencies
are dominated by hard particle motions.

The experiments employed ensembles of particles sand-
wiched between a glass slide and cover slip (Fisher Scientific),
creating a quasi-2D chamber (Fig. 1). Polystyrene (PS)
particles (Invitrogen) had a diameter of 1.1 μm and the
poly(N-isopropylacrylamide) (PNIPAM) particles [50] had a
diameter of ∼1.1 μm. Because of this similarity in size,
the particle mixture readily self-assembled into a triangular
crystal. PNIPAM particles have a soft interparticle potential
[51], while polystyrene particles are much more hard-sphere-
like [52–54]. Since two different species of particles are
employed, i.e., soft PNIPAM and hard polystyrene, three
different interparticle interaction combinations arise (soft-soft,
soft-hard, and hard-hard). A small amount of Fluorescein
dye (∼0.2% w/v, Sigma-Aldrich) was added to the aqueous
suspension of particles in order to improve imaging contrast.
The dye was excited using light from a mercury lamp that
was directed through a 488-nm wavelength bandpass filter;

the resulting video images consisted of dark particles on a
bright background.

To characterize the triangular crystalline order of the
samples, the orientational and translational correlation func-
tions, g6(r) and gT (r), respectively, were calculated for all
of the crystals; gα(r = |ri − rj|) = 〈ψ∗

αi(ri)ψαj(rj)〉, where ri

and rj are the positions of particles i and j , and α = 6,T .
ψ6i and ψ6j are, thus, the orientational order parameters
for particles i and j , and ψT i and ψTj are the translation
order parameters for particles i and j . The orientational and
translational order parameters for a given particle j are defined
as ψ6j = (

∑nn
k=1 e6iθjk )/nn, where θjk is the angle between

particle j and its neighbor k and nn is the number of nearest
neighbors, ψTj = eiG·rj , where G is a primary reciprocal lattice
vector determined from the peak in the sample’s 2D structure
factor, s(k). Notice in Fig. 1(e), the orientational correlation
function g6(r) is large (>0.8) at short distances and does
not significantly decay over the longer distances probed; this
observation suggests that the samples possess good triangular
order. Measurements of the translational correlation functions
gT (r) (discussed more fully in the Supplemental Material [55])
lead to similar conclusions about long-range crystalline order
in the samples. Briefly, for the 0%, 11%, and 21% hard-particle
crystals, gT (r) behaved similar to g6(r). gT (r) for the 2%
and 7% hard-particle crystals decayed more quickly at longer
distances, but this effect was brought about by a single grain
boundary present in the field of view of these two crystals.
We separately confirmed, with studies of crystal subsections
excluding the grain boundaries, that the phonon behavior of
the smaller subsections was consistent with that derived from
the larger fields of view, including the grain boundaries.

We thus create crystals with three distinct interparticle
potentials distributed randomly on the triangular lattice.
Particle motion was recorded using video microscopy, while
the samples were kept at a temperature of 25◦C using an
objective heater (Bioptechs) connected to the microscope
oil immersion objective. Video data of Ntot ≈ 1000–1500
particles was recorded at a rate of 60 frames per second
for 500 seconds. The raw images (dark particles on a bright
background) were then inverted to yield images of bright
particles on a dark background (Fig. 1), and the motion of
all particles was extracted using standard particle tracking
techniques [56].

We derive the vibrational properties of the doped crystals
using the displacement covariance matrix method [24,35,57]–
[59]. Briefly, we measure u(t), the 2Ntot-component vector of
the displacements of all particles from their average positions
(x̄,ȳ). Then we compute the time-averaged displacement
covariance matrix (covariance matrix), Cij = 〈ui(t)uj (t)〉t ,
where i,j = 1,...,2Ntot run over particles and positional coor-
dinates, and the average runs over time (i.e., over all frames).
In the harmonic approximation, the covariance matrix C is
directly related to the sample’s stiffness matrix K , defined as
the matrix of second derivatives of the effective pair interaction
potential with respect to particle position displacements; in
particular, (C−1)ij kBT = Kij . The vibrational properties of
the so-called shadow system, a system of particles with the
same static properties as our experimental system (i.e., with
the same covariance and stiffness matrices, C and K), but
absent damping, are derived from the dynamical matrix D,
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FIG. 2. Effective spring constants k between two hard particles
(hollow squares), two soft particles (circles), and hard-particle–soft-
particle pairs (filled squares) derived from the computed spring
constant matrix K as a function of average particle separation r

for the 21% hard-particle doped crystal.

