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q-products

For |q| < 1, (q; q)∞ := (1− q)(1− q2)(1− q3) · · ·
f1 := (q; q)∞ fj := (qj ; qj)∞

The series expansion for f1:

f1 = (q; q)∞ = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26

− q35 − q40 + q51 + q57 − q70 − q77 + q92 + q100

− q117 − q126 + q145 + q155 − q176 − q187 . . .

Notice that the coefficients of most powers of q are zero.
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q-products Continued

The list of coefficients:

1,−1,−1, 0, 0, 1, 0, 1, 0, 0, 0, 0,−1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0,

0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,−1, . . .

The series
∑∞

n=0 c(n)q
n is lacunary if

lim
x→∞

|{n | 0 ≤ n ≤ x , c(n) = 0}|
x

= 1.
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q-products Continued

Fact: f1 is lacunary, as the previous slide suggests.

Q. For which positive integers s is f s1 lacunary?

Serre: for even positive integers s, f s1 is lacunary if and only if

s ∈ {2, 4, 6, 8, 10, 14, 26}.

For odd positive integers s it is known that f s1 lacunary for s = 1 and
s = 3, but nothing that is conclusive is known otherwise.

Definition: An eta quotient is a finite product of the form∏
j f

nj
j , for some integers j ∈ N and nj ∈ Z.

One could also ask about more general eta quotients that are
lacunary.
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by

f 81 =:
∞∑
n=0

a(n)qn,
f 33
f1

=:
∞∑
n=0

b(n)qn. (1)

Theorem

(Han and Ono, 2011)

Assuming the notation above, we have that

a(n) = 0 ⇐⇒ b(n) = 0. (2)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which 3n + 1 has a prime factor p of the form p = 3k + 2 for some
integer k , with odd exponent.
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The Result of Han and Ono in More Detail

f 81 = 1− 8q + 20q2 − 70q4 + 64q5 + 56q6 − 125q8 − 160q9 + 308q10

+ 110q12 − 520q14 + 57q16 + 560q17 + 182q20 + . . . ,

f 33
f1

= 1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9 + 2q10 + 2q12

+ 2q14 + 3q16 + 2q17 + 2q20 + . . . .

Notice that the two series vanish for the same powers of q, namely qn with
n = 3, 7, 11, 13, 15, 18, 19 . . . .

Further, for any n in this list, 3n + 1 has a prime factor p of the
form p = 3k + 2 with odd exponent.

(For example, for n = 11, 3n + 1 = 3(11) + 1 = 34 = 2(171) and
17 = 3(5) + 2.)
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(For example, for n = 11, 3n + 1 = 3(11) + 1 = 34 = 2(171) and
17 = 3(5) + 2.)
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Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f 81 , one of
the powers of f1 that Serre showed was lacunary.

Do similar situations exist for the other powers of f1 that are lacunary?

We first introduce some additional notation.

If A(q) and B(q) are two functions for which the coefficients in the series
expansions satisfy the condition (2) in the theorem

a(n) = 0 ⇐⇒ b(n) = 0,

then for ease of discussion, we say that the coefficients vanish
identically,or that A(q) and B(q) have identically vanishing
coefficients.
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Series with identically vanishing coefficients II

Theorem 1 motivated the speaker to investigate experimentally if similar
results held for other pairs of eta quotients.

This was done using some simple Mathematica programs.

What was discovered as a result of these computer algebra experiments is
summarized as follows.
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Other eta quotients with identically vanishing coefficients I

Let (A(q),B(q)) be any of the pairs{(
f 41 ,

f 81
f 22

)
,

(
f 41 ,

f 101

f 23

)
,

(
f 61 ,

f 42
f 21

)
,

(
f 61 ,

f 141

f 42

)
,(

f 101 ,
f 62
f 21

)
,

(
f 141 ,

f 53
f1

)
,

(
f 141 ,

f 82
f 21

)}
. (3)

For any such pair (A(q),B(q)), define the sequences {a(n)} and {b(n)} by

A(q) =:
∞∑
n=0

a(n)qn, B(q) =:
∞∑
n=0

b(n)qn. (4)

Then, for each pair, a(n) = 0 ⇐⇒ b(n) = 0, with criteria for
when exactly this happens (Serre’s criteria).
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Other eta quotients with identically vanishing coefficients II

For the pairs {(
f 261 ,

f 93
f1

)
,

(
f 261 ,

f 162

f 61

)}
(5)

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.

The proofs needed the theory of modular forms (enter Tim Huber and
later Dongxi Ye).

Later: The results above on identically vanishing coefficients
appear to be just “the tip of the iceberg”.
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Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation q → qm and multiply by qj (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear
combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form

∑
m,n(m + n

√
−D)kqm

2+Dn2 , where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient bp of qp to be
computed explicitly in terms of the m and n in p = m2 + Dn2).

- Use the multiplicativity of the coefficients in the CM forms, and the
recursive formula for prime powers (more on these later) to determine
information about a general coefficient bn (and in particular, when bn = 0).
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arithmetic progressions (allows the coefficient bp of qp to be
computed explicitly in terms of the m and n in p = m2 + Dn2).

- Use the multiplicativity of the coefficients in the CM forms, and the
recursive formula for prime powers (more on these later) to determine
information about a general coefficient bn (and in particular, when bn = 0).
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Why Modular Forms?

From the previous slide:

- Apply a dilation q → qm and multiply by qj (some integers m and j) to
turn the second eta quotient into a modular form.

Example:
f 81 = (q; q)8∞ −→ (q3; q3)8∞ −→ q(q3; q3)8∞.

The last product on the right is a modular form. So what?

Martin Eichler: “There are five fundamental operations of mathematics:
addition, subtraction, multiplication, division, and modular forms.”

Q: Why use the dilation q → q3 above?

Why not q → q4? q → q5? q → q6? . . .

The fact that (3)(8) = 24 is important.
Also, the transformation above takes qn to q3n+1, and partly
explains the relevance of 3n + 1 in the vanishing coefficient
criterion.
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The Ramanujan τ Function

The Ramanujan τ function is defined by

q
∞∏

m=1

(1− qm)24 =:
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5

− 6048q6 − 16744q7 + 84480q8 − 113643q9 − 115920q10 + 534612q11

− 370944q12 − 577738q13 +401856q14 +1217160q15 +987136q16 − . . .

Facts: (1) τ(m)τ(n) = τ(mn) if gcd(m, n) = 1.
For example, τ(3)τ(5) = 252× 4830 = 1217160 = τ(15).

(2) For any prime p and any integer r ≥ 1,

τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1).

For example, with p = 2 and r = 3,
τ(2)τ(23)− 211τ(22) = (−24)84480− 211(−1472)
= 987136 = τ(24).
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The Values Taken by τ Determined Completely by its
Value at the Primes

Observe that the two conditions

(1) τ(m)τ(n) = τ(mn) if gcd(m, n) = 1
(2) For any prime p and any integer r ≥ 1,

τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1),

mean that the value of τ(n) for any integer n is determined entirely by the
values of τ(p) for each prime p such that p|n.
(If n has prime factorization n = pk11 pk22 . . . pkrr then

τ(n) = τ(pk11 )τ(pk22 ) . . . τ(pkrr ) by (1),

and then (2) implies each τ(pkii ) is a polynomial in τ(pi ).
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Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the
prime powers similar to (2) on the previous slides.

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.

Let p ∤ N be a prime, then the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (6)

As with τ(n), if gcd(m, n) = 1, then amn = aman.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 19 / 111



Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the
prime powers similar to (2) on the previous slides.

