Vanishing Coefficients in the Series Expansion of Lacunary Eta Quotients

West Chester University Mathematics Colloquium,

James Mc Laughlin (Joint work with Tim Huber and Dongxi Ye)

West Chester University, PA
Web page of James Mc Laughlin
jmclaughlin2@wcupa.edu
January 5, 2024

클

Overview

(1) Background and Notation
(2) Why Modular Forms?
(3) Interlude: $q f_{1}^{24}$
(4) Some Sample Proofs
(5) Further Investigations
(6) General Inclusion Results
(7) Dissection Methods

Background and Notation

Background and Notation

q-products

q-products

$$
\text { For }|q|<1, \quad(q ; q)_{\infty}:=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots
$$

The series expansion for f_{1} :

$$
f_{1}=(q ; q)_{\infty}=1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+q^{22}+q^{26}
$$

q-products

$$
\text { For } \begin{aligned}
|q|<1, \quad(q ; q)_{\infty} & :=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots \\
f_{1} & :=(q ; q)_{\infty}
\end{aligned}
$$

The series expansion for f_{1} :

q-products

$$
\text { For } \begin{aligned}
|q|<1, \quad(q ; q)_{\infty} & :=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots \\
f_{1} & :=(q ; q)_{\infty} \quad f_{j}:=\left(q^{j} ; q^{j}\right)_{\infty}
\end{aligned}
$$

The series expansion for f_{1} :

$\equiv \quad$ 三 $\quad 4 / 111$

q-products

$$
\text { For } \begin{aligned}
|q|<1, \quad(q ; q)_{\infty} & :=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots \\
f_{1} & :=(q ; q)_{\infty} \quad f_{j}:=\left(q^{j} ; q^{j}\right)_{\infty}
\end{aligned}
$$

The series expansion for f_{1} :

$$
\begin{gathered}
f_{1}=(q ; q)_{\infty}=1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+q^{22}+q^{26} \\
-q^{35}-q^{40}+q^{51}+q^{57}-q^{70}-q^{77}+q^{92}+q^{100} \\
-q^{117}-q^{126}+q^{145}+q^{155}-q^{176}-q^{187} \ldots
\end{gathered}
$$

q-products

$$
\text { For } \begin{aligned}
|q|<1, \quad(q ; q)_{\infty} & :=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots \\
f_{1} & :=(q ; q)_{\infty} \quad f_{j}:=\left(q^{j} ; q^{j}\right)_{\infty}
\end{aligned}
$$

The series expansion for f_{1} :

$$
\begin{gathered}
f_{1}=(q ; q)_{\infty}=1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+q^{22}+q^{26} \\
-q^{35}-q^{40}+q^{51}+q^{57}-q^{70}-q^{77}+q^{92}+q^{100} \\
-q^{117}-q^{126}+q^{145}+q^{155}-q^{176}-q^{187} \ldots
\end{gathered}
$$

Notice that the coefficients of most powers of q are zero.

플

q-products Continued

q-products Continued

The list of coefficients:

q-products Continued

The list of coefficients:

$$
\begin{aligned}
& 1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1,0,0 \\
& 0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0 \\
& 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 \\
& 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0 \\
& 0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 \\
& 0,0,0,0,0,0,1,0,-1,0,0,0 \\
& 0,0,0,0,0,0,0,-1, \ldots
\end{aligned}
$$

q-products Continued

The list of coefficients:

$$
\begin{aligned}
& 1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1,0,0 \\
& 0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0 \\
& 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 \\
& 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0 \\
& 0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 \\
& 0,0,0,0,0,0,1,0,-1,0,0,0 \\
& 0,0,0,0,0,0,0,-1, \ldots
\end{aligned}
$$

The series $\sum_{n=0}^{\infty} c(n) q^{n}$ is lacunary

q-products Continued

The list of coefficients:

$$
\begin{aligned}
& 1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0,1,0,0 \\
& 0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0 \\
& 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 \\
& 0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0 \\
& 0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 \\
& 0,0,0,0,0,0,1,0,-1,0,0,0 \\
& 0,0,0,0,0,0,0,-1, \ldots
\end{aligned}
$$

The series $\sum_{n=0}^{\infty} c(n) q^{n}$ is lacunary if

$$
\lim _{x \rightarrow \infty} \frac{|\{n \mid 0 \leq n \leq x, c(n)=0\}|}{x}=1
$$

q-products Continued

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.
Q. For which positive integers s is f_{1}^{s} lacunary?

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.
Q. For which positive integers s is f_{1}^{s} lacunary?

Serre:

三

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.
Q. For which positive integers s is f_{1}^{s} lacunary?

Serre: for even positive integers s, f_{1}^{s} is lacunary if and only if

$$
s \in\{2,4,6,8,10,14,26\}
$$

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.
Q. For which positive integers s is f_{1}^{s} lacunary?

Serre: for even positive integers s, f_{1}^{s} is lacunary if and only if

$$
s \in\{2,4,6,8,10,14,26\}
$$

For odd positive integers s it is known that f_{1}^{s} lacunary for $s=1$ and $s=3$, but nothing that is conclusive is known otherwise.

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.
Q. For which positive integers s is f_{1}^{s} lacunary?

Serre: for even positive integers s, f_{1}^{s} is lacunary if and only if

$$
s \in\{2,4,6,8,10,14,26\}
$$

For odd positive integers s it is known that f_{1}^{s} lacunary for $s=1$ and $s=3$, but nothing that is conclusive is known otherwise.

Definition: An eta quotient is a finite product of the form $\prod_{j} f_{j}^{n_{j}}$, for some integers $j \in \mathbb{N}$ and $n_{j} \in \mathbb{Z}$.

q-products Continued

Fact: f_{1} is lacunary, as the previous slide suggests.
Q. For which positive integers s is f_{1}^{s} lacunary?

Serre: for even positive integers s, f_{1}^{s} is lacunary if and only if

$$
s \in\{2,4,6,8,10,14,26\}
$$

For odd positive integers s it is known that f_{1}^{s} lacunary for $s=1$ and $s=3$, but nothing that is conclusive is known otherwise.

Definition: An eta quotient is a finite product of the form $\prod_{j} f_{j}^{n_{j}}$, for some integers $j \in \mathbb{N}$ and $n_{j} \in \mathbb{Z}$.
One could also ask about more general eta quotients that are lacunary.

A Result of Han and Ono

A Result of Han and Ono

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

A Result of Han and Ono

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{8}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{3}^{3}}{f_{1}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Theorem

(Han and Ono, 2011)

A Result of Han and Ono

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
\begin{equation*}
f_{1}^{8}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{3}^{3}}{f_{1}}=: \sum_{n=0}^{\infty} b(n) q^{n} \tag{1}
\end{equation*}
$$

Theorem

(Han and Ono, 2011)

A Result of Han and Ono

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
\begin{equation*}
f_{1}^{8}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{3}^{3}}{f_{1}}=: \sum_{n=0}^{\infty} b(n) q^{n} \tag{1}
\end{equation*}
$$

Theorem

(Han and Ono, 2011)

A Result of Han and Ono

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
\begin{equation*}
f_{1}^{8}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{3}^{3}}{f_{1}}=: \sum_{n=0}^{\infty} b(n) q^{n} \tag{1}
\end{equation*}
$$

Theorem

(Han and Ono, 2011) Assuming the notation above, we have that

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 \tag{2}
\end{equation*}
$$

A Result of Han and Ono

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
\begin{equation*}
f_{1}^{8}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{3}^{3}}{f_{1}}=: \sum_{n=0}^{\infty} b(n) q^{n} \tag{1}
\end{equation*}
$$

Theorem

(Han and Ono, 2011) Assuming the notation above, we have that

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 . \tag{2}
\end{equation*}
$$

Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $3 n+1$ has a prime factor p of the form $p=3 k+2$ for some integer k, with odd exponent.

The Result of Han and Ono in More Detail

三 \ddagger のく

The Result of Han and Ono in More Detail

$$
\begin{aligned}
f_{1}^{8}=1-8 q+20 q^{2} & -70 q^{4}+64 q^{5}+56 q^{6}-125 q^{8}-160 q^{9}+308 q^{10} \\
& +110 q^{12}-520 q^{14}+57 q^{16}+560 q^{17}+182 q^{20}+\ldots,
\end{aligned}
$$

Notice that the two series vanish for the same powers of q, namely q^{n} with $n=3,7,11,13,15,18,19$

三

The Result of Han and Ono in More Detail

$$
\begin{aligned}
& f_{1}^{8}=1-8 q+20 q^{2}-70 q^{4}+64 q^{5}+56 q^{6}-125 q^{8}-160 q^{9}+308 q^{10} \\
&+110 q^{12}-520 q^{14}+57 q^{16}+560 q^{17}+182 q^{20}+\ldots, \\
& \frac{f_{3}^{3}}{f_{1}}=1+q+2 q^{2}+ 2 q^{4}+q^{5}+2 q^{6}+q^{8}+2 q^{9}+2 q^{10}+2 q^{12} \\
&+2 q^{14}+3 q^{16}+2 q^{17}+2 q^{20}+\ldots
\end{aligned}
$$

Notice that the two series vanish for the same powers of q, namely q^{n} with

ㅋㅡㅡㅡㄹ

The Result of Han and Ono in More Detail

$$
\begin{aligned}
& f_{1}^{8}=1-8 q+20 q^{2}-70 q^{4}+64 q^{5}+56 q^{6}-125 q^{8}-160 q^{9}+308 q^{10} \\
&+110 q^{12}-520 q^{14}+57 q^{16}+560 q^{17}+182 q^{20}+\ldots \\
& \frac{f_{3}^{3}}{f_{1}}=1+q+2 q^{2}+ 2 q^{4}+q^{5}+2 q^{6}+q^{8}+2 q^{9}+2 q^{10}+2 q^{12} \\
&+2 q^{14}+3 q^{16}+2 q^{17}+2 q^{20}+\ldots
\end{aligned}
$$

Notice that the two series vanish for the same powers of q, namely q^{n} with $n=3,7,11,13,15,18,19 \ldots$

The Result of Han and Ono in More Detail

$$
\begin{aligned}
& f_{1}^{8}=1-8 q+20 q^{2}-70 q^{4}+64 q^{5}+56 q^{6}-125 q^{8}-160 q^{9}+308 q^{10} \\
&+110 q^{12}-520 q^{14}+57 q^{16}+560 q^{17}+182 q^{20}+\ldots \\
& \frac{f_{3}^{3}}{f_{1}}=1+q+2 q^{2}+ 2 q^{4}+q^{5}+2 q^{6}+q^{8}+2 q^{9}+2 q^{10}+2 q^{12} \\
&+2 q^{14}+3 q^{16}+2 q^{17}+2 q^{20}+\ldots
\end{aligned}
$$

Notice that the two series vanish for the same powers of q, namely q^{n} with $n=3,7,11,13,15,18,19 \ldots$

Further, for any n in this list, $3 n+1$ has a prime factor p of the form $p=3 k+2$ with odd exponent.

The Result of Han and Ono in More Detail

$$
\begin{aligned}
& f_{1}^{8}=1-8 q+20 q^{2}-70 q^{4}+64 q^{5}+56 q^{6}-125 q^{8}-160 q^{9}+308 q^{10} \\
&+110 q^{12}-520 q^{14}+57 q^{16}+560 q^{17}+182 q^{20}+\ldots \\
& \frac{f_{3}^{3}}{f_{1}}=1+q+2 q^{2}+ 2 q^{4}+q^{5}+2 q^{6}+q^{8}+2 q^{9}+2 q^{10}+2 q^{12} \\
&+2 q^{14}+3 q^{16}+2 q^{17}+2 q^{20}+\ldots
\end{aligned}
$$

Notice that the two series vanish for the same powers of q, namely q^{n} with $n=3,7,11,13,15,18,19 \ldots$

Further, for any n in this list, $3 n+1$ has a prime factor p of the form $p=3 k+2$ with odd exponent.
(For example, for $n=11,3 n+1=3(11)+1=34=2\left(17^{1}\right)$ and $17=3(5)+2$.)

