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Phonons in two-dimensional soft colloidal crystals
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The vibrational modes of pristine and polycrystalline monolayer colloidal crystals composed of thermosensitive
microgel particles are measured using video microscopy and covariance matrix analysis. At low frequencies, the
Debye relation for two-dimensional harmonic crystals is observed in both crystal types; at higher frequencies,
evidence for van Hove singularities in the phonon density of states is significantly smeared out by experimental
noise and measurement statistics. The effects of these errors are analyzed using numerical simulations. We
introduce methods to correct for these limitations, which can be applied to disordered systems as well as
crystalline ones, and we show that application of the error correction procedure to the experimental data leads
to more pronounced van Hove singularities in the pristine crystal. Finally, quasilocalized low-frequency modes
in polycrystalline two-dimensional colloidal crystals are identified and demonstrated to correlate with structural
defects such as dislocations, suggesting that quasilocalized low-frequency phonon modes may be used to identify
local regions vulnerable to rearrangements in crystalline as well as amorphous solids.
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I. INTRODUCTION

Recently, video microscopy has been cleverly employed to
extract information about the dynamical matrix of ordered
[1,2] and disordered [3,4] colloidal systems from particle
position fluctuations. This technical advance has opened
a novel experimental link between thermal colloids and
traditional atomic and molecular materials [5–14]. Along these
lines, one ubiquitous feature of atomic glasses, the so-called
boson peak due to an excess number of vibrational modes
at low frequency [15,16], has been observed in disordered
colloidal packings [3,6,7]. Furthermore, connections have
been established between the “soft spots” associated with
quasilocalized low-frequency vibrational modes and localized
particle rearrangements in disordered colloids [10,11,17–19],
reinforcing the possibility that such phenomena might exist in
atomic and molecular glasses, as well.

The present paper has two primary themes. First, we use
nearly perfect crystals to measure the phonon density of
states. To recover van Hove singularities, arguably the most
prominent feature of phonons in crystals, we introduce error
correction procedures which are applicable even to disordered
systems and which reduce the amount of data needed to
reliably perform such analyses by orders of magnitude.
Second, we study imperfect crystals in order to probe directly
the effects of defects on phonon modes. We find that structural
defects in the imperfect two-dimensional colloidal crystals
are spatially correlated with quasilocalized low-frequency
phonon modes. Thus, our experiments extend ideas about
quasilocalized low-frequency modes and flow defects in
colloidal glasses [10,11,19] to the realm of colloidal crystals
and suggest that phonon properties can be used to identify
crystal defects which participate in the material’s response to
mechanical stress.

Specifically, we employ video microscopy and covari-
ance matrix analysis to explore the phonons of various
two-dimensional soft colloidal crystals. By studying two-
dimensional crystals [20], we avoid significant complications
[21,22] encountered by previous experiments which analyzed
two-dimensional image slices within three-dimensional col-
loidal crystals to derive phonon properties [6,12]. Our work is
also complementary to earlier experiments by Keim et al. [1]
and Reinke et al. [2] which studied colloidal crystals stabi-
lized by long-ranged repulsions and found good quantitative
agreement between the dispersion relation measured from
particle fluctuations and theoretical expectation. By contrast,
the present experiments measure not only the dispersion
relations for crystals of particles with short-range interactions
but also the density of vibrational states, which turns out to be
far more sensitive to statistical error. In addition, we identify a
narrow band of modes in imperfect crystals that are associated
with crystal defects.