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.

Let p ∤ N be a prime, then the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (6)

As with τ(n), if gcd(m, n) = 1, then amn = aman.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 19 / 111



Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the
prime powers similar to (2) on the previous slides.

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.
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A Proof involving Triangular numbers I

Theorem

Define the sequences {a(n)} and {b(n)} as follows:

f 61 =:
∞∑
n=0

a(n)qn,
f 42
f 21

=:
∞∑
n=0

b(n)qn.

Then
a(n) = 0 ⇐⇒ b(n) = 0. (7)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ordp(4n + 1) is odd for some prime p ≡ 3 (mod 4).

The proof of this theorem does not involve CM forms and theta
series (so different from most other proofs).
Serre: a(n) = 0 if and only if 4n + 1 has a prime factor
p ≡ 3 (mod 4) with odd exponent, so it suffices to show
b(n) = 0 under the same conditions.
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A Proof involving Triangular numbers II

Fact:

f 22
f1

=
∞∑
n=0

qn(n+1)/2, =⇒ f 42
f 21

=
∞∑

m,n=0

qm(m+1)/2+n(n+1)/2 =
∞∑
k=0

b(k)qk .

Let

t(n) =
n(n + 1)

2
, n = 0, 1, 2, 3, . . . ,

denote the n-th triangular number. Let

T2 = {t(m) + t(n)|m, n ≥ 0},

the set of non-negative integers representable as a sum of two
triangular numbers. Thus b(k) = 0 if and only if k ̸∈ T2.
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A Proof involving Triangular numbers III

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if
and only if when 4n + 1 is expressed as a product of prime-powers, every
prime factor p ≡ 3 (mod 4) occurs with even exponent.

Thus b(n) ̸= 0 if and only if when 4n + 1 is expressed as a product of
prime-powers, every prime factor p ≡ 3 (mod 4) occurs with even
exponent.
Alternatively, b(n) = 0 if and only if when 4n + 1 is expressed as
a product of prime-powers, some prime factor p ≡ 3 (mod 4)
occurs with odd exponent.

However, this is exactly Serre’s criterion for a(n) = 0.
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An Example of the More Usual Kind of Proof I

Theorem

Define the sequences {a(n)} and {b(n)} by

f 41 =:
∞∑
n=0

a(n)qn,
f 81
f 22

=:
∞∑
n=0

b(n)qn.

Then a(n) = 0 ⇐⇒ b(n) = 0.
Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ordp(6n + 1) is odd for some prime p ≡ 2 (mod 3).

Serre: a(n) = 0 precisely for those non-negative n for
which ordp(6n + 1) is odd for some prime p ≡ 2 (mod 3), so it is
sufficient to show b(n) = 0 under the same conditions.
Remark: For an odd prime p, p ≡ 2 (mod 3) is equivalent to
p ≡ 5 (mod 6).
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An Example of the More Usual Kind of Proof II

Next, apply a dilation q → q6 to each eta quotient, and then multiply by q:

q f 46 =:
∞∑
n=0

a(n)q6n+1, q
f 86
f 212

=
∞∑
n=0

b(n)q6n+1 =:
∞∑
n=0

b∗nq
n.

The form q f 86 /f
2
12 is a lacunary form of weight 3 and level 144, and hence

by a criterion of Serre is a linear combination of CM forms of the same
weight and level.
The next step is to head to the LMFDB (The L-functions and
modular forms database (LMFDB)) to look for these CM forms.
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An Example of the More Usual Kind of Proof III

If we write q = e2πiz , with z in the upper half of the complex plane,

q
f 86
f 212

=
η8(6z)

η2(12z)
= q − 8q7 + 22q13 − 16q19 − 25q25 + 24q31 + 26q37

+48q43−143q49+74q61+32q67+46q73−40q79−176q91−2q97+ . . .

Next, let S(q) denote the CM form of weight 3 and level 144 labelled
144.3.g.c in the LMFDB. Then S(q) has q-series expansion

S(q) = q − 8i
√
3q7 + 22q13 − 16i

√
3q19 − 25q25 + 24i

√
3q31

+ 26q37 + 48i
√
3q43 − 143q49 + 74q61 + 32i

√
3q67

+ 46q73 − 40i
√
3q79 − 176i

√
3q91 − 2q97 + . . . . (8)
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An Example of the More Usual Kind of Proof IV

Let S̄(q) denote the conjugate form (i → −i). By comparing coefficients
up to the Sturm bound, one gets that

η8(6z)

η2(12z)
=

1

2

[(
1 +

1√
−3

)
S(q) +

(
1− 1√

−3

)
S̄(q)

]
.

Let the sequences {sn} and {s̄n} be defined by

S(q) =
∞∑
n=0

snq
n, S̄(q) =

∞∑
n=0

s̄nq
n. (9)

Observe that

b∗12n+1 = s12n+1 = s̄12n+1, b∗12n+7 =
s12n+7

i
√
3

= − s̄12n+7

i
√
3
. (10)

Note that s2 = s3 = 0, and if p is a prime, p ≡ 2 (mod 3) (or p ≡ 5
(mod 6)), then sp = 0.
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An Example of the More Usual Kind of Proof V

The recurrence formula for sn at prime powers is

spk = spspk−1 − χ(p)p2spk−2 , (11)

where χ(p) = (−1)(p−1)/2.
This gives that if p ≡ 2 (mod 3) (or p ≡ 5 (mod 6)) is prime (and so
sp = 0), then |sp2k | = p2k ̸= 0 and sp2k+1 = 0 for all integers k ≥ 0.
The multiplicative property, suv = susv if gcd(u, v) = 1, gives that if
6n + 1 = pn11 pn22 . . . pnrr , then

s6n+1 = spn11
spn22

. . . spnrr ,

and hence if some pi ≡ 5 (mod 6) and the corresponding ni is
odd, then s6n+1 = 0 and hence bn = 0 (so giving half the proof).

The remainder of the proof is to show that if the factorization of
6n + 1 is otherwise, then s6n+1 ̸= 0, and hence bn ̸= 0.
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The remainder of the proof is to show that if the factorization of
6n + 1 is otherwise, then s6n+1 ̸= 0, and hence bn ̸= 0.
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An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform f (z) is said to
have CM by ϕ if a (p)ϕ (p) = a (p) for all p ∤ Nm.

Such an f (z) is also called a CM newform by ϕ.

It is known that a CM newform of weight k ≥ 2 exists only if ϕ is a
quadratic character associated to some quadratic field K .

In such case, f (z) is also called a CM newform by K .

Ribet gives a full characterization of such newforms and justifies that any
CM newform of weight k ≥ 2 by a quadratic field K must come from a
Hecke character ψK associated to K and be of the form

f (z) =
∑
a⊆OK
integral

ψK (a)N (a)
k−1
2 qN (a),

where N (·) denotes the norm of an ideal.
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An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant −d < 0 and class
number 1, one has that f (z) must be a linear combination of the
generalized theta series∑

α∈β+m

αk−1qN (α) over β ∈ (OK/m)×

for some integral ideal m with N (m) = N/d .
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An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the
theta series

H1 =
∑
m,n

(−6n + 1 + (4m − 2n)
√
−3)2q((−6n+1)2+3(4m−2n)2), (12)

H2 =
∑
m,n

(−6n + 5 + (4m − 2n)
√
−3)2q((−6n+5)2+3(4m−2n)2),

H3 =
∑
m,n

(−6n − 2 + (4m − 2n + 3)
√
−3)2q((−6n−2)2+3(4m−2n+3)2),

H4 =
∑
m,n

(−6n + 2 + (4m − 2n + 3)
√
−3)2q((−6n+2)2+3(4m−2n+3)2).