三

Series with identically vanishing coefficients

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.
Do similar situations exist for the other powers of f_{1} that are lacunary?

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.
Do similar situations exist for the other powers of f_{1} that are lacunary? We first introduce some additional notation.

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.
Do similar situations exist for the other powers of f_{1} that are lacunary?
We first introduce some additional notation.
If $A(q)$ and $B(q)$ are two functions for which the coefficients in the series expansions satisfy the condition (2) in the theorem

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.
Do similar situations exist for the other powers of f_{1} that are lacunary?
We first introduce some additional notation.
If $A(q)$ and $B(q)$ are two functions for which the coefficients in the series expansions satisfy the condition (2) in the theorem

$$
a(n)=0 \Longleftrightarrow b(n)=0,
$$

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.

Do similar situations exist for the other powers of f_{1} that are lacunary?
We first introduce some additional notation.
If $A(q)$ and $B(q)$ are two functions for which the coefficients in the series expansions satisfy the condition (2) in the theorem

$$
a(n)=0 \Longleftrightarrow b(n)=0
$$

then for ease of discussion, we say that the coefficients vanish identically,

Series with identically vanishing coefficients

Notice that one of the eta quotients in the previous slide was f_{1}^{8}, one of the powers of f_{1} that Serre showed was lacunary.

Do similar situations exist for the other powers of f_{1} that are lacunary?
We first introduce some additional notation.
If $A(q)$ and $B(q)$ are two functions for which the coefficients in the series expansions satisfy the condition (2) in the theorem

$$
a(n)=0 \Longleftrightarrow b(n)=0
$$

then for ease of discussion, we say that the coefficients vanish identically, or that $A(q)$ and $B(q)$ have identically vanishing coefficients.

Series with identically vanishing coefficients II

Series with identically vanishing coefficients II

Theorem 1 motivated the speaker to investigate experimentally if similar results held for other pairs of eta quotients.

Series with identically vanishing coefficients II

Theorem 1 motivated the speaker to investigate experimentally if similar results held for other pairs of eta quotients.

This was done using some simple Mathematica programs.

Series with identically vanishing coefficients II

Theorem 1 motivated the speaker to investigate experimentally if similar results held for other pairs of eta quotients.

This was done using some simple Mathematica programs.
What was discovered as a result of these computer algebra experiments is summarized as follows.

Other eta quotients with identically vanishing coefficients I

Other eta quotients with identically vanishing coefficients I

Let $(A(q), B(q))$ be any of the pairs

$$
\begin{align*}
&\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}\right),\left(f_{1}^{4}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}\right),\left(f_{1}^{6}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\right. \\
&\left.\left(f_{1}^{10}, \frac{f_{2}^{6}}{f_{1}^{2}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}\right),\left(f_{1}^{14}, \frac{f_{2}^{8}}{f_{1}^{2}}\right)\right\} . \tag{3}
\end{align*}
$$

Other eta quotients with identically vanishing coefficients I

Let $(A(q), B(q))$ be any of the pairs

$$
\begin{align*}
&\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}\right),\left(f_{1}^{4}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}\right),\left(f_{1}^{6}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\right. \\
&\left.\left(f_{1}^{10}, \frac{f_{2}^{6}}{f_{1}^{2}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}\right),\left(f_{1}^{14}, \frac{f_{2}^{8}}{f_{1}^{2}}\right)\right\} . \tag{3}
\end{align*}
$$

For any such pair $(A(q), B(q))$, define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
A(q)=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad B(q)=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

Other eta quotients with identically vanishing coefficients I

Let $(A(q), B(q))$ be any of the pairs

$$
\begin{align*}
&\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}\right),\left(f_{1}^{4}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}\right),\left(f_{1}^{6}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\right. \\
&\left.\left(f_{1}^{10}, \frac{f_{2}^{6}}{f_{1}^{2}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}\right),\left(f_{1}^{14}, \frac{f_{2}^{8}}{f_{1}^{2}}\right)\right\} . \tag{3}
\end{align*}
$$

For any such pair $(A(q), B(q))$, define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
A(q)=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad B(q)=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

Then, for each pair, $a(n)=0 \Longleftrightarrow b(n)=0$, with criteria for when exactly this happens (Serre's criteria).

三

Other eta quotients with identically vanishing coefficients II

Other eta quotients with identically vanishing coefficients II

For the pairs

$$
\begin{equation*}
\left\{\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}\right),\left(f_{1}^{26}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{5}
\end{equation*}
$$

Other eta quotients with identically vanishing coefficients II

For the pairs

$$
\begin{equation*}
\left\{\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}\right),\left(f_{1}^{26}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{5}
\end{equation*}
$$

$a(n)=b(n)=0$ if $12 n+13$ satisfies a criteria of Serre for $a(n)=0$.

Other eta quotients with identically vanishing coefficients II

For the pairs

$$
\begin{equation*}
\left\{\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}\right),\left(f_{1}^{26}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{5}
\end{equation*}
$$

$a(n)=b(n)=0$ if $12 n+13$ satisfies a criteria of Serre for $a(n)=0$.
The proofs needed the theory of modular forms (enter Tim Huber and later Dongxi Ye).

Other eta quotients with identically vanishing coefficients II

For the pairs

$$
\begin{equation*}
\left\{\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}\right),\left(f_{1}^{26}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{5}
\end{equation*}
$$

$a(n)=b(n)=0$ if $12 n+13$ satisfies a criteria of Serre for $a(n)=0$.
The proofs needed the theory of modular forms (enter Tim Huber and later Dongxi Ye).

Later: The results above on identically vanishing coefficients appear to be just "the tip of the iceberg".

Brief Comment on the method of proof

Brief Comment on the method of proof

Brief outline of method of proof

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$,

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$, where D is a positive integer and the m and n run over all the integers or certain arithmetic progressions

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$, where D is a positive integer and the m and n run over all the integers or certain arithmetic progressions (allows the coefficient b_{p} of q^{p} to be computed explicitly in terms of the m and n in $p=m^{2}+D n^{2}$).

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$, where D is a positive integer and the m and n run over all the integers or certain arithmetic progressions (allows the coefficient b_{p} of q^{p} to be computed explicitly in terms of the m and n in $p=m^{2}+D n^{2}$).
- Use the multiplicativity of the coefficients in the CM forms,

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$, where D is a positive integer and the m and n run over all the integers or certain arithmetic progressions (allows the coefficient b_{p} of q^{p} to be computed explicitly in terms of the m and n in $p=m^{2}+D n^{2}$).
- Use the multiplicativity of the coefficients in the CM forms, and the recursive formula for prime powers

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$, where D is a positive integer and the m and n run over all the integers or certain arithmetic progressions (allows the coefficient b_{p} of q^{p} to be computed explicitly in terms of the m and n in $p=m^{2}+D n^{2}$).
- Use the multiplicativity of the coefficients in the CM forms, and the recursive formula for prime powers (more on these later)

Brief Comment on the method of proof

Brief outline of method of proof (more details later):

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.
- Use the LMFDB to express the resulting modular form as a linear combination of CM forms (by a result of Serre on lacunary forms, and also using the Sturm bound to verify the equality).
- Use a result of Ribet to express the CM forms as linear combinations of theta series of the form $\sum_{m, n}(m+n \sqrt{-D})^{k} q^{m^{2}+D n^{2}}$, where D is a positive integer and the m and n run over all the integers or certain arithmetic progressions (allows the coefficient b_{p} of q^{p} to be computed explicitly in terms of the m and n in $p=m^{2}+D n^{2}$).
- Use the multiplicativity of the coefficients in the CM forms, and the recursive formula for prime powers (more on these later) to determine information about a general coefficient b_{n} (and in particular, when $b_{n}=0$).

Why Modular Forms?

Why Modular Forms?

Why Modular Forms?

Why Modular Forms?

From the previous slide:

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form.

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler:

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics:

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division,

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."

高

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."
Q: Why use the dilation $q \rightarrow q^{3}$ above?

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."
Q: Why use the dilation $q \rightarrow q^{3}$ above?
Why not $q \rightarrow q^{4}$?

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."
Q: Why use the dilation $q \rightarrow q^{3}$ above?
Why not $q \rightarrow q^{4}$? $q \rightarrow q^{5}$?

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."
Q: Why use the dilation $q \rightarrow q^{3}$ above?
Why not $q \rightarrow q^{4} ? q \rightarrow q^{5} ? q \rightarrow q^{6}$?

高

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."
Q: Why use the dilation $q \rightarrow q^{3}$ above?
Why not $q \rightarrow q^{4} ? q \rightarrow q^{5} ? q \rightarrow q^{6} ? \ldots$

Why Modular Forms?

From the previous slide:

- Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j} (some integers m and j) to turn the second eta quotient into a modular form.

Example:

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form. So what?
Martin Eichler: "There are five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms."
Q: Why use the dilation $q \rightarrow q^{3}$ above?
Why not $q \rightarrow q^{4} ? q \rightarrow q^{5} ? q \rightarrow q^{6} ? \ldots$
The fact that $(3)(8)=24$ is important.

Why Modular Forms？

From the previous slide：
－Apply a dilation $q \rightarrow q^{m}$ and multiply by q^{j}（some integers m and j ）to turn the second eta quotient into a modular form．

Example：

$$
f_{1}^{8}=(q ; q)_{\infty}^{8} \longrightarrow\left(q^{3} ; q^{3}\right)_{\infty}^{8} \longrightarrow q\left(q^{3} ; q^{3}\right)_{\infty}^{8}
$$

The last product on the right is a modular form．So what？
Martin Eichler：＂There are five fundamental operations of mathematics： addition，subtraction，multiplication，division，and modular forms．＂

Q：Why use the dilation $q \rightarrow q^{3}$ above？
Why not $q \rightarrow q^{4} ? q \rightarrow q^{5} ? q \rightarrow q^{6} ? \ldots$
The fact that $(3)(8)=24$ is important．
Also，the transformation above takes q^{n} to $q^{3 n+1}$ ，and partly explains the relevance of $3 n+1$ in the vanishing coefficient criterion．

ミーのロロ
三

Interlude: $q f_{1}^{24}$ and the Ramanujan τ Function

Interlude: $q f_{1}^{24}$ and the Ramanujan τ Function

The Ramanujan τ Function

James Mc Laughlin (WCUPA)
January 5, 2024
$17 / 111$

The Ramanujan τ Function

The Ramanujan τ function is defined by

$$
\begin{aligned}
& q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}=: \sum_{n=1}^{\infty} \tau(n) q^{n}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5} \\
& -6048 q^{6}-16744 q^{7}+84480 q^{8}-113643 q^{9}-115920 q^{10}+534612 q^{11} \\
& -370944 q^{12}-577738 q^{13}+401856 q^{14}+1217160 q^{15}+987136 q^{16}-\ldots
\end{aligned}
$$

The Ramanujan τ Function

The Ramanujan τ function is defined by

$$
\begin{aligned}
& q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}=: \sum_{n=1}^{\infty} \tau(n) q^{n}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5} \\
& -6048 q^{6}-16744 q^{7}+84480 q^{8}-113643 q^{9}-115920 q^{10}+534612 q^{11} \\
& -370944 q^{12}-577738 q^{13}+401856 q^{14}+1217160 q^{15}+987136 q^{16}-\ldots
\end{aligned}
$$

Facts: (1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$.