which is directly related to the stiffness matrix with Dij =
Kij/mij , where mij = √

mimj with mi the mass of particle i.
Diagonalizing the dynamical matrix gives the eigenvalues and
eigenvectors of the shadow system phonons. The eigenvalues
correspond to the frequencies, ω, of the phonon modes,
while the eigenvectors correspond to the particle amplitudes
associated with each of the phonon modes. Extraction of the
phonons of an undamped system from a damped system,
such as ours, is possible as long as the damping is only
a direct function of the particle momenta. In this case, the
displacement covariance and spring constant matrices, C and
K , respectively, only depend on the static interactions between
particles, which are the same for the real and shadow systems.
For further discussion about the limitations of this approach,
see Refs. [18,59]– [62].

From the spring constant matrix K , it is apparent that three
distinct nearest-neighbor springs are present, corresponding
to the three nearest-neighbor particle combinations. Figure
2 shows the effective spring constants measured in the 21%
hard-particle crystal. Notice that hard-hard particle pairings
have the stiffest springs, soft-soft particle pairings have the
softest springs, and soft-hard particle pairings have springs
with an intermediate stiffness.

For a 2D crystal, the Debye model predicts that the
accumulated number of phonon modes, N (ω), should grow as
the frequency squared in the low-frequency regime [63]. Note,
N (ω) is defined as the number of modes with frequency less
than or equal to ω and is thus integral over the phonon DOS.
In Fig. 3 the measured N (ω) is plotted for all doped crystals
(2%,7%,11%,21% PS/hard particles), as well as for a pure
PNIPAM crystal (0% PS/hard particles). At low frequencies,
N (ω) exhibits similar scaling with frequency in all crystals.
This scaling is very close to the Debye model prediction.
Thus, despite different degrees of bond strength disorder, the
low-frequency DOS behavior is quite similar to that of a perfect
crystal.

N
(ω

)

ω/ωmin

 0% Hard Particles
 2% Hard
 7% Hard
 11% Hard
 21% Hard
  ω2

FIG. 3. (Color online) Accumulated mode number, N (ω), for
all doped crystals and pure PNIPAM crystal as a function of the
frequency ω scaled by the minimum frequency ωmin for each sample.
The solid black line represents Debye law scaling, N (ω) ∼ ω2. The
accumulated mode numbers are logarithmically binned.

At intermediate frequencies N (ω) grows faster than pre-
dictions of the Debye model, and at the highest frequencies,
N (ω) plateaus. Note, a somewhat similar DOS behavior at
low-intermediate frequencies was also observed by Kaya et al.
[57] using two-dimensional slices within a three-dimensional
colloidal crystal; they attributed this deviation from Debye
behavior to a heterogeneous distribution of microgel particle
stiffness and argued that the deviations were related to the
boson peak. Our low-frequency data, however, does not
support the existence of a boson peak in these systems. To
better understand how crystalline behavior is preserved at low
frequencies, as well as to elucidate the behaviors exhibited
by these systems at higher frequencies, we utilize the derived
eigenvectors of the present system to obtain spatial information
about the phonon modes.

First, we quantify the contributions of soft and hard
particles to each mode. This information is derived by
calculating the participation fractions of each species for
each mode. The eigenvectors of each mode have com-
ponents (i.e., associated displacement amplitudes) corre-
sponding to each particle and each direction, i.e., e(ω) =
[e1x(ω),...,eNtotx(ω),e1y(ω),...,eNtoty(ω)], where Ntot is the total
number of particles in the sample. Further, all eigenvectors
are normalized such that |e(ω)|= ∑

α[e2
αx(ω) + e2

αy(ω)] = 1,
where α runs over all particles. The participation fraction
for particle α in a mode with frequency ω is, therefore,
given by PF,α(ω) = e2