One has that

S(q) = H1 − H2 − H3 + H4, S̄(q) = H1 − H2 + H3 − H4. (13)
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An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for sp, when
p ≡ 1 (mod 6). For what purpose?
Recall

spk = spspk−1 − χ(p)p2spk−2 ,

From this one has, for any positive integer k, that

spk ≡ spspk−1 ≡ · · · ≡ (sp)
k (mod p).

Thus, if it can be shown that sp ̸≡ 0 (mod p), then
spk ̸≡ 0 (mod p), and hence spk ̸= 0.

This would complete the proof that s6n+1 = 0 ⇐⇒ 6n + 1 has a
prime factor p ≡ 5 (mod 6) with odd exponent.

This in turn gives that b(n) = 0 ⇐⇒ 6n + 1 has a
prime factor p ≡ 5 (mod 6) with odd exponent.
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An Example of the More Usual Kind of Proof X

Define the sequences {hi (n)}, i = 1, . . . , 4 by

Hi =
∞∑
n=0

hi (n)q
n, i = 1, . . . , 4,

where Hi are defined several slides back.

Consider primes p ≡ 1 (mod 12) and p ≡ 7 (mod 12) separately.

If p ≡ 1 (mod 12), then p = x2 + 3y2, for unique positive integers x and
y with x odd and y even.

Thus h3(p) = h4(p) = 0.

It will be shown that only one of H1 and H2 contributes to
s(p)qp, and whichever contributes, it contributes exactly two
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An Example of the More Usual Kind of Proof XI

If 4|y , then it can be seen from the exponent of q in the formulae for both
H1 and H2, that n must be even, since 4m − 2n = y or 4m − 2n = −y .

If H1 contributes to s(p)qp, then −6n + 1 = ±x for some even n so
x ≡ ±1 (mod 12).

If H2 contributes to s(p)qp, then −6n + 5 = ±x for some even n so
x ≡ ±5 (mod 12).

Since these are incompatible, only one of H1 or H2 contributes to s(p)qp.

If H2 contributes, then there are exactly two pairs of integers
(m1, n), (m2, n) that contribute to s(p)qp, where n is even and
either −6n + 5 = x or −6n + 5 = −x (only one of the two
equations is solvable for n even) and 4m1 − 2n = y and
4m2 − 2n = −y (so m2 = n −m1).
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An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

h2(p) =
(
−6n + 5 + (4m1 − 2n)

√
−3

)
2

+
(
−6n + 5 + (4 (n −m1)− 2n)

√
−3

)
2

= 2
(
(−6n + 5)2 − 3 (4m1 − 2n) 2

)
= 2(x2 − 3y2).

Thus from the expression S(q) = H1 − H2 − H3 + H4, one has that

s(p) = 2(x2 − 3y2).

A similar analysis of the case where H1 contributes to s(p)qp

when 4|y , and also of the situation where 4 ̸ |y (whichever of H1

or H2 contribute), gives that if p ≡ 1 (mod 12) is prime, then

s(p) = 2(x2 − 3y2) or s(p) = −2(x2 − 3y2).
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An Example of the More Usual Kind of Proof XIII

For our calculations, the key implication in this case (p ≡ 1 (mod 12)) is
that,

s(p) = ±2(x2 − 3y2) = ±2(x2 − (p − x2)) ≡ ±4x2 (mod p)

=⇒ s(p) ̸≡ 0 (mod p).

Similarly, if p ≡ 7 (mod 12), then p = x2 + 3y2, for unique positive
integers x and y with x even and y odd.
This time H1 and H2 contribute nothing to s(p)qp, but H3 and H4

contribute exactly one term each to s(p)xp.
An analysis similar to that carried out in the case p ≡ 1 (mod 12)
gives in this case, p ≡ 7 (mod 12), that

s(p) = ±4xy
√
−3 =⇒ s(p)k ̸≡ 0 (mod p),∀k ∈ N.

Given what was said earlier, this completes the proof.
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Recap I

Let (A(q),B(q)) be any of the pairs{(
f 41 ,

f 81
f 22

)
,

(
f 41 ,

f 101

f 23

)
,

(
f 61 ,

f 42
f 21

)
,

(
f 61 ,

f 141

f 42

)
,(

f 101 ,
f 62
f 21

)
,

(
f 141 ,

f 53
f1

)
,

(
f 141 ,

f 82
f 21

)}
. (14)

For any such pair (A(q),B(q)), define the sequences {a(n)} and {b(n)} by

A(q) =:
∞∑
n=0

a(n)qn, B(q) =:
∞∑
n=0

b(n)qn. (15)

Then, for each pair, a(n) = 0 ⇐⇒ b(n) = 0, with criteria for
when exactly this happens (Serre’s criteria).
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Recap II

For the pairs {(
f 261 ,

f 93
f1

)
,

(
f 261 ,

f 162

f 61

)}
(16)

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.
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How Extensive is this Phenomenon?

Notice that each of the triples{(
f 41 ,

f 81
f 22
,
f 101

f 23

)
,

(
f 61 ,

f 42
f 21
,
f 141

f 42

)
,

(
f 141 ,

f 53
f1
,
f 82
f 21

)
,

(
f 261 ,

f 93
f1
,
f 162

f 61

)}
(17)

have identically vanishing coefficients.

Q. How extensive is this phenomenon of eta quotients with identically
vanishing coefficients?

A. Quite extensive.
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Further Investigations

Motivated by what we discovered (described in the previous section) we
extended the search for the phenomenon described.

For ease of notation, for a function E (q) =
∑

n≥0 enq
n we write

E(0) := {n ∈ N : en = 0}

It was found that if A(q) is any one of f r1 , r = 4, 6, 8, 10, 14 and 26
(lacunary eta quotients whose vanishing coefficient behaviour was
described by Serre)or f 31 f

3
2 (the simplest case of an infinite family of

lacunary eta quotients stated by Ono and Robins), then in each case there
were a large numbers of eta quotients B(q) such that A(0) = B(0).

Further, in each case there were also many other eta quotients
C (q) such that A(0) ⫋ C(0).

We describe what was found in some detail in the case of f 41
and f 61 .
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The Case of f 41 I

Our limited search in the case of f 41 found a total of 72 eta quotients B(q)
for which it appeared f 41 (0) = B(0).

In addition, this search found 78 additional eta quotients with the property
that for each such eta quotient C (q), it seemed f 41 (0) ⫋ C(0).

Moreover, it appears that all 150 eta quotients B(q) may be organized
into 19 collections (labelled I - XIX in what follows) in a tree-like structure
by partially ordering the corresponding B(0) by inclusion.
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The Case of f 41 II

Table 1: Eta quotients with vanishing behaviour similar to f 41

Collection # of eta quotients Collection # of eta quotients

I 72 II ∗ 4
III † 2 IV 6
V † 2 VI ∗ 4
VII ∗ 6 VIII ∗ 8
IX ∗ 4 X 4
XI 14 XII † 2

XIII † 2 XIV † 2
XV 4 XVI † 2
XVII 4 XVIII † 2
XIX † 6
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The Case of f 41 III

Thus, for example, all 14 eta quotients in the collection labelled XI, where

XI =

{
f2f

14
8 f 212

f 64 f6f
5
16f24

,
f6f

13
8

f2f 34 f12f
5
16

,
f 22 f8f

2
12

f 24 f24
,
f 118

f 22 f
5
16

,
f 44 f

2
12

f 22 f8f24
,
f 22 f

13
8

f 64 f
5
16

,
f 154 f6f24
f 52 f

5
8 f

3
12

,

f 52
f6
,
f 22 f

4
4

f 28
,
f2f

4
4 f

2
12

f6f8f24
,

f 74 f6
f2f 28 f12

,
f 104

f 22 f
4
8

,
f 32 f

3
8 f

17
12

f 54 f
7
6 f

7
24

,
f 44 f

7
6

f 32 f
4
12

}
appeared to have identically vanishing coefficients.