The Ramanujan τ Function

The Ramanujan τ function is defined by

$$
\begin{aligned}
& q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}=: \sum_{n=1}^{\infty} \tau(n) q^{n}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5} \\
& -6048 q^{6}-16744 q^{7}+84480 q^{8}-113643 q^{9}-115920 q^{10}+534612 q^{11} \\
& -370944 q^{12}-577738 q^{13}+401856 q^{14}+1217160 q^{15}+987136 q^{16}-\ldots
\end{aligned}
$$

Facts: (1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$.
For example, $\tau(3) \tau(5)=252 \times 4830=1217160=\tau(15)$.

The Ramanujan τ Function

The Ramanujan τ function is defined by

$$
\begin{aligned}
& q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}=: \sum_{n=1}^{\infty} \tau(n) q^{n}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5} \\
& -6048 q^{6}-16744 q^{7}+84480 q^{8}-113643 q^{9}-115920 q^{10}+534612 q^{11} \\
& -370944 q^{12}-577738 q^{13}+401856 q^{14}+1217160 q^{15}+987136 q^{16}-\ldots
\end{aligned}
$$

Facts: (1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$.
For example, $\tau(3) \tau(5)=252 \times 4830=1217160=\tau(15)$.
(2) For any prime p and any integer $r \geq 1$,

$$
\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)
$$

The Ramanujan τ Function

The Ramanujan τ function is defined by

$$
\begin{aligned}
& q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}=: \sum_{n=1}^{\infty} \tau(n) q^{n}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5} \\
& -6048 q^{6}-16744 q^{7}+84480 q^{8}-113643 q^{9}-115920 q^{10}+534612 q^{11} \\
& -370944 q^{12}-577738 q^{13}+401856 q^{14}+1217160 q^{15}+987136 q^{16}-\ldots
\end{aligned}
$$

Facts: (1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$.
For example, $\tau(3) \tau(5)=252 \times 4830=1217160=\tau(15)$.
(2) For any prime p and any integer $r \geq 1$,

$$
\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)
$$

For example, with $p=2$ and $r=3$,
$\tau(2) \tau\left(2^{3}\right)-2^{11} \tau\left(2^{2}\right)=(-24) 84480-2^{11}(-1472)$
$=987136=\tau\left(2^{4}\right)$.

The Values Taken by τ Determined Completely by its Value at the Primes

The Values Taken by τ Determined Completely by its Value at the Primes

Observe that the two conditions
(1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$

The Values Taken by τ Determined Completely by its Value at the Primes

Observe that the two conditions
(1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$
(2) For any prime p and any integer $r \geq 1$,

$$
\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)
$$

The Values Taken by τ Determined Completely by its Value at the Primes

Observe that the two conditions
(1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$
(2) For any prime p and any integer $r \geq 1$,

$$
\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)
$$

mean that the value of $\tau(n)$ for any integer n is determined entirely by the values of $\tau(p)$ for each prime p such that $p \mid n$.

The Values Taken by τ Determined Completely by its Value at the Primes

Observe that the two conditions
(1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$
(2) For any prime p and any integer $r \geq 1$,

$$
\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)
$$

mean that the value of $\tau(n)$ for any integer n is determined entirely by the values of $\tau(p)$ for each prime p such that $p \mid n$.
(If n has prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ then $\tau(n)=\tau\left(p_{1}^{k_{1}}\right) \tau\left(p_{2}^{k_{2}}\right) \ldots \tau\left(p_{r}^{k_{r}}\right)$ by (1),

The Values Taken by τ Determined Completely by its Value at the Primes

Observe that the two conditions
(1) $\tau(m) \tau(n)=\tau(m n)$ if $\operatorname{gcd}(m, n)=1$
(2) For any prime p and any integer $r \geq 1$,

$$
\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)
$$

mean that the value of $\tau(n)$ for any integer n is determined entirely by the values of $\tau(p)$ for each prime p such that $p \mid n$.
(If n has prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ then $\tau(n)=\tau\left(p_{1}^{k_{1}}\right) \tau\left(p_{2}^{k_{2}}\right) \ldots \tau\left(p_{r}^{k_{r}}\right)$ by (1), and then (2) implies each $\tau\left(p_{i}^{k_{i}}\right)$ is a polynomial in $\tau\left(p_{i}\right)$.

- 0

Other Hecke Eigenforms

Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the prime powers similar to (2) on the previous slides.

Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the prime powers similar to (2) on the previous slides.
Let $f(q)=q+\sum_{n=2}^{\infty} a_{n} q^{n}$ be a normalized Hecke eigenform of weight k, level N, and Nebentypus χ.

Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the prime powers similar to (2) on the previous slides.
Let $f(q)=q+\sum_{n=2}^{\infty} a_{n} q^{n}$ be a normalized Hecke eigenform of weight k, level N, and Nebentypus χ.

Let $p \nmid N$ be a prime, then the following recurrence formula holds

$$
\begin{equation*}
a_{p^{n+1}}=a_{p^{n}} a_{p}-\chi(p) p^{k-1} a_{p^{n-1}} \tag{6}
\end{equation*}
$$

Other Hecke Eigenforms

There are a class of modular forms that satisfy a recurrence formula at the prime powers similar to (2) on the previous slides.
Let $f(q)=q+\sum_{n=2}^{\infty} a_{n} q^{n}$ be a normalized Hecke eigenform of weight k, level N, and Nebentypus χ.

Let $p \nmid N$ be a prime, then the following recurrence formula holds

$$
\begin{equation*}
a_{p^{n+1}}=a_{p^{n}} a_{p}-\chi(p) p^{k-1} a_{p^{n-1}} \tag{6}
\end{equation*}
$$

As with $\tau(n)$, if $\operatorname{gcd}(m, n)=1$, then $a_{m n}=a_{m} a_{n}$.

Some Sample Proofs

Some Sample Proofs

A Proof involving Triangular numbers I

A Proof involving Triangular numbers I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ as follows:

$$
f_{1}^{6}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{2}^{4}}{f_{1}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

A Proof involving Triangular numbers I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ as follows:

$$
f_{1}^{6}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{2}^{4}}{f_{1}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

Then

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 . \tag{7}
\end{equation*}
$$

A Proof involving Triangular numbers I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ as follows:

$$
f_{1}^{6}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{2}^{4}}{f_{1}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

Then

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 . \tag{7}
\end{equation*}
$$

Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(4 n+1)$ is odd for some prime $p \equiv 3(\bmod 4)$.

A Proof involving Triangular numbers I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ as follows:

$$
f_{1}^{6}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{2}^{4}}{f_{1}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 . \tag{7}
\end{equation*}
$$

Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(4 n+1)$ is odd for some prime $p \equiv 3(\bmod 4)$.

The proof of this theorem does not involve CM forms and theta series (so different from most other proofs).

A Proof involving Triangular numbers I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ as follows:

$$
f_{1}^{6}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{2}^{4}}{f_{1}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 \tag{7}
\end{equation*}
$$

Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(4 n+1)$ is odd for some prime $p \equiv 3(\bmod 4)$.

The proof of this theorem does not involve CM forms and theta series (so different from most other proofs).
Serre: $a(n)=0$ if and only if $4 n+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent,
-

A Proof involving Triangular numbers I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ as follows:

$$
f_{1}^{6}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{2}^{4}}{f_{1}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then

$$
\begin{equation*}
a(n)=0 \Longleftrightarrow b(n)=0 \tag{7}
\end{equation*}
$$

Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(4 n+1)$ is odd for some prime $p \equiv 3(\bmod 4)$.

The proof of this theorem does not involve CM forms and theta series (so different from most other proofs).
Serre: $a(n)=0$ if and only if $4 n+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent, so it suffices to show $b(n)=0$ under the same conditions.

三

A Proof involving Triangular numbers II

Fact:

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}
$$

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}, \Longrightarrow \frac{f_{2}^{4}}{f_{1}^{2}}=\sum_{m, n=0}^{\infty} q^{m(m+1) / 2+n(n+1) / 2}
$$

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}, \Longrightarrow \frac{f_{2}^{4}}{f_{1}^{2}}=\sum_{m, n=0}^{\infty} q^{m(m+1) / 2+n(n+1) / 2}=\sum_{k=0}^{\infty} b(k) q^{k}
$$

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}, \Longrightarrow \frac{f_{2}^{4}}{f_{1}^{2}}=\sum_{m, n=0}^{\infty} q^{m(m+1) / 2+n(n+1) / 2}=\sum_{k=0}^{\infty} b(k) q^{k}
$$

Let

$$
t(n)=\frac{n(n+1)}{2}, \quad n=0,1,2,3, \ldots
$$

denote the n-th triangular number.

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}, \Longrightarrow \frac{f_{2}^{4}}{f_{1}^{2}}=\sum_{m, n=0}^{\infty} q^{m(m+1) / 2+n(n+1) / 2}=\sum_{k=0}^{\infty} b(k) q^{k}
$$

Let

$$
t(n)=\frac{n(n+1)}{2}, \quad n=0,1,2,3, \ldots
$$

denote the n-th triangular number. Let

$$
T_{2}=\{t(m)+t(n) \mid m, n \geq 0\}
$$

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}, \Longrightarrow \frac{f_{2}^{4}}{f_{1}^{2}}=\sum_{m, n=0}^{\infty} q^{m(m+1) / 2+n(n+1) / 2}=\sum_{k=0}^{\infty} b(k) q^{k}
$$

Let

$$
t(n)=\frac{n(n+1)}{2}, \quad n=0,1,2,3, \ldots
$$

denote the n-th triangular number. Let

$$
T_{2}=\{t(m)+t(n) \mid m, n \geq 0\}
$$

the set of non-negative integers representable as a sum of two triangular numbers.

A Proof involving Triangular numbers II

Fact:

$$
\frac{f_{2}^{2}}{f_{1}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2}, \Longrightarrow \frac{f_{2}^{4}}{f_{1}^{2}}=\sum_{m, n=0}^{\infty} q^{m(m+1) / 2+n(n+1) / 2}=\sum_{k=0}^{\infty} b(k) q^{k}
$$

Let

$$
t(n)=\frac{n(n+1)}{2}, \quad n=0,1,2,3, \ldots
$$

denote the n-th triangular number. Let

$$
T_{2}=\{t(m)+t(n) \mid m, n \geq 0\}
$$

the set of non-negative integers representable as a sum of two triangular numbers. Thus $b(k)=0$ if and only if $k \notin T_{2}$.

A Proof involving Triangular numbers III

A Proof involving Triangular numbers III

There is the following criterion of Ewell (1992):

A Proof involving Triangular numbers III

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.

A Proof involving Triangular numbers III

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.

Thus $b(n) \neq 0$ if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.

A Proof involving Triangular numbers III

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.

Thus $b(n) \neq 0$ if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.
Alternatively, $b(n)=0$ if and only if when $4 n+1$ is expressed as a product of prime-powers, some prime factor $p \equiv 3(\bmod 4)$ occurs with odd exponent.

A Proof involving Triangular numbers III

There is the following criterion of Ewell (1992):

Proposition

A positive integer n can be written as a sum of two triangular numbers if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.

Thus $b(n) \neq 0$ if and only if when $4 n+1$ is expressed as a product of prime-powers, every prime factor $p \equiv 3(\bmod 4)$ occurs with even exponent.
Alternatively, $b(n)=0$ if and only if when $4 n+1$ is expressed as a product of prime-powers, some prime factor $p \equiv 3(\bmod 4)$ occurs with odd exponent.

However, this is exactly Serre's criterion for $a(n)=0$.

\equiv 艮 $23 / 111$

An Example of the More Usual Kind of Proof I

An Example of the More Usual Kind of Proof I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{4}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{1}^{8}}{f_{2}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

An Example of the More Usual Kind of Proof I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{4}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{1}^{8}}{f_{2}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then $a(n)=0 \Longleftrightarrow b(n)=0$.

An Example of the More Usual Kind of Proof I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{4}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{1}^{8}}{f_{2}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then $a(n)=0 \Longleftrightarrow b(n)=0$.
Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$.