αx(ω) + e2
αy(ω). Thus, the participation

fraction of hard spheres in a mode with frequency ω is
PF,Hard = ∑

h[e2
hx(ω) + e2

hy(ω)], where h is the set of indices
corresponding to hard spheres in the eigenvector, and the
participation fraction of soft spheres is PF,Soft(ω) = 1 −
PF,Hard = ∑

s[e
2
sx(ω) + e2

sy(ω)], where s is the set of indices
corresponding to soft spheres in the eigenvector.
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FIG. 4. (Color online) Mode characterization and representation for 11% hard-particle crystal. (a) Accumulated mode number N (ω) with
solid black line representing Debye law scaling, N (ω) ∼ ω2, and dotted black lines show where representative modes (d–f) are found on plot.
(b) Participation fraction PF (ω) of hard (filled red circles) and soft (hollow black squares) spheres. Horizontal solid black lines show number
fractions of soft and hard particles, 89% and 11%, respectively, and dashed black lines again show representative modes. The participation
fraction of hard and soft spheres is binned (i.e., averaged) over a bin size of 20 × 103 rad/s. (c) Participation ratio PR(ω) with solid black
line showing threshold for localized versus extended motion, and dotted lines again show representative modes. The participation ratio of
all particles is binned over a bin size of 20 × 103 rad/s. (d–f) Vector displacement plots of representative modes (d) ω = 86.4 × 103 rad/s,
(e) ω = 381.2 × 103 rad/s, and (f) ω = 758.7 × 103 rad/s. Dark blue dots are hard particles, light blue are soft particles, and arrows are the
particles’ displacements. The larger the arrow, the larger the particle’s displacement.

Second, we quantify the spatial extent of each
mode by calculating its participation ratio. The mode
participation ratio is defined as PR(ω) = [

∑
α e2

αx(ω) +
e2
αy(ω)]2/[Ntot

∑
α e4

αx(ω) + e4
αy(ω)]. A low numerical value

for the participation ratio indicates that the mode is spatially
localized, while a high value indicates the mode is spatially
extended. The participation ratio cut-off used to separate
localized from extended modes is typically set to be 0.2. Modes
with a participation ratio below (above) 0.2 are considered
localized (extended).

The general behavior of the bond-disordered crystals can be
gleaned from Fig. 4, wherein representative phonon modes of
an 11% hard-particle-doped crystal are shown, along with the
accumulated mode number, N (ω), the participation fraction,
PF (ω), and the participation ratio, PR(ω). Interestingly, at low
frequencies, where Debye-like behavior was observed in the
accumulated mode number, the participation fractions of hard
and soft particles follow their respective number fractions in
the sample, i.e., soft and hard particles participate equally
[Fig. 4(b)]. This representative mode and other modes at low
frequencies exhibit long-wavelength-like extended behavior;
the behavior is similar to that of corresponding modes at

low frequencies in perfect crystals. Note, also, that a few
low-frequency modes have very low participation ratios (i.e.,
they have at least some quasilocalized character); we believe
these effects are probably due to lattice point defects and/or
grain boundaries [64]. In the case of point defects, these
low-frequency modes appear to possess both long-wavelength-
like character and localized motions near lattice defects.
The mode shown in Fig. 4(d) is an example of one such
mode; notice the defect in the lower left-hand corner. Thus,
though the participation ratio of such modes is typically below
the expected participation ratio of extended modes (∼0.5),
they clearly exhibit a form of long-wavelength-like spatially
extended behavior, too.

At intermediate frequencies, the accumulated mode number
grows faster than would be expected should Debye scaling
continue to higher frequencies. In addition, the motion
in these modes is dominated by soft spheres as is best
quantified by the participation fraction. In particular, we
see that the participation fraction of soft spheres in these
modes is higher than the number ratio of soft spheres in the
system (Fig. 4(b)); i.e., we observe enhanced participation
of soft spheres and diminished participation of hard spheres
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compared to their sample number fractions. The motion of
these intermediate modes is also spatially extended, but their
character appears qualitatively different than was found at low
frequencies.

The highest frequency modes are dominated by hard
spheres. Specifically, a crossover in the participation fraction is
observed wherein hard particles have enhanced participation,
and the participation of soft spheres is diminished. The
highest frequency modes do not display long wavelength
extended behavior; rather, they appear to be more localized
than most of the modes observed at intermediate and low
frequencies. This latter effect is supported quantitatively by
the participation ratio [Fig. 4(c)]. The participation ratio
at intermediate frequencies is far above the 0.2 threshold.
At high frequencies, however, the participation ratio drops
below 0.2.