Collection I is the collection containing f 41 .

∗ - has been proven that all eta quotients in the corresponding group have
identically vanishing coefficients.

† - group members trivially have identically vanishing coefficients
or it was shown previously.

The relationships between eta quotients in different collections is
illustrated in Figure 1.
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The Case of f 41 IV

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing
coefficient behaviour similar to f 41

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 45 / 111



The Case of f 41 IV

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing
coefficient behaviour similar to f 41

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 45 / 111



The Case of f 41 V

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta
quotients in collection VIII and B(q) is either of the 2 eta quotients in
collection XIV, where

VIII =

{
f 32 f3f8f

8
12

f1f 34 f
4
6 f

3
24

,
f1f8f

7
12

f3f 24 f6f
3
24

,
f1f

8
4 f

3
6 f24

f 42 f3f
3
8 f

3
12

,
f3f

7
4 f24

f1f2f 38 f
2
12

,

f1f
2
2 f6

f3f4
,
f 52 f3f12
f1f 24 f

2
6

,
f1f4f

5
6

f 22 f3f
2
12

,
f2f3f

2
6

f1f12

}
,

XIV =

{
f 22 f3f

3
8 f12

f1f 24 f6f24
,
f1f

2
6 f

3
8

f2f3f4f24

}
,

then A(0) ⫋ B(0).

A similar meaning for any other arrow in this figure is to be understood.

The inclusion just mentioned, between groups VIII and XIV, is one of
several such inclusion results indicated by the arrows in Figure 1 that have
been proven.
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The Case of f 61 I

Table 2: Eta quotients with vanishing behaviour similar to f 61

Collection # of eta quotients Collection # of eta quotients
I 42 II ∗ 4

III ∗ 4 IV 16
V † 2 VI † 2
VII ∗ 4 VIII ∗ 4
IX ∗ 4 X 10
XI † 2 XII ∗ 4
XIII ∗ 8 XIV ∗ 4
XV 8 XVI † 2
XVII 8 XVIII † 2
XIX † 2 XX † 2
XXI ∗ 4 XXII ∗ 6
XXIII † 2 XXIV ∗ 4
XXV ∗ 4 XXVI 4
XXVII † 2 XXVIII † 6
XXIX † 6
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The Case of f 61 II

Figure: The grouping of eta-quotients in Table 2, which have vanishing coefficient
behaviour similar to f 61
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The Case of f 81 I

Table 3: Eta quotients with vanishing behaviour similar to f 81

Collection # of eta quotients Collection # of eta quotients

I 24 II † 2
III † 2 IV 60
V † 2 VI 6
VII † 2 VIII 4
IX † 2 X † 2
XI ∗ 4 XII ∗ 4
XIII ∗ 4 XIV 4
XV † 2 XVI † 2
XVII † 2 XVIII † 2
XIX 6 XX † 2
XXI † 2 XXII † 4
XXIII † 2 XXIV 4
XXV † 6
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The Case of f 81 I

Table 3: Eta quotients with vanishing behaviour similar to f 81

Collection # of eta quotients Collection # of eta quotients

I 24 II † 2
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V † 2 VI 6
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XIX 6 XX † 2
XXI † 2 XXII † 4
XXIII † 2 XXIV 4
XXV † 6
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The Case of f 81 II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient
behaviour similar to f 81

Remark: If the tables and graphs represent the true situation for f 41 and
f 81 , then the entire table and graph for f 41 is embedded in those for f 81 via
a q → q2 dilation.
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The Case of f 101 I

Table 4: Eta quotients with vanishing behaviour similar to f 101

Collection # of eta quotients Collection # of eta quotients
I 38 II ∗ 4

III † 2 IV ∗ 4
V 4 VI † 2
VII 6 VIII † 2
IX ∗ 4 X † 2
XI ∗ 4 XII † 2
XIII † 2 XIV † 2
XV † 2 XVI † 2
XVII 8 XVIII † 2
XIX ∗ 4 XX † 2
XXI † 2 XXII † 2
XXIII 4 XXIV † 4
XXV † 6

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 51 / 111



The Case of f 101 I

Table 4: Eta quotients with vanishing behaviour similar to f 101

Collection # of eta quotients Collection # of eta quotients
I 38 II ∗ 4

III † 2 IV ∗ 4
V 4 VI † 2
VII 6 VIII † 2
IX ∗ 4 X † 2
XI ∗ 4 XII † 2
XIII † 2 XIV † 2
XV † 2 XVI † 2
XVII 8 XVIII † 2
XIX ∗ 4 XX † 2
XXI † 2 XXII † 2
XXIII 4 XXIV † 4
XXV † 6

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 51 / 111



The Case of f 101 II

Figure: The grouping of eta-quotients in Table 4, which have vanishing coefficient
behaviour similar to f 101
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The Case of f 141 I

Table 5: Eta quotients with vanishing behaviour similar to f 141

Collection # of eta quotients Collection # of eta quotients

I 32 II ∗ 4
III ∗ 4 IV ∗ 4
V † 2 VI 12
VII ∗ 4 VIII 8
IX † 2 X † 2
XI † 2 XII † 2
XIII † 2 XIV † 4
XV † 6
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The Case of f 141 I

Table 5: Eta quotients with vanishing behaviour similar to f 141
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The Case of f 141 II

Figure: The grouping of eta-quotients in Table 5, which have vanishing coefficient
behaviour similar to f 141
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Figure: The grouping of eta-quotients in Table 5, which have vanishing coefficient
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The Case of f 261 I

Table 6: Eta quotients with vanishing behaviour similar to f 261

Collection # of eta quotients Collection # of eta quotients

I 12 II 4
III ∗ 4 IV † 2
V † 2 VI † 2
VII † 2 VIII 4
IX 8 X † 2
XI 8 XII † 2
XIII 12 XIV 10
XV † 2 XVI † 2
XVII † 4 XVIII † 6
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The Case of f 261 II

Figure: The grouping of eta-quotients in Table 6, which have vanishing coefficient
behaviour similar to f 261
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The Case of f 31 f
3
2 I

Table 7: Eta quotients with vanishing behaviour similar to f 31 f
3
2

Collection # of eta quotients Collection # of eta quotients

I 40 II ∗ 6
III † 2 IV † 2
V † 2 VI † 2
VII † 2 VIII 8
IX 14 X † 2
XI ∗ 4 XII ∗ 4
XIII 10 XIV † 2
XV † 2 XVI † 2
XVII † 6 XVIII † 6
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The Case of f 31 f
3
2 II

Figure: The grouping of eta-quotients in Table 7, which have vanishing coefficient
behaviour similar to f 31 f

3
2
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General Inclusion Results

General Inclusion Results
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General Inclusion Results I

Recall the amount of work necessary to show that if A(q) = f 41 and
B(q) = f 81 /f

2
2 , then

A(0) = B(0).