An Example of the More Usual Kind of Proof I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{4}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{1}^{8}}{f_{2}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then $a(n)=0 \Longleftrightarrow b(n)=0$.
Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$.

Serre: $a(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$,

An Example of the More Usual Kind of Proof I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{4}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{1}^{8}}{f_{2}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then $a(n)=0 \Longleftrightarrow b(n)=0$.
Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$.

Serre: $a(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$, so it is sufficient to show $b(n)=0$ under the same conditions.

E

An Example of the More Usual Kind of Proof I

Theorem

Define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
f_{1}^{4}=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad \frac{f_{1}^{8}}{f_{2}^{2}}=: \sum_{n=0}^{\infty} b(n) q^{n} .
$$

Then $a(n)=0 \Longleftrightarrow b(n)=0$.
Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$.

Serre: $a(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(6 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$, so it is sufficient to show $b(n)=0$ under the same conditions. Remark: For an odd prime $p, p \equiv 2(\bmod 3)$ is equivalent to $p \equiv 5(\bmod 6)$.

An Example of the More Usual Kind of Proof II

An Example of the More Usual Kind of Proof II

Next, apply a dilation $q \rightarrow q^{6}$ to each eta quotient, and then multiply by q :

An Example of the More Usual Kind of Proof II

Next, apply a dilation $q \rightarrow q^{6}$ to each eta quotient, and then multiply by q :

$$
q f_{6}^{4}=: \sum_{n=0}^{\infty} a(n) q^{6 n+1}, \quad q \frac{f_{6}^{8}}{f_{12}^{2}}=\sum_{n=0}^{\infty} b(n) q^{6 n+1}=: \sum_{n=0}^{\infty} b_{n}^{*} q^{n} .
$$

An Example of the More Usual Kind of Proof II

Next, apply a dilation $q \rightarrow q^{6}$ to each eta quotient, and then multiply by q :

$$
q f_{6}^{4}=: \sum_{n=0}^{\infty} a(n) q^{6 n+1}, \quad q \frac{f_{6}^{8}}{f_{12}^{2}}=\sum_{n=0}^{\infty} b(n) q^{6 n+1}=: \sum_{n=0}^{\infty} b_{n}^{*} q^{n} .
$$

The form $q f_{6}^{8} / f_{12}^{2}$ is a lacunary form of weight 3 and level 144 ,

An Example of the More Usual Kind of Proof II

Next, apply a dilation $q \rightarrow q^{6}$ to each eta quotient, and then multiply by q :

$$
q f_{6}^{4}=: \sum_{n=0}^{\infty} a(n) q^{6 n+1}, \quad q \frac{f_{6}^{8}}{f_{12}^{2}}=\sum_{n=0}^{\infty} b(n) q^{6 n+1}=: \sum_{n=0}^{\infty} b_{n}^{*} q^{n}
$$

The form $q f_{6}^{8} / f_{12}^{2}$ is a lacunary form of weight 3 and level 144 , and hence by a criterion of Serre is a linear combination of CM forms of the same weight and level.

An Example of the More Usual Kind of Proof II

Next, apply a dilation $q \rightarrow q^{6}$ to each eta quotient, and then multiply by q :

$$
q f_{6}^{4}=: \sum_{n=0}^{\infty} a(n) q^{6 n+1}, \quad q \frac{f_{6}^{8}}{f_{12}^{2}}=\sum_{n=0}^{\infty} b(n) q^{6 n+1}=: \sum_{n=0}^{\infty} b_{n}^{*} q^{n}
$$

The form $q f_{6}^{8} / f_{12}^{2}$ is a lacunary form of weight 3 and level 144 , and hence by a criterion of Serre is a linear combination of CM forms of the same weight and level.
The next step is to head to the LMFDB (The L-functions and modular forms database (LMFDB)) to look for these CM forms.

An Example of the More Usual Kind of Proof III

An Example of the More Usual Kind of Proof III

If we write $q=e^{2 \pi i z}$, with z in the upper half of the complex plane,

An Example of the More Usual Kind of Proof III

If we write $q=e^{2 \pi i z}$, with z in the upper half of the complex plane,

$$
\begin{aligned}
& q \frac{f_{6}^{8}}{f_{12}^{2}}=\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=q-8 q^{7}+22 q^{13}-16 q^{19}-25 q^{25}+24 q^{31}+26 q^{37} \\
+ & 48 q^{43}-143 q^{49}+74 q^{61}+32 q^{67}+46 q^{73}-40 q^{79}-176 q^{91}-2 q^{97}+\ldots
\end{aligned}
$$

An Example of the More Usual Kind of Proof III

If we write $q=e^{2 \pi i z}$, with z in the upper half of the complex plane,

$$
\begin{aligned}
& q \frac{f_{6}^{8}}{f_{12}^{2}}=\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=q-8 q^{7}+22 q^{13}-16 q^{19}-25 q^{25}+24 q^{31}+26 q^{37} \\
+ & 48 q^{43}-143 q^{49}+74 q^{61}+32 q^{67}+46 q^{73}-40 q^{79}-176 q^{91}-2 q^{97}+\ldots
\end{aligned}
$$

Next, let $S(q)$ denote the CM form of weight 3 and level 144 labelled 144.3.g.c in the LMFDB.

An Example of the More Usual Kind of Proof III

If we write $q=e^{2 \pi i z}$, with z in the upper half of the complex plane,

$$
\begin{aligned}
& q \frac{f_{6}^{8}}{f_{12}^{2}}=\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=q-8 q^{7}+22 q^{13}-16 q^{19}-25 q^{25}+24 q^{31}+26 q^{37} \\
+ & 48 q^{43}-143 q^{49}+74 q^{61}+32 q^{67}+46 q^{73}-40 q^{79}-176 q^{91}-2 q^{97}+\ldots
\end{aligned}
$$

Next, let $S(q)$ denote the CM form of weight 3 and level 144 labelled 144.3.g.c in the LMFDB. Then $S(q)$ has q-series expansion

$$
\begin{aligned}
S(q)= & q-8 i \sqrt{3} q^{7}+22 q^{13}-16 i \sqrt{3} q^{19}-25 q^{25}+24 i \sqrt{3} q^{31} \\
& +26 q^{37}+48 i \sqrt{3} q^{43}-143 q^{49}+74 q^{61}+32 i \sqrt{3} q^{67} \\
& +46 q^{73}-40 i \sqrt{3} q^{79}-176 i \sqrt{3} q^{91}-2 q^{97}+\ldots
\end{aligned}
$$

An Example of the More Usual Kind of Proof IV

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$.

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$. By comparing coefficients up to the Sturm bound,

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$. By comparing coefficients up to the Sturm bound, one gets that

$$
\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=\frac{1}{2}\left[\left(1+\frac{1}{\sqrt{-3}}\right) S(q)+\left(1-\frac{1}{\sqrt{-3}}\right) \bar{S}(q)\right] .
$$

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$. By comparing coefficients up to the Sturm bound, one gets that

$$
\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=\frac{1}{2}\left[\left(1+\frac{1}{\sqrt{-3}}\right) S(q)+\left(1-\frac{1}{\sqrt{-3}}\right) \bar{S}(q)\right]
$$

Let the sequences $\left\{s_{n}\right\}$ and $\left\{\bar{s}_{n}\right\}$ be defined by

$$
\begin{equation*}
S(q)=\sum_{n=0}^{\infty} s_{n} q^{n}, \quad \bar{S}(q)=\sum_{n=0}^{\infty} \bar{s}_{n} q^{n} \tag{9}
\end{equation*}
$$

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$. By comparing coefficients up to the Sturm bound, one gets that

$$
\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=\frac{1}{2}\left[\left(1+\frac{1}{\sqrt{-3}}\right) S(q)+\left(1-\frac{1}{\sqrt{-3}}\right) \bar{S}(q)\right]
$$

Let the sequences $\left\{s_{n}\right\}$ and $\left\{\bar{s}_{n}\right\}$ be defined by

$$
\begin{equation*}
S(q)=\sum_{n=0}^{\infty} s_{n} q^{n}, \quad \bar{S}(q)=\sum_{n=0}^{\infty} \bar{s}_{n} q^{n} \tag{9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
b_{12 n+1}^{*}=s_{12 n+1}=\bar{s}_{12 n+1}, \quad b_{12 n+7}^{*}=\frac{s_{12 n+7}}{i \sqrt{3}}=-\frac{\bar{s}_{12 n+7}}{i \sqrt{3}} \tag{10}
\end{equation*}
$$

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$. By comparing coefficients up to the Sturm bound, one gets that

$$
\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=\frac{1}{2}\left[\left(1+\frac{1}{\sqrt{-3}}\right) S(q)+\left(1-\frac{1}{\sqrt{-3}}\right) \bar{S}(q)\right]
$$

Let the sequences $\left\{s_{n}\right\}$ and $\left\{\bar{s}_{n}\right\}$ be defined by

$$
\begin{equation*}
S(q)=\sum_{n=0}^{\infty} s_{n} q^{n}, \quad \bar{S}(q)=\sum_{n=0}^{\infty} \bar{s}_{n} q^{n} \tag{9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
b_{12 n+1}^{*}=s_{12 n+1}=\bar{s}_{12 n+1}, \quad b_{12 n+7}^{*}=\frac{s_{12 n+7}}{i \sqrt{3}}=-\frac{\bar{s}_{12 n+7}}{i \sqrt{3}} \tag{10}
\end{equation*}
$$

Note that $s_{2}=s_{3}=0$,

An Example of the More Usual Kind of Proof IV

Let $\bar{S}(q)$ denote the conjugate form $(i \rightarrow-i)$. By comparing coefficients up to the Sturm bound, one gets that

$$
\frac{\eta^{8}(6 z)}{\eta^{2}(12 z)}=\frac{1}{2}\left[\left(1+\frac{1}{\sqrt{-3}}\right) S(q)+\left(1-\frac{1}{\sqrt{-3}}\right) \bar{S}(q)\right]
$$

Let the sequences $\left\{s_{n}\right\}$ and $\left\{\bar{s}_{n}\right\}$ be defined by

$$
\begin{equation*}
S(q)=\sum_{n=0}^{\infty} s_{n} q^{n}, \quad \bar{S}(q)=\sum_{n=0}^{\infty} \bar{s}_{n} q^{n} \tag{9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
b_{12 n+1}^{*}=s_{12 n+1}=\bar{s}_{12 n+1}, \quad b_{12 n+7}^{*}=\frac{s_{12 n+7}}{i \sqrt{3}}=-\frac{\bar{s}_{12 n+7}}{i \sqrt{3}} \tag{10}
\end{equation*}
$$

Note that $s_{2}=s_{3}=0$, and if p is a prime, $p \equiv 2(\bmod 3)($ or $p \equiv 5$ $(\bmod 6))$, then $s_{p}=0$.

An Example of the More Usual Kind of Proof V

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)($ or $p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$.

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)($ or $p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$.
The multiplicative property, $s_{u v}=s_{u} s_{v}$ if $\operatorname{gcd}(u, v)=1$,

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)($ or $p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$. The multiplicative property, $s_{u v}=s_{u} s_{v}$ if $\operatorname{gcd}(u, v)=1$, gives that if $6 n+1=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$,

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)($ or $p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$. The multiplicative property, $s_{u v}=s_{u} s_{v}$ if $\operatorname{gcd}(u, v)=1$, gives that if $6 n+1=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, then

$$
s_{6 n+1}=s_{p_{1}^{n_{1}}} S_{p_{2}^{n_{2}}} \cdots s_{p_{r}^{n_{r}}}
$$

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)($ or $p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$. The multiplicative property, $s_{u v}=s_{u} s_{v}$ if $\operatorname{gcd}(u, v)=1$, gives that if $6 n+1=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, then

$$
s_{6 n+1}=s_{p_{1}}^{n_{1}} S_{p_{2}^{n_{2}}} \cdots s_{p_{r}^{n_{r}}}
$$

and hence if some $p_{i} \equiv 5(\bmod 6)$ and the corresponding n_{i} is odd, then $s_{6 n+1}=0$ and hence $b_{n}=0$

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)($ or $p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$. The multiplicative property, $s_{u v}=s_{u} s_{v}$ if $\operatorname{gcd}(u, v)=1$, gives that if $6 n+1=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, then

$$
s_{6 n+1}=s_{p_{1}^{n_{1}}} s_{p_{2}^{n_{2}}} \ldots s_{p_{r}^{n_{r}}}
$$

and hence if some $p_{i} \equiv 5(\bmod 6)$ and the corresponding n_{i} is odd, then $s_{6 n+1}=0$ and hence $b_{n}=0$ (so giving half the proof).