II. EXPERIMENT

The experiments employed poly(N -isopropylacrylamide)
or PNIPAM microgel particles, whose diameters decrease with
increasing temperature. Particle diameters are measured to be
1.4 μm at 22 ◦C by dynamic light scattering; the sample
polydispersity was also determined by light scattering to be
approximately 5%. PNIPAM particles are loaded between
two coverslips, and crystalline regions are formed as the
suspension is sheared by capillary forces. The samples are
then hermetically sealed using optical glue (Norland 65) and
thermally cycled between 28 ◦C and room temperature for
at least 24 h to anneal away small defects. Particle softness
permits the spheres to pack densely with stable contacts and yet
still exhibit measurable thermal motions. At room temperature,
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the particles are immobile due to swelling. The samples are
then slowly heated from room temperature until noticeable
motion is observed at 24.6 ◦C. Before data acquisition,
samples equilibrate for 4 h on the microscope stage. Bright-
field microscopy images are acquired at 60 frames per second
with a total number of frames of 40 000. An image shutter
speed of 1/4000 s is used. Care was taken so that no
structural rearrangements occurred during the experimental
time window. Each image contains about 3000 particles in
the field of view. The trajectory of each particle in the video
was then extracted using standard particle-tracking techniques
[23]. The particle position resolution is approximately 6 nm.
Crystal quality is characterized by Fourier transformation of
the microscopy images and by spatial correlations of the bond
orientational order parameter, �6 [24]. Particle spacing is
measured to be 1.19 μm, indicating a small compression of
PNIPAM spheres (≈70 nm compared to the hydrodynamic
diameter).

To obtain intrinsic vibrational modes of the colloidal crystal
samples, we employ covariance matrix analysis. Specifically,
a displacement vector u(t) that contains the displacement
components of all particles from their equilibrium positions is
extracted for each frame. A covariance matrix C is constructed
with Cij = 〈uiuj 〉t , where i and j run through all particles
and coordination directions. To quadratic order, the stiffness
matrix K , which contains the effective spring constants
between particles, is proportional to the inverse of C with
K = kBT C−1. Thus, by measuring the relative displacement
of particles, interactions between particle pairs can be extracted
and the dynamical matrix can be constructed, i.e.,

D = K

m
= kBT (C−1)

m
, (1)

where m is the particle mass. The dynamical matrix yields
the eigenfrequencies and eigenvectors of the shadow system:
the system of particles with the exact same interactions and
geometry as the colloidal particles, but without damping. This
approach of measuring phonons permits direct comparison
to theoretical models, e.g., models that might be used to
understand atomic and molecular crystalline solids.

Displacement covariance analysis assumes that the local
curvature of the multidimensional potential energy landscape
of the system V (u1,u2, . . . ,uN ) is harmonic near the equi-
librium configuration. However, this assumption may not be
satisfied for some modes obtained from experiment. To test the
harmonicity of individual modes, we define an instantaneous
projection coefficient cω(t) = u(t) · eω, where eω is the eigen-
vector with frequency ω. Consider the instantaneous potential
energy of the system

V [u(t)] = 1

2
u(t)Ku(t)∗ ∝

( ∑
ω

cω(t)eω

)
K

(∑
ω

cω(t)e∗
ω

)
∝

∑
ω

[ωcω(t)]2. (2)

The contribution to the system potential energy from mode
ω is Eω(t) ∝ ω2cω(t)2. This potential energy component is
the result of thermal fluctuations, and therefore it should be

FIG. 1. (Color online) Distribution of instantaneous projection
coefficient cω(t) for (a) the lowest-frequency mode, mode 0, and (b)
the tenth lowest-frequency mode. Red lines are Gaussian fits to the
distributions.

characterized by the Boltzman distribution, i.e.,

P [Eω(t)] ∝ e− ω2cω (t)2

2kT . (3)

A Gaussian distribution of the instantaneous projection
coefficient indicates that the potential energy component from
mode ω increases parabolically with displacement, i.e., the
curvature of the system potential along the direction of that par-
ticular eigenvector is harmonic. The deviation from a Gaussian
distribution is typically quantified by the kurtosis value. In our
experiments, we find that a few of the lowest-frequency modes,
typically fewer than five modes, have kurtosis values larger
than 0.2 and can even display a multimodal distribution of cω

as shown in Fig. 1(a). Most modes have kurtosis values less
than 0.1, as plotted in Fig. 1(b). The harmonic assumption is not
valid for modes with high kurtosis values, so we have excluded
modes with kurtosis values greater than 0.2 from our analysis.
The high kurtosis values for those modes may result from
several factors, including undersampling of the lowest-energy
basins [26] and tiny shifts of equilibrium positions during
experiment [27].