Clearly this method is not practical to prove the many hundreds of cases of
identically vanishing coefficients in the various tables and graphs that are
suggested by experiment.
Even if someone did decide to attempt this, the LMFDB (The L-functions
and modular forms database (LMFDB)) is incomplete, and many of the
CM forms needed to express a particular eta quotient are likely to be
absent.

In the paper that describes this deeper investigation (the paper
that has all the various tables and figures shown earlier in the
presentation) we do give some proofs, mostly to illustrate
the various methods that may be used.
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General Inclusion Results II

However, we were able to prove some quite general inclusion results.
To describe those, recall the figure for the collection related to f 61 :

Figure: The grouping of the 172 eta-quotients in Table 2, which have vanishing
coefficient behaviour similar to f 61
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General Inclusion Results III

Recall that f 61 is in collection I, so that the figure suggests that if
A(q) = f 61 , and B(q) is any one of the 172 eta quotients in the various
collections, then

A(0) ⊆ B(0).

We were in fact able to prove the above statement.

Similarly, we were able to prove the corresponding statements for the
collections involving, respectively, f 41 , f

8
1 , f

10
1 , f 141 , f 261 and f 31 f

3
2 .

In each case, two general approaches gave us most of the results,
and a small number of sporadic cases had to be treated separately.
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General Inclusion Results IV

We illustrate one of the methods by an example for the A(q) := f 61 table.
Recall:

Lemma

The equation x2 + y2 = n, n > 0 has integral solutions if and only if
ordp n is even for every prime p ≡ 3 (mod 4). When that is the case, the
number of solutions is ∏

p≡1 (mod 4)

(1 + ordp n).

Serre’s criterion: If

f 61 =
∞∑
n=0

anq
n, (18)

one has that an = 0 if and only if 4n + 1 has a prime factor
p ≡ −1 (mod 4) with odd exponent.
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General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta
series. For our present purposes,

f 21
f2

=
∞∑

n=−∞
(−1)nqn

2
, q

f 1348

f 524f
5
96

=
∞∑

m=1

(
−6

m

)
mqm

2
.

Consider the following eta quotient in collection XXI

B(q) :=
f 24 f

13
12

f 56 f8f
5
24

=:
∞∑
n=0

bnq
n.

After applying the dilation q → q4 and multiplying by q:

∞∑
n=0

bnq
4n+1 =

f 216
f32

× q
f 1348

f 524f
5
96

=
∞∑
m=1

n=−∞

m(−1)n
(
−6

m

)
qm

2+16n2 .

We can now show A(0) ⊆ B(0) (equivalently, an = 0 =⇒ bn = 0).
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General Inclusion Results VI

Suppose aN = 0, for some integer N.

Then, by Serre’s criterion, 4N + 1 has a prime factor p ≡ 3 (mod 4) with
odd exponent.

By the lemma, 4N + 1 is not representable as a sum of two squares, and in
particular not by m2 + 16n2 = m2 + (4n)2.

Thus the coefficient of q4N+1 in

∞∑
m=1

n=−∞

m(−1)n
(
−6

m

)
qm

2+16n2

is zero.

Hence bN = 0, and thus A(0) ⊆ B(0).

Remark: All the work in finding representations of eta quotients
in the tables as products of two eta quotients with theta series
expansions was performed by Mathematica.
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General Inclusion Results VII

The other general result involved expressing eta quotients of weight ≥ 2
involved expressing the appropriate dilations of the eta quotients as certain
sums over ideals in various number fields (recall earlier when expressing
the CM forms as linear combinations of theta series).
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General Inclusion Results VIII

The 5 exceptional cases (let any one of them be denoted by B(q)) in the
172 eta quotients in the f 61 table were treated as follows. Define

h1(q; j , k) =
∞∑

m,n=0

q(24m+j)2+(24n+k)2 ,

h2(q; j , k) =
∞∑

m=0

∞∑
n=−∞

q(24m+j)2+4(24n+k)2 ,

g1(q; j , k) =
∞∑

m,n=0

q(20m+j)2+(20n+k)2 ,

g2(q; j , k) =
∞∑

m=0

∞∑
n=−∞

q(20m+j)2+4(20n+k)2 .

Then qB(q4) is a linear combination of hi (q; j , k) for i ∈ {1, 2} and
0 ≤ j , k ≤ 23 and gi (q; , j , k) for i ∈ {1, 2} and 0 ≤ j , k ≤ 19. Since each
exponent is a sum of two squares, the same argument can be used.
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Dissection Methods

Dissection Methods
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Recap I

Recall:

Table 8: Eta quotients with vanishing behaviour similar to f 41

Collection # of eta quotients Collection # of eta quotients

I 72 II ∗ 4
III † 2 IV 6
V † 2 VI ∗ 4
VII ∗ 6 VIII ∗ 8
IX ∗ 4 X 4
XI 14 XII † 2

XIII † 2 XIV † 2
XV 4 XVI † 2
XVII 4 XVIII † 2
XIX † 6
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Recap II

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing
coefficient behaviour similar to f 41
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Recap III

As mentioned previously, we showed that if A(q) = f 41 and B(q) is any one
of the 150 eta quotients in the table/graph, then

A(0) ⊆ B(0).

A similar result was proved for each of the collections of eta quotients with
vanishing coefficient behaviour similar to, respectively, f 41 , f

8
1 , f

10
1 , f 141 , f 261

and f 31 f
3
2 .

In addition some scattered results of the form B(0) ⫋ C(0) and B(0) = C(0)

were proven.
However most of the “fine structure” of the tables/graphs
(identical vanishing of coefficients for all eta quotients in each
collection, and strict inclusion between sets of vanishing
coefficients for any pair of eta quotients in two different
collections joined by a line segment in a graph) was not proven.
We next describe a method that allows some of this fine structure
to be proven.
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The m-Dissection of a Function,I

Definition

By the m-dissection of a function G (q) =
∑∞

n=0 gnq
n we mean an

expansion of the form

G (q) = γ0G0(q
m) + γ1qG1(q

m) + · · ·+ γm−1q
m−1Gm−1(q

m), (19)

where each dissection component Gi (q
m) is not identically zero (γi = 0 is

allowed). In other words, for each i , 0 ≤ i ≤ m − 1,

γi q
i Gi (q

m) =
∞∑
n=0

gmn+iq
mn+i = qi

∞∑
n=0

gmn+i (q
m)n.
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Similar m-Dissections

Now suppose C (q) and D(q) are two functions whose m-dissections are
given by

C (q) = c0G0(q
m) + c1qG1(q

m) + · · ·+ cm−1q
m−1Gm−1(q

m), (20)

D(q) = d0G0(q
m) + d1qG1(q

m) + · · ·+ dm−1q
m−1Gm−1(q

m).

There are two cases of interest.

1) Suppose that ci = 0 ⇐⇒ di = 0, i = 0, 1, . . . ,m − 1, and then it is
clear that C(0) = D(0).

If the c1, di satisfy the condition just stated, we say that C (q)
and D(q) have similar m-dissections.

2) On the other hand, if cj ̸= 0 and dj = 0 for one or more
j ∈ {0, 1, . . . ,m − 1} and otherwise ci = 0 ⇐⇒ di = 0,
then C(0) ⫋ D(0).
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Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

∞∑
n=−∞

(−z)nqn
2
= (zq, q/z , q2; q2)∞, (21)

The next two identities are special cases of this identity.

f 52
f 21 f

2
4

=
∞∑

n=−∞
qn

2
, (22)

f 21
f2

=
∞∑

n=−∞
(−1)nqn

2
, (23)

By splitting the series expansion of an eta quotient into sub-series
over arithmetic progression, it may be possible to derive an
m-dissection in terms of infinite products.
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The “q → −q” Partner of an Eta Quotient

We often make the substitution q → −q in an eta quotient but wish to
write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

f1 = (q; q)∞
q→−q−→ (−q;−q)∞ =

(q2; q2)3∞
(q; q)∞(q4; q4)∞

=
f 32
f1f4

(24)

If g(q) = f (−q), for simplicity we will call g(q) the “q → −q partner” of
f (q).