An Example of the More Usual Kind of Proof V

The recurrence formula for s_{n} at prime powers is

$$
\begin{equation*}
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}} \tag{11}
\end{equation*}
$$

where $\chi(p)=(-1)^{(p-1) / 2}$.
This gives that if $p \equiv 2(\bmod 3)(\operatorname{or} p \equiv 5(\bmod 6))$ is prime (and so $s_{p}=0$), then $\left|s_{p^{2 k}}\right|=p^{2 k} \neq 0$ and $s_{p^{2 k+1}}=0$ for all integers $k \geq 0$. The multiplicative property, $s_{u v}=s_{u} s_{v}$ if $\operatorname{gcd}(u, v)=1$, gives that if $6 n+1=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, then

$$
S_{6 n+1}=s_{p_{1}^{n_{1}}} S_{p_{2}^{n_{2}}} \cdots S_{p_{r}^{n_{r}}}
$$

and hence if some $p_{i} \equiv 5(\bmod 6)$ and the corresponding n_{i} is odd, then $s_{6 n+1}=0$ and hence $b_{n}=0$ (so giving half the proof).
The remainder of the proof is to show that if the factorization of $6 n+1$ is otherwise, then $s_{6 n+1} \neq 0$, and hence $b_{n} \neq 0$.

An Example of the More Usual Kind of Proof VI

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.

Such an $f(z)$ is also called a CM newform by ϕ.

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.

Such an $f(z)$ is also called a CM newform by ϕ.
It is known that a CM newform of weight $k \geq 2$ exists only if ϕ is a quadratic character associated to some quadratic field K.

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.

Such an $f(z)$ is also called a CM newform by ϕ.
It is known that a CM newform of weight $k \geq 2$ exists only if ϕ is a quadratic character associated to some quadratic field K.

In such case, $f(z)$ is also called a CM newform by K.

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.

Such an $f(z)$ is also called a CM newform by ϕ.
It is known that a CM newform of weight $k \geq 2$ exists only if ϕ is a quadratic character associated to some quadratic field K.

In such case, $f(z)$ is also called a CM newform by K.
Ribet gives a full characterization of such newforms and justifies that any CM newform of weight $k \geq 2$ by a quadratic field K must come from a Hecke character ψ_{K} associated to K

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.
Such an $f(z)$ is also called a CM newform by ϕ.
It is known that a CM newform of weight $k \geq 2$ exists only if ϕ is a quadratic character associated to some quadratic field K.

In such case, $f(z)$ is also called a CM newform by K.
Ribet gives a full characterization of such newforms and justifies that any CM newform of weight $k \geq 2$ by a quadratic field K must come from a Hecke character ψ_{K} associated to K and be of the form

$$
f(z)=\sum_{\substack{\mathfrak{a} \subseteq \mathcal{O}_{K} \\ \text { integral }}} \psi_{K}(\mathfrak{a}) \mathcal{N}(\mathfrak{a})^{\frac{k-1}{2}} q^{\mathcal{N}(\mathfrak{a})}
$$

An Example of the More Usual Kind of Proof VI

For any Dirichlet character ϕ of conductor m, a newform $f(z)$ is said to have CM by ϕ if $a(p) \phi(p)=a(p)$ for all $p \nmid N m$.
Such an $f(z)$ is also called a CM newform by ϕ.
It is known that a CM newform of weight $k \geq 2$ exists only if ϕ is a quadratic character associated to some quadratic field K.

In such case, $f(z)$ is also called a CM newform by K.
Ribet gives a full characterization of such newforms and justifies that any CM newform of weight $k \geq 2$ by a quadratic field K must come from a Hecke character ψ_{K} associated to K and be of the form

$$
f(z)=\sum_{\substack{\mathfrak{a} \subseteq \mathcal{O}_{K} \\ \text { integral }}} \psi_{K}(\mathfrak{a}) \mathcal{N}(\mathfrak{a})^{\frac{k-1}{2}} q^{\mathcal{N}(\mathfrak{a})}
$$

where $\mathcal{N}(\cdot)$ denotes the norm of an ideal.

An Example of the More Usual Kind of Proof VII

An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant $-d<0$ and class number 1 ,

An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant $-d<0$ and class number 1 , one has that $f(z)$ must be a linear combination of the generalized theta series

$$
\sum_{\alpha \in \beta+\mathfrak{m}} \alpha^{k-1} q^{\mathcal{N}(\alpha)} \quad \text { over } \beta \in\left(\mathcal{O}_{K} / \mathfrak{m}\right)^{\times}
$$

An Example of the More Usual Kind of Proof VII

In particular, when K is imaginary of discriminant $-d<0$ and class number 1 , one has that $f(z)$ must be a linear combination of the generalized theta series

$$
\sum_{\alpha \in \beta+\mathfrak{m}} \alpha^{k-1} q^{\mathcal{N}(\alpha)} \quad \text { over } \beta \in\left(\mathcal{O}_{K} / \mathfrak{m}\right)^{\times}
$$

for some integral ideal \mathfrak{m} with $\mathcal{N}(\mathfrak{m})=N / d$.

An Example of the More Usual Kind of Proof VIII

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides,

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the theta series

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the theta series

$$
\begin{equation*}
H_{1}=\sum_{m, n}(-6 n+1+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+1)^{2}+3(4 m-2 n)^{2}\right)} \tag{12}
\end{equation*}
$$

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the theta series

$$
\begin{align*}
& H_{1}=\sum_{m, n}(-6 n+1+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+1)^{2}+3(4 m-2 n)^{2}\right)}, \tag{12}\\
& H_{2}=\sum_{m, n}(-6 n+5+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+5)^{2}+3(4 m-2 n)^{2}\right)},
\end{align*}
$$

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the theta series

$$
\begin{align*}
& H_{1}=\sum_{m, n}(-6 n+1+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+1)^{2}+3(4 m-2 n)^{2}\right)} \tag{12}\\
& H_{2}=\sum_{m, n}(-6 n+5+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+5)^{2}+3(4 m-2 n)^{2}\right)} \\
& H_{3}=\sum_{m, n}(-6 n-2+(4 m-2 n+3) \sqrt{-3})^{2} q^{\left((-6 n-2)^{2}+3(4 m-2 n+3)^{2}\right)}
\end{align*}
$$

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the theta series

$$
\begin{align*}
& H_{1}=\sum_{m, n}(-6 n+1+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+1)^{2}+3(4 m-2 n)^{2}\right)} \tag{12}\\
& H_{2}=\sum_{m, n}(-6 n+5+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+5)^{2}+3(4 m-2 n)^{2}\right)}, \\
& H_{3}=\sum_{m, n}(-6 n-2+(4 m-2 n+3) \sqrt{-3})^{2} q^{\left((-6 n-2)^{2}+3(4 m-2 n+3)^{2}\right)}, \\
& H_{4}=\sum_{m, n}(-6 n+2+(4 m-2 n+3) \sqrt{-3})^{2} q^{\left((-6 n+2)^{2}+3(4 m-2 n+3)^{2}\right) .}
\end{align*}
$$

シ

An Example of the More Usual Kind of Proof VIII

Next, following on from the material on the previous slides, define the theta series

$$
\begin{align*}
& H_{1}=\sum_{m, n}(-6 n+1+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+1)^{2}+3(4 m-2 n)^{2}\right)}, \tag{12}\\
& H_{2}=\sum_{m, n}(-6 n+5+(4 m-2 n) \sqrt{-3})^{2} q^{\left((-6 n+5)^{2}+3(4 m-2 n)^{2}\right)}, \\
& H_{3}=\sum_{m, n}(-6 n-2+(4 m-2 n+3) \sqrt{-3})^{2} q^{\left((-6 n-2)^{2}+3(4 m-2 n+3)^{2}\right)}, \\
& H_{4}=\sum_{m, n}(-6 n+2+(4 m-2 n+3) \sqrt{-3})^{2} q^{\left((-6 n+2)^{2}+3(4 m-2 n+3)^{2}\right) .}
\end{align*}
$$

One has that

$$
S(q)=H_{1}-H_{2}-H_{3}+H_{4}, \quad \bar{S}(q)=H_{1}-H_{2}+H_{3}-H_{4} .
$$

An Example of the More Usual Kind of Proof IX

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$.

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?
Recall

$$
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}}
$$

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?
Recall

$$
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}}
$$

From this one has, for any positive integer k, that

$$
s_{p^{k}} \equiv s_{p} s_{p^{k-1}} \equiv \cdots \equiv\left(s_{p}\right)^{k} \quad(\bmod p)
$$

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?
Recall

$$
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}}
$$

From this one has, for any positive integer k, that

$$
s_{p^{k}} \equiv s_{p} s_{p^{k-1}} \equiv \cdots \equiv\left(s_{p}\right)^{k} \quad(\bmod p)
$$

Thus, if it can be shown that $s_{p} \not \equiv 0(\bmod p)$, then $s_{p^{k}} \not \equiv 0(\bmod p)$,

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?
Recall

$$
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}}
$$

From this one has, for any positive integer k, that

$$
s_{p^{k}} \equiv s_{p} s_{p^{k-1}} \equiv \cdots \equiv\left(s_{p}\right)^{k} \quad(\bmod p)
$$

Thus, if it can be shown that $s_{p} \not \equiv 0(\bmod p)$, then $s_{p^{k}} \not \equiv 0(\bmod p)$, and hence $s_{p^{k}} \neq 0$.

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?
Recall

$$
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}}
$$

From this one has, for any positive integer k, that

$$
s_{p^{k}} \equiv s_{p} s_{p^{k-1}} \equiv \cdots \equiv\left(s_{p}\right)^{k} \quad(\bmod p)
$$

Thus, if it can be shown that $s_{p} \not \equiv 0(\bmod p)$, then $s_{p^{k}} \not \equiv 0(\bmod p)$, and hence $s_{p^{k}} \neq 0$.
This would complete the proof that $s_{6 n+1}=0 \Longleftrightarrow 6 n+1$ has a prime factor $p \equiv 5(\bmod 6)$ with odd exponent.

An Example of the More Usual Kind of Proof IX

These theta series will be used to get explicit expressions for s_{p}, when $p \equiv 1(\bmod 6)$. For what purpose?
Recall

$$
s_{p^{k}}=s_{p} s_{p^{k-1}}-\chi(p) p^{2} s_{p^{k-2}}
$$

From this one has, for any positive integer k, that

$$
s_{p^{k}} \equiv s_{p} s_{p^{k-1}} \equiv \cdots \equiv\left(s_{p}\right)^{k} \quad(\bmod p)
$$

Thus, if it can be shown that $s_{p} \not \equiv 0(\bmod p)$, then $s_{p^{k}} \not \equiv 0(\bmod p)$, and hence $s_{p^{k}} \neq 0$.
This would complete the proof that $s_{6 n+1}=0 \Longleftrightarrow 6 n+1$ has a prime factor $p \equiv 5(\bmod 6)$ with odd exponent.
This in turn gives that $b(n)=0 \Longleftrightarrow 6 n+1$ has a prime factor $p \equiv 5(\bmod 6)$ with odd exponent.