The local spring constants are measured to be uniformly
distributed in space. Centrifugal compression experiments [25]
show for PNIPAM the interparticle interaction potential is
consistent with the Hertzian form. Vertical fluctuations are
primarily due to particle polydispersity and are small; their
effects on the modes obtained by the covariance method are
calculated to be negligible (i.e., less than 4%) [7].

III. PHONON DENSITY OF STATES IN
COLLOIDAL CRYSTALS

At low frequencies, Debye scaling requires that the phonon
density of states D(ω) scales with ωd−1, where d is the
dimensionality of the system, or that N (ω), the number of
modes with frequencies below ω, scales as ωd [28]. Debye
scaling for two-dimensional crystals is clearly exhibited by
both our perfect and imperfect monolayer colloidal crystals
[see Fig. 2(a)]. For more than one decade, N (ω) follows a
power law close to 2, as expected. The lowest-frequency modes
typically exhibit wavelike features as shown in Figs. 2(b)
and 2(c) (more real space vector plots of low-frequency
modes can be found in Supplementary Material [24]). Thus
we conclude that the Debye scaling observed in Fig. 2(a) is
due to wavelike “acoustic modes.”
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FIG. 2. (Color online) Phonon modes in 2D colloidal crystals. (a) Accumulated mode number N (ω) as a function of frequency, for a nearly
perfect crystal (blue squares) and an imperfect one (red square); ω2 is drawn for comparison (black line); small arrows point to the modes
whose real space vector distributions are plotted in panels b and c. (b, c) Spatial distribution of a low-frequency mode for the (b) nearly perfect
and (c) imperfect crystal; the direction and magnitude of polarization vectors are represented by the direction and size of the arrows.

At higher frequencies, deviations from Debye behavior are
observed in the phonon density of states, D(ω), as shown
in Fig. 3(a) for the pristine crystal. For triangular two-
dimensional crystals with harmonic interactions, the density
of states has two van Hove singularities, one for longitudinal
modes and one for transverse modes [solid lines in Fig. 3(a)];
these singularities are expected to arise at the boundary of
the first Brillouin zone. In contrast, Fig. 3(a) shows that the
experimentally measured D(ω) (black open circles) exhibits
a smooth peak at an intermediate frequency and a shallow
shoulder at a higher frequency.

IV. ERROR ANALYSIS AND CORRECTIONS

We identify the peak and shoulder as vestiges of van Hove
singularities. Several factors may contribute to the rounding
of van Hove singularities in a colloidal crystal. For example,
particle polydispersity may break translational symmetry for
the largest wave vectors, wherein van Hove singularities
appear. Further, the statistics associated with the finite number
of frames (i.e., the finite number of temporal measurements),
as well as uncertainties in locating particle positions, can
introduce noise into the covariance matrix and thus into its
eigenvalues and eigenvectors [27]. In the following, we discuss
these effects, and we show how to recover some of the expected
behavior by applying corrections to the experimental data.

We first show that in the limit of perfect statistics (i.e.,
wherein the covariance matrix is calculated from an infinite
number of time frames) measurement error modifies the
effective interactions between particles but does not smooth
out the peaks. We do this by first studying the distribution of
our original system and then showing that the distribution of a
system which has been visualized with finite resolution, σ , is
described by an effective potential energy which we calculate
as an expansion in σ .

Consider a colloidal system with particles interacting with
potential energy V ({ri}), where i labels the 2N coordinates of
the particles. The distribution of states at equilibrium is

ρ({ri}) = e−βV ({ri })/Z, (4)

with β = 1/kBT , and Z normalizes the distribution. We now
imagine that the system is observed with independent Gaussian

FIG. 3. (Color online) (a) Phonon density of states of two-
dimensional colloidal crystals. The DOS is obtained from experi-
mental data (black circles) and after N/T extrapolation (red squares).
The numerically generated DOS for the harmonic triangular lattice
(with matched sound speeds) is plotted as a guide to the eye (solid
lines). (b) Dispersion curves for longitudinal (open symbols) and
transverse (filled symbols) modes along high-symmetry directions,
including uncorrected experimental data (black circles) and data after
N/T extrapolation (red squares). Theoretical expectations are plotted
in dashed (longitudinal) and solid (transverse) lines with matched
colors. Inset: High-symmetry directions in reciprocal space.
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errors ξi on the positions of each particle. In this case, we will
observe an effective distribution for the degrees of freedom
which is a convolution of the true position with the observation
error:

ρ({r ′
i}) = 1

Z

∫
e−βV ({ri })

∏
i

δ(r ′
i − ri − ξi)

e−ξ 2
i /2σ 2

√
2πσ

dri,

where σ is the width of the distribution of ξ . The integral over
r gives an effective weight in the exponential:

A = βV ({r ′
i − ξi}) +

∑
i

ξ 2
i /2σ 2, (5)

and expanding this potential (assumed smooth) to second order
gives

A= βV ({r ′
i}) + β

∑
i

ξiVi + β
∑
ij

ξiξjVij

2
+

∑
i

ξ 2
i

2σ 2
+ . . . ,

(6)

where Vi is the derivative of the potential with respect to the ith
coordinate. Since the variables ξi are unknown we integrate
over them to find the distribution of the observed variables;
we expand the result, keeping terms up to second order in the
resolution σ :

A = βV −
∑

i

β2σ 2V 2
i

2
+ βσ 2

2

∑
i

Vii . (7)

This is our main result for the effective potential of a system
observed with a finite resolution.

The ratio of the coefficients of the two terms is fixed due to
the fact that the integral of the probability should not change.
Thus,∫

e−A
∏

i

dr ′
i ≈

∫
e−βV

(
1+

∑
i

β2σ 2V 2
i

2
− βσ 2

2

∑
i

Vii

)
.

(8)

Notice, if we integrate by parts, then Vii in Eq. (8) cancels the
contribution in V 2

i , and the probability distribution remains
normalized.

Let us specialize to the case of harmonic nearest neighbor
interactions. Then Vii is no more than a shift in the zero of
the energy in the Hamiltonian. The contribution V 2

i however
is a quadratic contribution which introduces new interactions
out to second nearest neighbors in the system. This effective
interaction will shift the van Hove singularities but cannot
smooth them out. It is interesting to note that mathematically
similar perturbation series can be found in quantum mechanics
in the Wigner semiclassical expansion [29] as well as in the
analysis of integration errors in the leap-frog integrator [30].
In quantum mechanics the role of σ is replaced by the thermal
wavelength λ ∼ h̄

√
β/m, which also renders the position of

the particles uncertain.
To understand the smearing or rounding of the van Hove

singularities, we next consider the opposite case, i.e., wherein
no measurement error exists but there exists an error associated
with the quality of the statistics used to calculate the covariance
matrix. A key quantity for this analysis is the parameter
R = N/T , where N is the number of degrees of freedom

in the sample and T is the number of independent time frames
(observation frames) used in construction of the covariance
matrix. R < 1 ensures that the covariance matrix is constructed
from independent measurements, while R → 0 corresponds to
the limit of perfect statistics. In our experiment, R � 0.15.

For nonzero values of R, the noise in the matrix gives rise
to a systematic error in the density of states. In particular,
it smoothes the van Hove peaks and shifts the top of the
spectrum to higher ω. Random matrix theory suggests that the
eigenvalues distribution should converge linearly to its limiting
R = 0 values in disordered systems [31]. To study this effect,
we performed molecular dynamics simulations of crystalline
samples and calculated eigenfrequencies from the constructed
displacement covariance matrix. The eigenfrequencies indeed
converge linearly with R to the values at perfect statistics
(R = 0), as plotted in Fig. 4(a). A similar convergence of
eigenfrequencies is also observed in our experimental data,
when the experiment video is truncated into different lengths,
as shown in Fig. 4(b). The comparison between the raw data
(black circles) and extrapolated data (red squares) in Fig. 3(a)
shows that the corrections from extrapolation are larger at
higher frequencies, as expected, and that the extrapolation
converts the shoulder at the second van Hove singularity into
a small peak. The theoretical curves are different in the two
cases because extrapolation affects the speed of sound, which
we use to fit to theory.

Our numerical simulations of crystalline particle packings
also show that the density of states obtained from extrapolating
to R → 0 agrees to within noise with the result for R = 0.002
as plotted in Fig. 4(c). Note that R = 0.002 corresponds to
nearly two orders of magnitude more data than are available
experimentally (R � 0.15). Thus, our simulations indicate that
linear extrapolation to R → 0 makes the covariance matrix
technique far more powerful in practice.