The relevance in the present context is that a function and its
q → −q partner have identically vanishing coefficients.
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Some 2-Dissections, I

The following 2-dissection identities are well known:

f 52
f 21 f

2
4

=
f 58

f 24 f
2
16

+ 2q
f 216
f8
, (25)

f 21
f2

=
f 58

f 24 f
2
16

− 2q
f 216
f8
, (26)

f 31
f3

=
f 34
f12

− 3q
f 22 f

3
12

f4f 26
, (27)

f3
f 31

=
f 34 f

3
6

f 92 f12

(
f 34
f12

+ 3q
f 22 f

3
12

f4f 26

)
, (28)

f 33
f1

=
f 34 f

2
6

f 22 f12
+ q

f 312
f4

=⇒ f 34 f6
f 72 f12

f 33
f1

=
f 34 f

3
6

f 92 f12

(
f 34
f12

+ q
f 22 f

3
12

f4f 26

)
, (29)

f1
f 33

=
f 32 f

3
12

f4f 96

(
f 34 f

2
6

f 22 f12
− q

f 312
f4

)
, (30)
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Some 2-Dissections, II

f1f3 =
f2f

2
8 f

4
12

f 24 f6f
2
24

− q
f 44 f6f

2
24

f2f 28 f
2
12

, (31)

1

f1f3
=

f4f12
f 32 f

3
6

(
f2f

2
8 f

4
12

f 24 f6f
2
24

+ q
f 44 f6f

2
24

f2f 28 f
2
12

)
, (32)

f 41 =
f 104

f 22 f
4
8

− 4q
f 22 f

4
8

f 24
, (33)

1

f 41
=

f 44
f 122

(
f 104

f 22 f
4
8

+ 4q
f 22 f

4
8

f 24

)
, (34)

f1
f3

=
f2f16f

2
24

f 26 f8f48
− q

f2f
2
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Some 2-Dissections, III

f 21
f 23

=
f2f

2
4 f

4
12

f 56 f8f24
− 2q

f 22 f8f12f24
f4f 46

, (37)

f 23
f 21

=
f 24 f

6
6

f 62 f
2
12

(
f2f

2
4 f

4
12

f 56 f8f24
+ 2q

f 22 f8f12f24
f4f 46

)
. (38)

The 2-dissections mentioned above, and their q → −q partners, give the
vanishing coefficient result in the next theorem.
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A Theorem on Identical Vanishing of Coefficients

Theorem

Let C (q2) be any even eta quotient.

Let F (q) and G (q) be any pair of eta
quotients in the following list:{

f3
f 31

C (q2),
f 31 f

3
4 f

3
6

f 92 f3f12
C (q2),

f 33
f1

f 34 f6
f 72 f12

C (q2),
f1
f 33

f 44 f
10
6

f 102 f 412
C (q2)

}
. (39)

Then
F(0) = G(0). (40)

Specializing C (q2) then shows that various collections of 4 eta
quotients in some of the tables have identically vanishing
coefficients.
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Some 3-Dissections, I

The following 3-dissections are also well known:

f 22
f1

=
f6f

2
9

f3f18
+ q

f 218
f9
, (41)

f1f4
f2

=
f3f12f

5
18

f 26 f
2
9 f

2
36

− q
f9f36
f18

, (42)

f 21
f2

=
f 29
f18

− 2q
f3f

2
18

f6f9
, =⇒ f6

f3

f 21
f2

=
f6f

2
9

f3f18
− 2q

f 218
f9

(43)

f 52
f 21 f

2
4

=
f 518
f 29 f

2
36

+
2qf 26 f9f36
f3f12f18

, (44)

f2
f 21

=
f 46 f

6
9

f 83 f
3
18

+ 2q
f 36 f

3
9

f 73
+ 4q2

f 26 f
3
18

f 63
, (45)

f 21 f
2
4

f 52
=

f 83 f
8
12f

15
18

f 206 f 69 f
6
36

− 2qf 73 f
7
12f

9
18

f 186 f 39 f
3
36

+
4q2f 63 f

6
12f

3
18

f 166

. (46)
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f 206 f 69 f
6
36

− 2qf 73 f
7
12f

9
18

f 186 f 39 f
3
36

+
4q2f 63 f

6
12f

3
18

f 166

. (46)
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Some 3-Dissections, I

The following 3-dissections are also well known:

f 22
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f6f

2
9

f3f18
+ q

f 218
f9
, (41)

f1f4
f2

=
f3f12f

5
18

f 26 f
2
9 f

2
36

− q
f9f36
f18

, (42)

f 21
f2

=
f 29
f18

− 2q
f3f

2
18

f6f9
, =⇒ f6

f3

f 21
f2

=
f6f

2
9

f3f18
− 2q

f 218
f9

(43)

f 52
f 21 f

2
4

=
f 518
f 29 f

2
36

+
2qf 26 f9f36
f3f12f18
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f 21

=
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6
9
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3
9
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f 26 f
3
18
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2
4
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=

f 83 f
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12f

15
18

f 206 f 69 f
6
36

− 2qf 73 f
7
12f

9
18

f 186 f 39 f
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36

+
4q2f 63 f

6
12f

3
18

f 166

. (46)
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The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).

Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).

Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).

Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).

Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).

Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).

Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



The Borwein Theta Functions

Recall that the Borwein theta functions a(q), b(q) and c(q) are defined by

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2 =
f 52 f

5
6

f 21 f
2
3 f

2
4 f

2
12

+ 4q
f 24 f

2
12

f2f6
, (47)

b(q) =
∞∑

m,n=−∞
ωn−mqm

2+mn+n2 =
f 31
f3
,

c(q) =
∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 = 3q1/3

f 33
f1
,

where ω = exp(2πi/3).
Aside: The functions above satisfy the identity

a(q)3 = b(q)3 + c(q)3.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 81 / 111



Some 3-Dissections, I

Lemma

The following 3-dissections hold.

f 31 = a(q3)f3 − 3qf 39 , (48)

1

f 31
=

f 39
f 103

(
a(q3)2 + 3q

f 39
f3
a(q3) + 9q2

f 69
f 23

)
. (49)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 82 / 111



Some 3-Dissections, I

Lemma

The following 3-dissections hold.

f 31 = a(q3)f3 − 3qf 39 , (48)

1

f 31
=

f 39
f 103

(
a(q3)2 + 3q

f 39
f3
a(q3) + 9q2

f 69
f 23

)
. (49)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 82 / 111



Some 3-Dissections, I

Lemma

The following 3-dissections hold.

f 31 = a(q3)f3 − 3qf 39 , (48)

1

f 31
=

f 39
f 103

(
a(q3)2 + 3q

f 39
f3
a(q3) + 9q2

f 69
f 23

)
. (49)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 82 / 111



Some 3-Dissections, I

Lemma

The following 3-dissections hold.

f 31 = a(q3)f3 − 3qf 39 , (48)

1

f 31
=

f 39
f 103

(
a(q3)2 + 3q

f 39
f3
a(q3) + 9q2

f 69
f 23

)
. (49)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 82 / 111



Some 3-Dissections, I

Lemma

The following 3-dissections hold.