An Example of the More Usual Kind of Proof X

An Example of the More Usual Kind of Proof X

Define the sequences $\left\{h_{i}(n)\right\}, i=1, \ldots, 4$ by

$$
H_{i}=\sum_{n=0}^{\infty} h_{i}(n) q^{n}, \quad i=1, \ldots, 4
$$

where H_{i} are defined several slides back.

An Example of the More Usual Kind of Proof X

Define the sequences $\left\{h_{i}(n)\right\}, i=1, \ldots, 4$ by

$$
H_{i}=\sum_{n=0}^{\infty} h_{i}(n) q^{n}, \quad i=1, \ldots, 4
$$

where H_{i} are defined several slides back.
Consider primes $p \equiv 1(\bmod 12)$ and $p \equiv 7(\bmod 12)$ separately.

An Example of the More Usual Kind of Proof X

Define the sequences $\left\{h_{i}(n)\right\}, i=1, \ldots, 4$ by

$$
H_{i}=\sum_{n=0}^{\infty} h_{i}(n) q^{n}, \quad i=1, \ldots, 4
$$

where H_{i} are defined several slides back.
Consider primes $p \equiv 1(\bmod 12)$ and $p \equiv 7(\bmod 12)$ separately.
If $p \equiv 1(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x odd and y even.

An Example of the More Usual Kind of Proof X

Define the sequences $\left\{h_{i}(n)\right\}, i=1, \ldots, 4$ by

$$
H_{i}=\sum_{n=0}^{\infty} h_{i}(n) q^{n}, \quad i=1, \ldots, 4
$$

where H_{i} are defined several slides back.
Consider primes $p \equiv 1(\bmod 12)$ and $p \equiv 7(\bmod 12)$ separately.
If $p \equiv 1(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x odd and y even.

Thus $h_{3}(p)=h_{4}(p)=0$.

An Example of the More Usual Kind of Proof X

Define the sequences $\left\{h_{i}(n)\right\}, i=1, \ldots, 4$ by

$$
H_{i}=\sum_{n=0}^{\infty} h_{i}(n) q^{n}, \quad i=1, \ldots, 4
$$

where H_{i} are defined several slides back.
Consider primes $p \equiv 1(\bmod 12)$ and $p \equiv 7(\bmod 12)$ separately.
If $p \equiv 1(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x odd and y even.
Thus $h_{3}(p)=h_{4}(p)=0$.
It will be shown that only one of H_{1} and H_{2} contributes to $s(p) q^{p}$, and whichever contributes, it contributes exactly two terms.

An Example of the More Usual Kind of Proof XI

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.
If H_{1} contributes to $s(p) q^{p}$, then $-6 n+1= \pm x$ for some even n so $x \equiv \pm 1(\bmod 12)$.

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.

If H_{1} contributes to $s(p) q^{p}$, then $-6 n+1= \pm x$ for some even n so $x \equiv \pm 1(\bmod 12)$.
If H_{2} contributes to $s(p) q^{p}$, then $-6 n+5= \pm x$ for some even n so $x \equiv \pm 5(\bmod 12)$.

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.

If H_{1} contributes to $s(p) q^{p}$, then $-6 n+1= \pm x$ for some even n so $x \equiv \pm 1(\bmod 12)$.
If H_{2} contributes to $s(p) q^{p}$, then $-6 n+5= \pm x$ for some even n so $x \equiv \pm 5(\bmod 12)$.
Since these are incompatible, only one of H_{1} or H_{2} contributes to $s(p) q^{p}$.

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.

If H_{1} contributes to $s(p) q^{p}$, then $-6 n+1= \pm x$ for some even n so $x \equiv \pm 1(\bmod 12)$.
If H_{2} contributes to $s(p) q^{p}$, then $-6 n+5= \pm x$ for some even n so $x \equiv \pm 5(\bmod 12)$.
Since these are incompatible, only one of H_{1} or H_{2} contributes to $s(p) q^{p}$.
If H_{2} contributes, then there are exactly two pairs of integers $\left(m_{1}, n\right),\left(m_{2}, n\right)$ that contribute to $s(p) q^{p}$,

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.

If H_{1} contributes to $s(p) q^{p}$, then $-6 n+1= \pm x$ for some even n so $x \equiv \pm 1(\bmod 12)$.
If H_{2} contributes to $s(p) q^{p}$, then $-6 n+5= \pm x$ for some even n so $x \equiv \pm 5(\bmod 12)$.
Since these are incompatible, only one of H_{1} or H_{2} contributes to $s(p) q^{p}$.
If H_{2} contributes, then there are exactly two pairs of integers $\left(m_{1}, n\right),\left(m_{2}, n\right)$ that contribute to $s(p) q^{p}$, where n is even and either $-6 n+5=x$ or $-6 n+5=-x$ (only one of the two equations is solvable for n even)

An Example of the More Usual Kind of Proof XI

If $4 \mid y$, then it can be seen from the exponent of q in the formulae for both H_{1} and H_{2}, that n must be even, since $4 m-2 n=y$ or $4 m-2 n=-y$.

If H_{1} contributes to $s(p) q^{p}$, then $-6 n+1= \pm x$ for some even n so $x \equiv \pm 1(\bmod 12)$.
If H_{2} contributes to $s(p) q^{p}$, then $-6 n+5= \pm x$ for some even n so $x \equiv \pm 5(\bmod 12)$.
Since these are incompatible, only one of H_{1} or H_{2} contributes to $s(p) q^{p}$.
If H_{2} contributes, then there are exactly two pairs of integers $\left(m_{1}, n\right),\left(m_{2}, n\right)$ that contribute to $s(p) q^{p}$, where n is even and either $-6 n+5=x$ or $-6 n+5=-x$ (only one of the two equations is solvable for n even) and $4 m_{1}-2 n=y$ and $4 m_{2}-2 n=-y\left(\right.$ so $\left.m_{2}=n-m_{1}\right)$.

三

An Example of the More Usual Kind of Proof XII

An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

$$
\begin{aligned}
& h_{2}(p)=\left(-6 n+5+\left(4 m_{1}-2 n\right) \sqrt{-3}\right)^{2} \\
& +\left(-6 n+5+\left(4\left(n-m_{1}\right)-2 n\right) \sqrt{-3}\right)^{2} \\
& \quad=2\left((-6 n+5)^{2}-3\left(4 m_{1}-2 n\right)^{2}\right)=2\left(x^{2}-3 y^{2}\right)
\end{aligned}
$$

An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

$$
\begin{aligned}
& h_{2}(p)=\left(-6 n+5+\left(4 m_{1}-2 n\right) \sqrt{-3}\right)^{2} \\
& +\left(-6 n+5+\left(4\left(n-m_{1}\right)-2 n\right) \sqrt{-3}\right)^{2} \\
& \quad=2\left((-6 n+5)^{2}-3\left(4 m_{1}-2 n\right)^{2}\right)=2\left(x^{2}-3 y^{2}\right)
\end{aligned}
$$

Thus from the expression $S(q)=H_{1}-H_{2}-H_{3}+H_{4}$, one has that

$$
s(p)=2\left(x^{2}-3 y^{2}\right)
$$

An Example of the More Usual Kind of Proof XII

Thus, after simplifying,

$$
\begin{aligned}
& h_{2}(p)=\left(-6 n+5+\left(4 m_{1}-2 n\right) \sqrt{-3}\right)^{2} \\
& +\left(-6 n+5+\left(4\left(n-m_{1}\right)-2 n\right) \sqrt{-3}\right)^{2} \\
& \quad=2\left((-6 n+5)^{2}-3\left(4 m_{1}-2 n\right)^{2}\right)=2\left(x^{2}-3 y^{2}\right)
\end{aligned}
$$

Thus from the expression $S(q)=H_{1}-H_{2}-H_{3}+H_{4}$, one has that

$$
s(p)=2\left(x^{2}-3 y^{2}\right)
$$

A similar analysis of the case where H_{1} contributes to $s(p) q^{p}$ when $4 \mid y$, and also of the situation where 4 Xy (whichever of H_{1} or H_{2} contribute $)$, gives that if $p \equiv 1(\bmod 12)$ is prime, then

$$
s(p)=2\left(x^{2}-3 y^{2}\right) \quad \text { or } \quad s(p)=-2\left(x^{2}-3 y^{2}\right)
$$

三

An Example of the More Usual Kind of Proof XIII

An Example of the More Usual Kind of Proof XIII

For our calculations, the key implication in this case $(p \equiv 1(\bmod 12))$ is that,

$$
\begin{aligned}
s(p)= \pm 2\left(x^{2}-3 y^{2}\right) & = \pm 2\left(x^{2}-\left(p-x^{2}\right)\right) \equiv \pm 4 x^{2} \quad(\bmod p) \\
\Longrightarrow s(p) & \equiv \equiv 0 \quad(\bmod p)
\end{aligned}
$$

An Example of the More Usual Kind of Proof XIII

For our calculations, the key implication in this case $(p \equiv 1(\bmod 12))$ is that,

$$
\begin{aligned}
s(p)= \pm 2\left(x^{2}-3 y^{2}\right) & = \pm 2\left(x^{2}-\left(p-x^{2}\right)\right) \equiv \pm 4 x^{2} \quad(\bmod p) \\
\Longrightarrow s(p) & \equiv \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Similarly, if $p \equiv 7(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x even and y odd.

An Example of the More Usual Kind of Proof XIII

For our calculations, the key implication in this case $(p \equiv 1(\bmod 12))$ is that,

$$
\begin{aligned}
s(p)= \pm 2\left(x^{2}-3 y^{2}\right) & = \pm 2\left(x^{2}-\left(p-x^{2}\right)\right) \equiv \pm 4 x^{2} \quad(\bmod p) \\
& \Longrightarrow s(p) \not \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Similarly, if $p \equiv 7(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x even and y odd.
This time H_{1} and H_{2} contribute nothing to $s(p) q^{p}$, but H_{3} and H_{4} contribute exactly one term each to $s(p) x^{p}$.

An Example of the More Usual Kind of Proof XIII

For our calculations, the key implication in this case $(p \equiv 1(\bmod 12))$ is that,

$$
\begin{aligned}
s(p)= \pm 2\left(x^{2}-3 y^{2}\right) & = \pm 2\left(x^{2}-\left(p-x^{2}\right)\right) \equiv \pm 4 x^{2} \quad(\bmod p) \\
\Longrightarrow s(p) & \equiv \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Similarly, if $p \equiv 7(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x even and y odd.
This time H_{1} and H_{2} contribute nothing to $s(p) q^{p}$, but H_{3} and H_{4} contribute exactly one term each to $s(p) x^{p}$.
An analysis similar to that carried out in the case $p \equiv 1(\bmod 12)$ gives in this case, $p \equiv 7(\bmod 12)$, that

$$
s(p)= \pm 4 x y \sqrt{-3} \Longrightarrow s(p)^{k} \not \equiv 0 \quad(\bmod p), \forall k \in \mathbb{N}
$$

An Example of the More Usual Kind of Proof XIII

For our calculations, the key implication in this case $(p \equiv 1(\bmod 12))$ is that,

$$
\begin{aligned}
s(p)= \pm 2\left(x^{2}-3 y^{2}\right) & = \pm 2\left(x^{2}-\left(p-x^{2}\right)\right) \equiv \pm 4 x^{2} \quad(\bmod p) \\
& \Longrightarrow s(p) \not \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Similarly, if $p \equiv 7(\bmod 12)$, then $p=x^{2}+3 y^{2}$, for unique positive integers x and y with x even and y odd.
This time H_{1} and H_{2} contribute nothing to $s(p) q^{p}$, but H_{3} and H_{4} contribute exactly one term each to $s(p) x^{p}$.
An analysis similar to that carried out in the case $p \equiv 1(\bmod 12)$ gives in this case, $p \equiv 7(\bmod 12)$, that

$$
s(p)= \pm 4 x y \sqrt{-3} \Longrightarrow s(p)^{k} \not \equiv 0 \quad(\bmod p), \forall k \in \mathbb{N} .
$$

Given what was said earlier, this completes the proof.