We also studied the effect of errors on the dispersion
relation. For each eigenmode obtained from the covariance ma-
trix, Fourier transformation of the longitudinal and transverse
components of the eigenvector yields two spectral functions,
fL and fT , respectively [32–34]:

fT (k,ω) =
〈∣∣∣∣∑

n

k̂ × eω,i exp(ik · ri)

∣∣∣∣2〉
, (9)

fL(k,ω) =
〈∣∣∣∣ ∑

n

k̂ · eω,i exp(ik · ri)

∣∣∣∣2〉
, (10)

where eω,i is the polarization vector on particle i in mode ω,
k is the wave vector, rn is the equilibrium position of each
particle, and the brackets indicate an average of directions
k̂ (for crystals: identical crystallographic directions). We
calculated these spectral functions of the eigenmodes from
using data from an experimental colloidal crystal along high-
symmetry directions; for each phonon frequency, the wave
vector corresponding to the maximum of the spectral function,
kmax(ω), is readily extracted and the dispersion relation is
thus determined. Note this method does not require any
underlying periodicity, and it was recently applied to colloidal
glasses [33]. The binned dispersion curves [black symbols in
Fig. 3(b)] largely follow the theoretical expectation, obtained
by fitting to the low-frequency part of the curve to obtain
the longitudinal and transverse speeds of sound, as shown
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FIG. 4. (Color online) Correction for a finite number of observa-
tion frames. (a) Linear dependence of eigenfrequencies on N/T from
simulation. n is the mode index, which increases from low to high
frequencies. For better visualization, a constant, the corresponding
mode frequency for R = 0.002, has been subtracted for each curve.
(b) Linear convergence of eigenfrequencies from experimental data
with N/T . The vertical axis plots the frequencies minus the frequency
from the full length of the video, ωfull. (c) Density of states for different
ratios of N/T from simulation.

in Fig. 3(b). However, the measured dispersion relation has
a stronger dependence on k, especially for the longitudinal
branch. We extrapolated to the limit of perfect statistics, where
R = N/T → 0. We find from simulations that, like the mode
frequencies, the dispersion relation approaches its limiting
R = 0 value linearly in R. Extrapolation of the data [red
symbols in Fig. 3(b)] leads to excellent agreement with theory.
Thus, the dispersion relation appears far less sensitive than
the density of vibrational states to both of the leading sources

FIG. 5. (Color online) Correction for a limited field of view.
(a) Dispersion curves along different directions derived from un-
corrected data. Circles represent longitudinal modes and crosses
represent transverse modes. Directions are indexed using the basis
vectors of the reciprocal lattice. (b) Dispersion curves along different
directions after the Hann window function correction.

of error in the covariance matrix technique, i.e., less sensitive
to measurement errors in the positions of the particles and due
to limited statistics.

By extrapolating R to zero, we obtain the bulk modulus
of B = 2.4 × 10−5 Pa m (±8 × 10−6) and the shear modulus
of G = 5.4 × 10−6 Pa m (±1.8 × 10−6). The measured shear
modulus is in line with bulk rheology measurements of
PNIPAM suspensions [35].

The finite spatial observation window in the experiment also
introduces errors into the obtained spectrum. For a crystal,
the dispersion relation can be derived from the covariance
matrix in reciprocal space. Specifically, for a given wave
vector k, a 2 × 2 matrix can be constructed as Cij (k, − k) =
〈ui(k)uj (k))〉, where ui(k) = ∑

r eik·rui(r), summed over an
infinite number of particles in a crystal lattice. In experiments,
the observation window is limited, and ui(k) is the result of an
integral over a finite number of particles; thus, the dispersion
curves obtained suffer from truncation errors. This error can
be ameliorated by applying the Hann window function to
the Fourier transformation as proposed in Ref. [21]. The
Hann window function correction significantly improves the
obtained dispersion curves, particularly for the longitudinal
branch, as shown in Fig. 5. We note that the Hann window
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FIG. 6. (Color online) Low-frequency modes in a colloidal crystal with defects. (a) A snapshot of an imperfect PNIPAM crystal with a
grain boundary in the middle of the field of view; the scale bar is 10 μm. (b) Participation ratio for eigenmodes in a crystal with defects.
(c) Color contour plots indicating polarization magnitudes for each particle, summed over the low-frequency modes with participation ratios
less than 0.2. Circles indicate “defect” particles identified by local structural parameters.

correction applies only to crystalline samples with nearly
perfect lattices and cannot be used in glasses or crystalline
samples with significant numbers of defects.