f 31 = a(q3)f3 − 3qf 39 , (48)

1

f 31
=

f 39
f 103

(
a(q3)2 + 3q

f 39
f3
a(q3) + 9q2

f 69
f 23

)
. (49)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 82 / 111



More Vanishing Coefficient Results, I

Theorem

Let C (q3) be any eta quotient whose series expansion contains only
powers of q3. Let F (q) and G (q) be any pair of eta quotients from one
the following lists:{

f 22
f1
C (q3),

f1f4
f2

C (−q3),
f 21 f6
f2f3

C (q3),
f 52 f3f12
f 21 f

2
4 f

2
6

C (−q3)

}
, (50){

f 21 f8
f4

C (q3),
f 62 f8
f 21 f

3
4

C (−q3),
f3f

5
4 f24

f1f 28 f
2
12

C (q3),
f1f

6
4 f

3
6 f24

f 32 f3f
2
8 f

3
12

C (−q3)

}
, (51){

f 61 C (q3),
f 182

f 61 f
6
4

C (−q3),
f 123

f 31 f
3
9

C (q3),
f 31 f

3
4 f

36
6 f 39 f

3
36

f 92 f
12
3 f 1212 f

9
18

C (−q3)

}
, (52)

Then
F(0) = G(0). (53)
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More Vanishing Coefficient Results, II

As with the previous theorem, here also Specializing C (q3) then shows
that various collections of 4 eta quotients in some of the tables have
identically vanishing coefficients.
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Some 4-Dissections, I

Recall

f 21
f2

=
f 58

f 24 f
2
16

− 2q
f 216
f8
, (54)

f 41 =
f 104

f 22 f
4
8

− 4q
f 22 f

4
8

f 24
, (55)

We will use the second identity with q → q2.
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Some 4-Dissections, II

Lemma

The following 4-dissections hold.

f 21 f
7
2 =

(
f 58

f 24 f
2
16

− 2q
f 216
f8

)(
f 108

f 24 f
4
16

− 4q2
f 24 f

4
16

f 28

)2

, (56)

1

f 21 f
3
2

=
f 88
f 224

(
f 58

f 24 f
2
16

+ 2q
f 216
f8

)(
f 108

f 24 f
4
16

+ 4q2
f 24 f

4
16

f 28

)2

. (57)

Proof.

For (56), write

f 21 f
7
2 =

f 21
f2
(f 42 )

2

and use (54) and (55), with q replaced with q2 in the latter identity.
The proof of (57) is similar.
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Some 4-Dissections, III

Observe that f 21 f
7
2 and f 224 /(f 21 f

3
2 f

8
8 ) have similar 4-dissections.

Theorem

Let C (q4) be any eta quotient with a power series expansion in q4. Let
F (q) and G (q) be any pair of eta quotients in the following list:{

f 21 f
7
2 C (q4),

f 132

f 21 f
2
4

C (q4),
1

f 21 f
3
2

f 224

f 88
C (q4),

f 21
f 92

f 244

f 88
C (q4)

}
. (58)

Then
F(0) = G(0). (59)
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Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were
motivated by computer searches that went through the various tables of
eta quotients and looked for pairs of eta quotients that seemed to similar
m-dissections, for m = 2, 3, 4, 5, 6, 7 and 8.

The aim of course was to prove that the pair of eta quotients had
identically vanishing coefficients, by determining the m-dissection of each
(with proof), and thus proving that the pair of eta quotients did indeed
have identically vanishing coefficients.

These experimental searches did indeed lead to a quite large
number of m-dissection identities, which in turned
allowed us to prove that certain collections of eta quotients
did indeed have identically vanishing coefficients.

All of the new dissection results in the paper were derived
to prove similar m-dissection results for pairs of eta
quotients that were found experimentally.
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More New m-Dissection Results, I

All of the dissections in the next several lemmas were derived by
combining the ”basic” (well known) 2- and 3- dissections in various ways.

In the case of any particular set of m dissections, multiplying each
m-dissection across by certain functions of qm will result in eta quotients
that have similar m-dissections, so that these eta quotients will then have
identically vanishing coefficients.
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More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

f2
f 21

=
f 48
f 104

(
f 58

f 24 f
2
16

+ 2q
f 216
f8

)(
f 108

f 24 f
4
16

+ 4q2
f 24 f

4
16

f 28

)
, (60)

f 21 f
3
2 =

(
f 58

f 24 f
2
16

− 2q
f 216
f8

)(
f 108

f 24 f
4
16

− 4q2
f 24 f

4
16

f 28

)
(61)

=
f 158

f 44 f
6
16

− 2qf 98
f 24 f

2
16

− 4q2f 38 f
2
16 +

8q3f 24 f
6
16

f 38
, (62)

f 61
f 32

=
f 158

f 64 f
6
16

− 6q
f 98

f 44 f
2
16

+ 12q2
f 38 f

2
16

f 24
− 8q3

f 616
f 38
. (63)

Notice that f2/f
2
1 , f

2
1 f

3
2 (f

4
8 /f

10
4 ) and f 61 f

4
8 /f

3
2 f

8
4 have similar 4-dissections,

so that if each of these is multiplied by any eta quotient C (q4), the
resulting eta quotients will have identically vanishing coefficients.
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. (63)
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More New m-Dissection Results, III

Theorem

Let C (q4) be any eta quotient whose series expansion contains only powers
of q4. Let F (q) and G (q) be any pair of eta quotients in the following list:{

f2
f 21

C (q4),
f 21 f

2
4

f 52
C (q4),

f 21 f
3
2 f

4
8

f 104

C (q4),

f 92 f
4
8

f 21 f
12
4

C (q4),
f 61 f

4
8

f 32 f
8
4

C (q4),
f 152 f 48
f 61 f

14
4

C (q4)

}
. (64)

Then
F(0) = G(0). (65)

Remark: The claim for three of these eta quotients follow from the
remarks on the previous slide, and the claim for the other three follow,
since they are the q → −q partners of the first three.
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More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are
shown to have similar m-dissections, thus leading to results about
collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result, one in which
the components of the dissections are not just simple eta quotients. .

We need the lemma in the next slide.

We recall the notation, for a an integer and m a positive integer,

J̄a,m := (−qa,−qm−a, qm; qm)∞. (66)
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More New m-Dissection Results, V

Lemma

The following 2-dissections hold.

f1 =
f2
f4

(
J̄6,16 − qJ̄2,16

)
, (67)

1

f1
=

1

f 22

(
J̄6,16 + qJ̄2,16

)
. (68)

Proof.

The identity (68) was proven by Hirschhorn, and (67) is its q → −q
partner.