Recap I

Recap I

Let $(A(q), B(q))$ be any of the pairs

$$
\begin{align*}
&\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}\right),\left(f_{1}^{4}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}\right),\left(f_{1}^{6}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\right. \\
&\left.\left(f_{1}^{10}, \frac{f_{2}^{6}}{f_{1}^{2}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}\right),\left(f_{1}^{14}, \frac{f_{2}^{8}}{f_{1}^{2}}\right)\right\} . \tag{14}
\end{align*}
$$

Recap I

Let $(A(q), B(q))$ be any of the pairs

$$
\begin{align*}
&\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}\right),\left(f_{1}^{4}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}\right),\left(f_{1}^{6}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\right. \\
&\left.\left(f_{1}^{10}, \frac{f_{2}^{6}}{f_{1}^{2}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}\right),\left(f_{1}^{14}, \frac{f_{2}^{8}}{f_{1}^{2}}\right)\right\} . \tag{14}
\end{align*}
$$

For any such pair $(A(q), B(q))$, define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
A(q)=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad B(q)=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

Recap I

Let $(A(q), B(q))$ be any of the pairs

$$
\begin{align*}
&\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}\right),\left(f_{1}^{4}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}\right),\left(f_{1}^{6}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\right. \\
&\left.\left(f_{1}^{10}, \frac{f_{2}^{6}}{f_{1}^{2}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}\right),\left(f_{1}^{14}, \frac{f_{2}^{8}}{f_{1}^{2}}\right)\right\} . \tag{14}
\end{align*}
$$

For any such pair $(A(q), B(q))$, define the sequences $\{a(n)\}$ and $\{b(n)\}$ by

$$
A(q)=: \sum_{n=0}^{\infty} a(n) q^{n}, \quad B(q)=: \sum_{n=0}^{\infty} b(n) q^{n}
$$

Then, for each pair, $a(n)=0 \Longleftrightarrow b(n)=0$, with criteria for when exactly this happens (Serre's criteria).

Recap II

Recap II

For the pairs

$$
\begin{equation*}
\left\{\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}\right),\left(f_{1}^{26}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{16}
\end{equation*}
$$

Recap II

For the pairs

$$
\begin{equation*}
\left\{\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}\right),\left(f_{1}^{26}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{16}
\end{equation*}
$$

$a(n)=b(n)=0$ if $12 n+13$ satisfies a criteria of Serre for $a(n)=0$.

How Extensive is this Phenomenon?

How Extensive is this Phenomenon?

Notice that each of the triples

$$
\begin{equation*}
\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}, \frac{f_{2}^{8}}{f_{1}^{2}}\right),\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{17}
\end{equation*}
$$

have identically vanishing coefficients.

How Extensive is this Phenomenon?

Notice that each of the triples

$$
\begin{equation*}
\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}, \frac{f_{2}^{8}}{f_{1}^{2}}\right),\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{17}
\end{equation*}
$$

have identically vanishing coefficients.
Q. How extensive is this phenomenon of eta quotients with identically vanishing coefficients?

How Extensive is this Phenomenon?

Notice that each of the triples

$$
\begin{equation*}
\left\{\left(f_{1}^{4}, \frac{f_{1}^{8}}{f_{2}^{2}}, \frac{f_{1}^{10}}{f_{3}^{2}}\right),\left(f_{1}^{6}, \frac{f_{2}^{4}}{f_{1}^{2}}, \frac{f_{1}^{14}}{f_{2}^{4}}\right),\left(f_{1}^{14}, \frac{f_{3}^{5}}{f_{1}}, \frac{f_{2}^{8}}{f_{1}^{2}}\right),\left(f_{1}^{26}, \frac{f_{3}^{9}}{f_{1}}, \frac{f_{2}^{16}}{f_{1}^{6}}\right)\right\} \tag{17}
\end{equation*}
$$

have identically vanishing coefficients.
Q. How extensive is this phenomenon of eta quotients with identically vanishing coefficients?
A. Quite extensive.

Further Investigations

Further Investigations

Further Investigations

Further Investigations

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

It was found that if $A(q)$ is any one of $f_{1}^{r}, r=4,6,8,10,14$ and 26 (lacunary eta quotients whose vanishing coefficient behaviour was described by Serre)

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

It was found that if $A(q)$ is any one of $f_{1}^{r}, r=4,6,8,10,14$ and 26 (lacunary eta quotients whose vanishing coefficient behaviour was described by Serre)or $f_{1}^{3} f_{2}^{3}$ (the simplest case of an infinite family of lacunary eta quotients stated by Ono and Robins),

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

It was found that if $A(q)$ is any one of $f_{1}^{r}, r=4,6,8,10,14$ and 26 (lacunary eta quotients whose vanishing coefficient behaviour was described by Serre)or $f_{1}^{3} f_{2}^{3}$ (the simplest case of an infinite family of lacunary eta quotients stated by Ono and Robins), then in each case there were a large numbers of eta quotients $B(q)$ such that $A_{(0)}=B_{(0)}$.

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

It was found that if $A(q)$ is any one of $f_{1}^{r}, r=4,6,8,10,14$ and 26 (lacunary eta quotients whose vanishing coefficient behaviour was described by Serre)or $f_{1}^{3} f_{2}^{3}$ (the simplest case of an infinite family of lacunary eta quotients stated by Ono and Robins), then in each case there were a large numbers of eta quotients $B(q)$ such that $A_{(0)}=B_{(0)}$.

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

It was found that if $A(q)$ is any one of $f_{1}^{r}, r=4,6,8,10,14$ and 26 (lacunary eta quotients whose vanishing coefficient behaviour was described by Serre)or $f_{1}^{3} f_{2}^{3}$ (the simplest case of an infinite family of lacunary eta quotients stated by Ono and Robins), then in each case there were a large numbers of eta quotients $B(q)$ such that $A_{(0)}=B_{(0)}$.
Further, in each case there were also many other eta quotients $C(q)$ such that $A_{(0)} \varsubsetneqq C_{(0)}$.

Further Investigations

Motivated by what we discovered (described in the previous section) we extended the search for the phenomenon described.
For ease of notation, for a function $E(q)=\sum_{n \geq 0} e_{n} q^{n}$ we write

$$
E_{(0)}:=\left\{n \in \mathbb{N}: e_{n}=0\right\}
$$

It was found that if $A(q)$ is any one of $f_{1}^{r}, r=4,6,8,10,14$ and 26 (lacunary eta quotients whose vanishing coefficient behaviour was described by Serre)or $f_{1}^{3} f_{2}^{3}$ (the simplest case of an infinite family of lacunary eta quotients stated by Ono and Robins), then in each case there were a large numbers of eta quotients $B(q)$ such that $A_{(0)}=B_{(0)}$.
Further, in each case there were also many other eta quotients $C(q)$ such that $A_{(0)} \varsubsetneqq C_{(0)}$.
We describe what was found in some detail in the case of f_{1}^{4} and f_{1}^{6}.

The Case of f_{1}^{4} I

The Case of f_{1}^{4} I

Our limited search in the case of f_{1}^{4} found a total of 72 eta quotients $B(q)$ for which it appeared $f_{1(0)}^{4}=B_{(0)}$.

The Case of f_{1}^{4} I

Our limited search in the case of f_{1}^{4} found a total of 72 eta quotients $B(q)$ for which it appeared $f_{1}^{4}{ }_{(0)}=B_{(0)}$.

In addition, this search found 78 additional eta quotients with the property that for each such eta quotient $C(q)$, it seemed $f_{1}^{4}{ }_{(0)} \not \ddagger C_{(0)}$.

The Case of f_{1}^{4} I

Our limited search in the case of f_{1}^{4} found a total of 72 eta quotients $B(q)$ for which it appeared $f_{1(0)}^{4}=B_{(0)}$.

In addition, this search found 78 additional eta quotients with the property that for each such eta quotient $C(q)$, it seemed $f_{1}^{4}{ }_{(0)} \nsupseteq C_{(0)}$.

Moreover, it appears that all 150 eta quotients $B(q)$ may be organized into 19 collections (labelled I - XIX in what follows) in a tree-like structure by partially ordering the corresponding $B_{(0)}$ by inclusion.

The Case of f_{1}^{4} II

The Case of f_{1}^{4} II

Table 1: Eta quotients with vanishing behaviour similar to f_{1}^{4}

Collection	\# of eta quotients	Collection	\# of eta quotients
1	72	II *	4
III ${ }^{\dagger}$	2	IV	6
V^{\dagger}	2	VI *	4
VII *	6	VIII *	8
IX*	4	X	4
XI	14	XII ${ }^{\dagger}$	2
XIII ${ }^{\dagger}$	2	XIV ${ }^{\dagger}$	2
XV	4	XVI ${ }^{\dagger}$	2
XVII	4	XVIII ${ }^{\dagger}$	2
XIX ${ }^{\dagger}$	6		

The Case of f_{1}^{4} III

The Case of f_{1}^{4} III

Thus, for example, all 14 eta quotients in the collection labelled XI ,

The Case of f_{1}^{4} III

Thus, for example, all 14 eta quotients in the collection labelled XI, where

$$
\begin{array}{r}
X I=\left\{\frac{f_{2} f_{8}^{14} f_{12}^{2}}{f_{4}^{6} f_{6} f_{16}^{5} f_{24}}, \frac{f_{6} f_{8}^{13}}{f_{2} f_{4}^{3} f_{12} f_{16}^{5}}, \frac{f_{2}^{2} f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}}, \frac{f_{8}^{11}}{f_{2}^{2} f_{16}^{5}}, \frac{f_{4}^{4} f_{12}^{2}}{f_{2}^{2} f_{8} f_{24}}, \frac{f_{2}^{2} f_{8}^{13}}{f_{4}^{6} f_{16}^{5}}, \frac{f_{4}^{15} f_{6} f_{24}}{f_{2}^{5} f_{8}^{5} f_{12}^{3}},\right. \\
\left.\frac{f_{2}^{5}}{f_{6}}, \frac{f_{2}^{2} f_{4}^{4}}{f_{8}^{2}}, \frac{f_{2} f_{4}^{4} f_{12}^{2}}{f_{6} f_{8} f_{24}}, \frac{f_{4}^{7} f_{6}}{f_{2} f_{8}^{2} f_{12}}, \frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}, \frac{f_{2}^{3} f_{8}^{3} f_{12}^{17}}{f_{4}^{5} f_{6}^{7} f_{24}^{7}}, \frac{f_{4}^{4} f_{6}^{7}}{f_{2}^{3} f_{12}^{4}}\right\}
\end{array}
$$

appeared to have identically vanishing coefficients.

The Case of f_{1}^{4} III

Thus, for example, all 14 eta quotients in the collection labelled XI, where

$$
\begin{array}{r}
X I=\left\{\frac{f_{2} f_{8}^{14} f_{12}^{2}}{f_{4}^{6} f_{6} f_{16}^{5} f_{24}}, \frac{f_{6} f_{8}^{13}}{f_{2} f_{4}^{3} f_{12} f_{16}^{5}}, \frac{f_{2}^{2} f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}}, \frac{f_{8}^{11}}{f_{2}^{2} f_{16}^{5}}, \frac{f_{4}^{4} f_{12}^{2}}{f_{2}^{2} f_{8} f_{24}}, \frac{f_{2}^{2} f_{8}^{13}}{f_{4}^{6} f_{16}^{5}}, \frac{f_{4}^{15} f_{6} f_{24}}{f_{2}^{5} f_{8}^{5} f_{12}^{3}},\right. \\
\left.\frac{f_{2}^{5}}{f_{6}}, \frac{f_{2}^{2} f_{4}^{4}}{f_{8}^{2}}, \frac{f_{2} f_{4}^{4} f_{12}^{2}}{f_{6} f_{8} f_{24}}, \frac{f_{4}^{7} f_{6}}{f_{2} f_{8}^{2} f_{12}}, \frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}, \frac{f_{2}^{3} f_{8}^{3} f_{12}^{17}}{f_{4}^{5} f_{6}^{7} f_{24}^{7}}, \frac{f_{4}^{4} f_{6}^{7}}{f_{2}^{3} f_{12}^{4}}\right\}
\end{array}
$$

appeared to have identically vanishing coefficients.
Collection I is the collection containing f_{1}^{4}.