V. SOFT MODES IN IMPERFECT CRYSTALS

Finally, we explored phonons in the imperfect two-
dimensional colloidal crystal shown in Fig. 6(a). Most of
the low-frequency modes are extended and wavelike [as in
Fig. 2(c)], consistent with the observation of Debye scaling in
the accumulated number of modes, N (ω), shown in Fig. 2(a).
To take a closer look at the nature of the phonon modes in
the imperfect crystal, we calculated the participation ratio,
p(ω), which measures the degree of spatial localization of a
mode ω and is defined as p(ω) = (

∑
i |eω,i |2)2/(N

∑
i |eω,i |4),

where eω,i is the polarization vector on particle i in mode
ω. A participation ratio of 1 indicates collective translational
motion; a perfect plane wave has a participation ratio of 1/2,
and a mode localized on one particle has a participation ratio
of 1/N , where N is the total number of particles in the
system [36]. Figure 6(b) shows that while most of the modes
have participation ratios near 0.5, close to the value expected
for a plane wave, a few of the low-frequency modes have a
significantly smaller participation ratio.

The quasilocalized low-frequency modes observed in
Fig. 6(b) are reminiscent of those characteristically observed
in glasses [7,10]. In jammed packings, such modes have
unusually low barriers to rearrangements [18] and have
been used to identify regions that serve as flow defects
when the packings are sheared [19] or dilated [10]. In
crystalline systems, it is known that rearrangements tend
to occur at crystal defects, particularly dislocations. Our
observation of quasilocalized modes in imperfect crys-
tals therefore raises the question of whether the modes
are spatially concentrated near structural defects such as
dislocations.

In the colored contour map in Fig. 6(c), we plot the spatial
distribution of the quasilocalized low-frequency modes with
a participation ratio less than 0.2, i.e., 1

N0.2

∑
pr(ω)<0.2(eω,i)2.

Some particles contribute significantly to more than one soft
mode, which results in regions with lighter colors. The white
circles in Fig. 6 indicate structural defects in the crystal
sample, identified by local structural parameters. Here a

particle is identified as a “defect” particle if the number of
its nearest neighbors is not 6 or the magnitude of the local
bond orientational order parameter �6 = 1

Nnn

∑Nnn

k e6iθjk is less
than 0.95.

The spatial correlation between quasilocalized low-
frequency modes and structural defects in colloidal crystals
is obvious in Fig. 6(c). In particular, such modes in crystals
appear to single out structural defects susceptible to external
perturbations such as dislocations or interstitials; we note that
they are less effective at picking out vacancies, which are
mechanically more stable. Note that the correlation between
quasilocalized modes and structural defects is robust to
variation of the participation ratio cutoff between 0.1 and
0.3 [24].

The significance of this result lies in the fact that dislo-
cations are known to be the defects that dominate the plastic
response of crystalline solids [37]. The fact that quasilocalized
modes pick out dislocations indicates that they also pick out
regions of the sample that are known to be susceptible to rear-
rangements. Therefore, quasilocalized modes are concentrated
in regions prone to rearrangements not only in disordered
solids [10,19] but also in crystalline ones. This suggests that
such modes may be general identifiers of flow defects for
systems spanning the entire gamut from the perfect crystal
to the most highly disordered glass. Higher-frequency modes
may provide a different link between these two extremes; it
has been suggested that the boson peak at somewhat higher
frequencies [38] is related to the transverse acoustic van
Hove singularity of crystals. Our observation of the van Hove
singularity, combined with earlier observation of the boson
peak [7], shows that the covariance matrix method can be used
to establish whether this relation exists in colloidal systems
with tunable amounts of order.
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