We next explore the effects of differing dopant concentra-
tions. To better compare samples with different dopant con-
centrations, we scale the frequencies of each sample type by its
mean frequency 〈ω〉. In this manner, we can plot the behaviors
of all samples over the same relative frequency range to discern
trends more easily. Further, by subtracting the number fraction
of hard spheres in a sample from the measured participation
fraction, i.e., PF,Hard(ω) − NHard/Ntot, we can suggestively
plot all participation fraction versus frequency data as shown
in Fig. 5. Here, when PF,Hard(ω) − NHard/Ntot has a value of
zero, then all particles participate equally (i.e., corresponding
to their number fraction in the sample); a negative value
means there is diminished participation by the hard spheres
and enhanced participation by the soft spheres; a positive
value means enhanced participation by the hard spheres
and diminished participation by the soft spheres. The three
frequency regimes observed in the 11% hard particle crystals
are apparent in all doped crystals within this plotting scheme.
Equal participation is observed at low frequencies, diminished
hard-particle participation at intermediate frequencies, and
enhanced hard-particle participation at high frequencies. In
addition, we find that the extent (i.e., frequency range) of
the high-frequency regime, wherein hard particles become the
primary mode participants, shifts to lower relative frequency
as the number of hard-particle dopants increases.

The participation ratio of all doped crystals and the pure
soft PNIPAM crystal are also shown in Fig. 5 as a function of
scaled frequency. Notice that extended modes predominate at
low and intermediate frequencies for all crystals, regardless of
dopant concentration. The high-frequency modes in the pure
soft particle crystal are also observed to be extended; however,
the highest frequency modes of all doped crystals are found
to be localized. Evidently, the hard-particle dopants dominate
motion at high frequencies, thus localizing vibrational motion
since they are relatively isolated. This high-frequency behavior
appears similar, at least superficially, to that observed in
colloidal glasses [19,24].

To further confirm our findings, we studied computationally
generated spring networks. These spring networks employed
varying ratios of stiff and soft springs located randomly within
the lattice. Part of our motivation for carrying out these
simulations was due to the fact that the spatial distribution
of hard-particle dopants in the experimental samples was not
perfectly random; we therefore hoped to clarify whether this
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FIG. 5. (Color online) (a) Hard-particle participation fractions
shifted by hard-particle number fractions PF,Hard(ω) − NHard/Ntot as
a function of frequency scaled by the mean frequency ω/〈ω〉 for
all doped crystals. Dotted line represents equal participation. (b)
Participation ratio as a function of frequency scaled by the mean
frequency ω/〈ω〉 for all doped crystals as well as pure soft-particle
crystal. Dotted line represents localized versus extended threshold.
Legend is for both figures; however, data for 0% hard-particle crystal
only in panel b. Both participation fraction and participation ratio
data is binned (i.e., averaged) over a bin size of 20 × 103 rad/s.

lack of perfect randomness would affect any of the conclusions
we made about the phonon spectra.

The computer simulations employed particles with equal
masses on triangular lattices. The particles were randomly
chosen to have one of two spring constants, k1 or k2. We set k2

to be five times larger than k1. Particles with spring constant
k2 are referred to as “stiff” and particles with spring constant
k1 are referred to as “soft.” The effective spring between two
neighboring particles is the mean value of the spring constants
of the two particles. In other words, the effective spring
constant kij between neighboring particles i and j is given
by kij = (ki + kj )/2, where ki and kj are the spring constants
of individual particles i and j , respectively. This model was
employed to be consistent with our experiments, wherein two
hard particles are coupled by an effectively stiff spring, two
soft particles are coupled by an effectively soft spring, and
hard-particle–soft-particle pairs are coupled by an effective
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FIG. 6. (Color online) (a) Stiff-particle participation fractions
shifted by stiff-particle number fractions PF,Stiff (ω) − NStiff/Ntot as
a function of frequency scaled by the mean frequency ω/〈ω〉
for computationally generated springs networks, excluding those
that are purely soft particles or purely stiff particles. Dotted line
represents equal participation. (b) Participation ratio PR(ω) as a
function of frequency scaled by the mean frequency ω/〈ω〉 for all
computationally generated spring networks, including those that are
purely soft particles (black line with dots) or purely stiff particles
(gray line with dots). Dotted line represents localized versus extended
threshold. Legend is for both figures; however, data for 0% and 100%
stiff-particle crystal only in panel b.