The next long list of pairs of 4-dissections is derived by combining
the dissections above with the basic 2- and 3- dissections in ways
similar to what has been seen already.
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More New m-Dissection Results, VI

The following 4-dissections hold. In each case, it may be observed that
multiplying one of the equations by the appropriate eta quotient C (q4) will
result in a pair of eta quotients with similar 4-dissections, and this pair of
eta quotients will thus have identically vanishing coefficients.

f 21
f 22

=
1

f 24

(
f 58

f 24 f
2
16

− 2q
f 216
f8

)(
J̄12,32 + q2J̄4,32

)
, (69)

f 21 =
f4
f8

(
f 58

f 24 f
2
16

− 2q
f 216
f8

)(
J̄12,32 − q2J̄4,32

)
, (70)

f 21
f 42

=
f 38
f 114

(
f 58

f 24 f
2
16

− 2q
f 216
f8

)(
f 108

f 24 f
4
16

+ 4q2
f 24 f

4
16

f 28

)(
J̄12,32 − q2J̄4,32

)
,

(71)

f 21 f
2
2 =

1

f 24

(
f 58

f 24 f
2
16

− 2q
f 216
f8

)(
f 108

f 24 f
4
16

− 4q2
f 24 f

4
16

f 28

)(
J̄12,32 + q2J̄4,32

)
,

(72)
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More New m-Dissection Results, XIV
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More New m-Dissection Results, XV

f1f6
f2f3

=
1

f 212

(
f16f

2
24

f8f48
− q

f 28 f12f48
f4f16f24

)(
J̄36,96 + q6J̄12,96

)
, (94)

f1f
3
6

f2f3
=

f12
f24

(
f16f

2
24

f8f48
− q

f 28 f12f48
f4f16f24

)(
J̄36,96 − q6J̄12,96

)
. (95)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 102 / 111



More New m-Dissection Results, XV

f1f6
f2f3

=
1

f 212

(
f16f

2
24

f8f48
− q

f 28 f12f48
f4f16f24

)(
J̄36,96 + q6J̄12,96

)
, (94)

f1f
3
6

f2f3
=

f12
f24

(
f16f

2
24

f8f48
− q

f 28 f12f48
f4f16f24

)(
J̄36,96 − q6J̄12,96

)
. (95)

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 102 / 111



More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta
quotients with identically vanishing coefficients.
Theorem. Let C (q4) be any eta quotient with a power series expansion in
q4. Let F (q) and G (q) be any pair of eta quotients from one the following
lists:{

f 21 C
(
q4
)
,

f 62
f 21 f

2
4

C
(
q4
)
,
f 21 f

3
4

f 22 f8
C
(
q4
)
,
f 42 f4
f 21 f8

C
(
q4
)}

, (96){
f 21 f

2
2 C

(
q4
)
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f 82
f 21 f

2
4

C
(
q4
)
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f 21 f

9
4

f 42 f
3
8

C
(
q4
)
,
f 22 f

7
4

f 21 f
3
8

C
(
q4
)}

, (97){
f3
f1
C
(
q4
)
,
f1f4f

3
6

f 32 f3f12
C
(
q4
)
,
f1f2f6f

2
8 f

2
12

f3f 54 f24
C
(
q4
)
,
f 42 f3f

2
8 f

3
12

f1f 64 f
2
6 f24

C
(
q4
)
.

}
, (98){

f1
f3
C
(
q4
)
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f 32 f3f12
f1f4f 36

C
(
q4
)
,
f2f3f

2
4 f6f

2
24

f1f8f 512
C
(
q4
)
,
f1f

3
4 f

4
6 f

2
24

f 22 f3f8f
6
12

C
(
q4
)}

, (99)
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More New m-Dissection Results, XVII
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f1f4f6

C
(
q4
)
,
f1f

3
4 f

2
6

f 22 f3f8
C
(
q4
)
,
f2f3f

2
4 f12

f1f6f8
C
(
q4
)}

, (106){
f1f

7
6

f2f3
C
(
q4
)
,
f 22 f3f

4
6 f12

f1f4
C
(
q4
)
,
f 22 f3f

16
12

f1f4f 66 f
5
24

C
(
q4
)
,

f1f
15
12

f2f3f 36 f
5
24

C
(
q4
)}

,

(107){
f 21
f2f 56

C
(
q4
)
,

f 52
f 21 f

2
4 f

5
6

C
(
q4
)
,
f 21 f

5
6 f

5
24

f2f 1512

C
(
q4
)
,
f 52 f

5
6 f

5
24

f 21 f
2
4 f

15
12

C
(
q4
)}

, (108){
f 21
f2f6

C
(
q4
)
,

f 52
f 21 f

2
4 f6

C
(
q4
)
,
f 21 f6f24
f2f 312

C
(
q4
)
,
f 52 f6f24
f 21 f

2
4 f

3
12

C
(
q4
)}

, (109){
f1f6
f2f3

C
(
q4
)
,
f 22 f3f12
f1f4f 26

C
(
q4
)
,
f1f

3
6 f24

f2f3f 312
C
(
q4
)
,
f 22 f3f24
f1f4f 212

C
(
q4
)}

. (110)

Then
F(0) = G(0). (111)
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More New m-Dissection Results, XIX

Now C (q4) can be specialized in any of the collections above to prove
vanishing coefficient results for collections of eta quotients which
experiment indicated had vanishing coefficient similar to that of one of f r1 ,
r = 4, 6, 8, 10, 14 and 26 or f 31 f

3
2 .

Similar reasoning also leads to strict inclusion results.

Together, these allow some of the “fine structure” of the tables/graphs to
be proven.

We close with two examples.
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A Collection of Eta Quotients with Identically Vanishing
Coefficients

Let F (q) and G (q) be any two eta quotients from the following collection
(which is from the table/graph for f 41 ):{

f 32 f3f8f
8
12

f1f 34 f
4
6 f

3
24

,
f1f8f

7
12

f3f 24 f6f
3
24

,
f1f

8
4 f

3
6 f24

f 42 f3f
3
8 f

3
12

,
f3f

7
4 f24

f1f2f 38 f
2
12

,

f1f
2
2 f6

f3f4
,
f 52 f3f12
f1f 24 f

2
6

,
f1f4f

5
6

f 22 f3f
2
12

,
f2f3f

2
6

f1f12

}
.

Then Then
F(0) = G(0).
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An Example of Strict Inclusion of Sets of Vanishing
Coefficients

The following pair of collections of eta quotients are also from the
table/graph for f 41 (actually VIII is the collection in the previous example) :

VIII =

{
f 32 f3f8f

8
12

f1f 34 f
4
6 f

3
24

,
f1f8f

7
12

f3f 24 f6f
3
24

,
f1f

8
4 f

3
6 f24

f 42 f3f
3
8 f

3
12

,
f3f

7
4 f24

f1f2f 38 f
2
12

,

f1f
2
2 f6

f3f4
,
f 52 f3f12
f1f 24 f

2
6

,
f1f4f

5
6

f 22 f3f
2
12

,
f2f3f

2
6

f1f12

}
,

XIV =

{
f 22 f3f

3
8 f12

f1f 24 f6f24
,
f1f

2
6 f

3
8

f2f3f4f24

}
.

If A(q) is any of the 8 eta quotients in collection VIII and B(q) is
either of the 2 eta quotients in collection XIV, then

A(0) ⫋ B(0).
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The Table for f 41

Table 9: Eta quotients with vanishing behaviour similar to f 41

Collection # of eta quotients Collection # of eta quotients

I 72 II ∗ 4
III † 2 IV 6
V † 2 VI ∗ 4
VII ∗ 6 VIII ∗ 8
IX ∗ 4 X 4
XI 14 XII † 2

XIII † 2 XIV † 2
XV 4 XVI † 2
XVII 4 XVIII † 2
XIX † 6
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The Graph for f 41

Figure: The grouping of the 150 eta-quotients in Table 9, which have vanishing
coefficient behaviour similar to f 41

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 110 / 111



The Graph for f 41

Figure: The grouping of the 150 eta-quotients in Table 9, which have vanishing
coefficient behaviour similar to f 41

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 110 / 111



Thanks

Thank you for listening/watching.

James Mc Laughlin (WCUPA) Vanishing Coefficients January 5, 2024 111 / 111


	Background and Notation
	Why Modular Forms?
	Interlude:  q f124
	Some Sample Proofs
	Further Investigations 
	General Inclusion Results
	Dissection Methods