spring of intermediate stiffness. All non-nearest-neighbor
springs were set to zero. We thus generated a spring constant
matrix K based on nearest-neighbor spring interactions; K , in
turn, gives rise to a dynamical matrix D for the spring network.
The eigenvalues and eigenvectors of D were calculated, and
the frequencies, participation fractions, participation ratios,
etc., were derived. One hundred different initial configurations
were employed for each network; networks were chosen with
0, 10, 25, 35, 50, 65, 75, 90, and 100 percent stiff particles. By
averaging over 100 iterations, we minimized effects specific
to any one configuration.

Plots derived from these “computationally generated data,”
and analogous to those of the experimental data in Fig. 5, are
provided in Fig. 6. Notice that the computationally generated
networks exhibit the same three frequency regimes as the
experimental systems. Further, the participation ratios, PR(ω),
of all computationally generated spring networks (0% to 100%
stiff particles) exhibit trends similar to experiment. Thus, it

appears that the small nonrandomness in the experimental
dopant spatial distribution does not introduce systematic errors
that affect our primary conclusions.

In summary, the vibrational modes in soft-particle crystals
doped with hard particles exhibit three distinct frequency
regimes. At low frequencies, crystalline (Debye-like) behavior
in the DOS is observed in all systems regardless of dop-
ing. These low-frequency modes display long wavelength
behavior in which hard and soft particles participate equally.
At intermediate frequencies, the modes are extended and
dominated by soft particles. At the highest frequencies, the
modes are more localized and dominated by hard particles.
Our computationally generated spring networks exhibit many
of the trends observed here and even extrapolate to higher
number fractions of hard spheres.

The experimental results imply that while the introduction
of bond-strength disorder does indeed alter some of the
vibrational properties of crystalline materials, compared to
the introduction of structural disorder, it does not as readily
destroy the crystalline- and Debye-like properties at low
frequencies. Thus, at least within the present experimental
regimes, it appears that structural order in crystalline materials
is more important than bond homogeneity for maintaining
crystalline phonon properties at low frequencies. This finding
is superficially in conflict with previous simulation work on
interaction disordered crystals, which have found a boson
peak at low frequencies when enough disorder is present
[45–49]. The previous simulation work examined a variety of
spring constant distributions including a box distribution with
plus/minus 20% variation about the average [45], truncated
Gaussian distributions with widths varying from 0.6 to 1 [46,
48], power law distributions [47], and binary distributions with
a spring constant ratio of 0.1 [47,49]. The simulations of binary
distributions are closest to our experiments. However, these
simulations started with a crystal of primarily hard springs and
then doped it with soft springs. By contrast our experiments
employed a soft crystal doped with hard particles. Also, the
simulations used only two spring constants (soft and hard),
whereas our experiments had three distinct spring constants
(soft, hard, and intermediate stiffness), corresponding to our
three interparticle interactions, i.e., soft-soft, hard-hard, and
soft-hard, respectively. It should be interesting for future work
to push to higher concentrations of hard spheres or to start with
hard-particle crystals and add soft dopants. These experiments
should be possible but are technically more difficult because
the hard polystyrene particles scatter significantly more light
than the PNIPAM particles, and tracking PNIPAM particles
surrounded by a large number of polystyrene particles is
difficult.

Looking to the future, it should be interesting to increase
the bond-strength disparity by using softer particles. This
variation, as well as the use of higher hard-particle concen-
trations, would enable us to probe systems closer to the onset
of mechanical instability. The responses of these materials to
mechanical perturbations would also be interesting to study.
Given that colloidal glasses have been shown to possess
quasilocalized “soft spots” that correlate with the location of
structural rearrangements [24–30], it would be interesting to
see when and if the soft spheres would become literal soft
spots in hard crystals that facilitate rearrangements (due to
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thermal motion or mechanical stress). Finally, in a different
vein, these systems potentially offer a new class of so-called
phononic materials in which localization of elastic energy (i.e.,
phonons) can influence wave transport [65,66].
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