The Case of f_{1}^{4} III

Thus, for example, all 14 eta quotients in the collection labelled XI, where

$$
\begin{array}{r}
X I=\left\{\frac{f_{2} f_{8}^{14} f_{12}^{2}}{f_{4}^{6} f_{6} f_{16}^{5} f_{24}}, \frac{f_{6} f_{8}^{13}}{f_{2} f_{4}^{3} f_{12} f_{16}^{5}}, \frac{f_{2}^{2} f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}}, \frac{f_{8}^{11}}{f_{2}^{2} f_{16}^{5}}, \frac{f_{4}^{4} f_{12}^{2}}{f_{2}^{2} f_{8} f_{24}}, \frac{f_{2}^{2} f_{8}^{13}}{f_{4}^{6} f_{16}^{5}}, \frac{f_{4}^{15} f_{6} f_{24}}{f_{2}^{5} f_{8}^{5} f_{12}^{3}},\right. \\
\left.\frac{f_{2}^{5}}{f_{6}}, \frac{f_{2}^{2} f_{4}^{4}}{f_{8}^{2}}, \frac{f_{2} f_{4}^{4} f_{12}^{2}}{f_{6} f_{8} f_{24}}, \frac{f_{4}^{7} f_{6}}{f_{2} f_{8}^{2} f_{12}}, \frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}, \frac{f_{2}^{3} f_{8}^{3} f_{12}^{17}}{f_{4}^{5} f_{6}^{7} f_{24}^{7}}, \frac{f_{4}^{4} f_{6}^{7}}{f_{2}^{3} f_{12}^{4}}\right\}
\end{array}
$$

appeared to have identically vanishing coefficients.
Collection I is the collection containing f_{1}^{4}.

* - has been proven that all eta quotients in the corresponding group have identically vanishing coefficients.

The Case of f_{1}^{4} III

Thus, for example, all 14 eta quotients in the collection labelled XI, where

$$
\begin{array}{r}
X I=\left\{\frac{f_{2} f_{8}^{14} f_{12}^{2}}{f_{4}^{6} f_{6} f_{16}^{5} f_{24}}, \frac{f_{6} f_{8}^{13}}{f_{2} f_{4}^{3} f_{12} f_{16}^{5}}, \frac{f_{2}^{2} f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}}, \frac{f_{8}^{11}}{f_{2}^{2} f_{16}^{5}}, \frac{f_{4}^{4} f_{12}^{2}}{f_{2}^{2} f_{8} f_{24}}, \frac{f_{2}^{2} f_{8}^{13}}{f_{4}^{6} f_{16}^{5}}, \frac{f_{4}^{15} f_{6} f_{24}}{f_{2}^{5} f_{8}^{5} f_{12}^{3}},\right. \\
\left.\frac{f_{2}^{5}}{f_{6}}, \frac{f_{2}^{2} f_{4}^{4}}{f_{8}^{2}}, \frac{f_{2} f_{4}^{4} f_{12}^{2}}{f_{6} f_{8} f_{24}}, \frac{f_{4}^{7} f_{6}}{f_{2} f_{8}^{2} f_{12}}, \frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}, \frac{f_{2}^{3} f_{8}^{3} f_{12}^{17}}{f_{4}^{5} f_{6}^{7} f_{24}^{7}}, \frac{f_{4}^{4} f_{6}^{7}}{f_{2}^{3} f_{12}^{4}}\right\}
\end{array}
$$

appeared to have identically vanishing coefficients.
Collection I is the collection containing f_{1}^{4}.

* - has been proven that all eta quotients in the corresponding group have identically vanishing coefficients.
\dagger - group members trivially have identically vanishing coefficients or it was shown previously.

The Case of f_{1}^{4} III

Thus, for example, all 14 eta quotients in the collection labelled XI, where

$$
\begin{array}{r}
X I=\left\{\frac{f_{2} f_{8}^{14} f_{12}^{2}}{f_{4}^{6} f_{6} f_{16}^{5} f_{24}}, \frac{f_{6} f_{8}^{13}}{f_{2} f_{4}^{3} f_{12} f_{16}^{5}}, \frac{f_{2}^{2} f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}}, \frac{f_{8}^{11}}{f_{2}^{2} f_{16}^{5}}, \frac{f_{4}^{4} f_{12}^{2}}{f_{2}^{2} f_{8} f_{24}}, \frac{f_{2}^{2} f_{8}^{13}}{f_{4}^{6} f_{16}^{5}}, \frac{f_{4}^{15} f_{6} f_{24}}{f_{2}^{5} f_{8}^{5} f_{12}^{3}},\right. \\
\left.\frac{f_{2}^{5}}{f_{6}}, \frac{f_{2}^{2} f_{4}^{4}}{f_{8}^{2}}, \frac{f_{2} f_{4}^{4} f_{12}^{2}}{f_{6} f_{8} f_{24}}, \frac{f_{4}^{7} f_{6}}{f_{2} f_{8}^{2} f_{12}}, \frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}, \frac{f_{2}^{3} f_{8}^{3} f_{12}^{17}}{f_{4}^{5} f_{6}^{7} f_{24}^{7}}, \frac{f_{4}^{4} f_{6}^{7}}{f_{2}^{3} f_{12}^{4}}\right\}
\end{array}
$$

appeared to have identically vanishing coefficients.
Collection I is the collection containing f_{1}^{4}.

* - has been proven that all eta quotients in the corresponding group have identically vanishing coefficients.
\dagger - group members trivially have identically vanishing coefficients or it was shown previously.

The relationships between eta quotients in different collections is illustrated in Figure 1.

The Case of f_{1}^{4} IV

The Case of f_{1}^{4} IV

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing coefficient behaviour similar to f_{1}^{4}

The Case of $f_{1}^{4} \vee$

The Case of $f_{1}^{4} \vee$

Thus the arrow from VIII to XIV indicates that if $A(q)$ is any of the 8 eta quotients in collection VIII

The Case of $f_{1}^{4} \vee$

Thus the arrow from VIII to XIV indicates that if $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV,

The Case of $f_{1}^{4} \vee$

Thus the arrow from VIII to XIV indicates that if $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV, where

$$
\begin{aligned}
& \text { VIII }=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}},\right. \\
& \left.\frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
& \text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\},
\end{aligned}
$$

The Case of $f_{1}^{4} \vee$

Thus the arrow from VIII to XIV indicates that if $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV, where

$$
\begin{aligned}
& \text { VIII }=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2},}\right. \\
& \left.\frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
& \text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\},
\end{aligned}
$$

then $A_{(0)} \varsubsetneqq B_{(0)}$.

The Case of $f_{1}^{4} \vee$

Thus the arrow from VIII to XIV indicates that if $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV, where

$$
\begin{aligned}
& \text { VIII }=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}},\right. \\
& \left.\qquad \frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
& \text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\},
\end{aligned}
$$

then $A_{(0)} \nRightarrow B_{(0)}$.
A similar meaning for any other arrow in this figure is to be understood.

The Case of $f_{1}^{4} \vee$

Thus the arrow from VIII to XIV indicates that if $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV, where

$$
\begin{aligned}
& \text { VIII }=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}},\right. \\
& \left.\qquad \frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
& \text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\},
\end{aligned}
$$

then $A_{(0)} \varsubsetneqq B_{(0)}$.
A similar meaning for any other arrow in this figure is to be understood.
The inclusion just mentioned, between groups VIII and XIV, is one of several such inclusion results indicated by the arrows in Figure 1 that have been proven.

The Case of f_{1}^{6} ।

The Case of f_{1}^{6}

Table 2: Eta quotients with vanishing behaviour similar to f_{1}^{6}

Collection	\# of eta quotients	Collection	\# of eta quotients
I	42	II *	4
III *	4	V †	16
V †	2	VIII *	2
VII *	4	X *	4
XI †	4	XII *	10
XIII *	2	XIV *	4
XV	8	XVI †	4
XVII †	8	XVIII †	2
XIX †	8	XX †	2
XXI *	2	XXII *	2
XXV *	4	XXIV *	6
XXVII †	2	XXVI	4
XXIX †	4	XXVIII †	4
	2		6

The Case of f_{1}^{6} II

The Case of f_{1}^{6} II

Figure: The grouping of eta-quotients in Table 2, which have vanishing coefficient behaviour similar to f_{1}^{6}

The Case of f_{1}^{8} I

The Case of f_{1}^{8} ।

Table 3: Eta quotients with vanishing behaviour similar to f_{1}^{8}

Collection	\# of eta quotients	Collection	\# of eta quotients
1	24	II ${ }^{\dagger}$	2
III ${ }^{\dagger}$	2	IV	60
V^{\dagger}	2	VI	6
VII ${ }^{\dagger}$	2	VIII	4
IX ${ }^{\dagger}$	2	X^{\dagger}	2
XI *	4	XII *	4
XIII *	4	XIV	4
XV ${ }^{\dagger}$	2	XVI ${ }^{\dagger}$	2
XVII ${ }^{\dagger}$	2	XVIII ${ }^{\dagger}$	2
XIX	6	XX ${ }^{\dagger}$	2
XXI ${ }^{\dagger}$	2	XXII ${ }^{\dagger}$	4
XXIII ${ }^{\dagger}$	2	XXIV	4
XXV ${ }^{\dagger}$	6		

The Case of f_{1}^{8} II

The Case of f_{1}^{8} II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient behaviour similar to f_{1}^{8}

The Case of f_{1}^{8} II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient behaviour similar to f_{1}^{8}

Remark: If the tables and graphs represent the true situation for f_{1}^{4} and f_{1}^{8},

The Case of f_{1}^{8} II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient behaviour similar to f_{1}^{8}

Remark: If the tables and graphs represent the true situation for f_{1}^{4} and f_{1}^{8}, then the entire table and graph for f_{1}^{4} is embedded in those for f_{1}^{8} via a $q \rightarrow q^{2}$ dilation.

The Case of f_{1}^{8} II

Figure: The grouping of eta-quotients in Table 3, which have vanishing coefficient behaviour similar to f_{1}^{8}

Remark: If the tables and graphs represent the true situation for f_{1}^{4} and f_{1}^{8}, then the entire table and graph for f_{1}^{4} is embedded in those for f_{1}^{8} via a $q \rightarrow q^{2}$ dilation.

The Case of f_{1}^{10} I

The Case of f_{1}^{10} I

Table 4: Eta quotients with vanishing behaviour similar to f_{1}^{10}

Collection	\# of eta quotients	Collection	\# of eta quotients
I	38	II *	4
III ${ }^{\dagger}$	2	IV *	4
V	4	VI ${ }^{\dagger}$	2
VII	6	VIII ${ }^{\dagger}$	2
IX *	4	X^{\dagger}	2
XI *	4	XII ${ }^{\dagger}$	2
XIII ${ }^{\dagger}$	2	XIV ${ }^{\dagger}$	2
XV ${ }^{\dagger}$	2	XVI ${ }^{\dagger}$	2
XVII	8	XVIII ${ }^{\dagger}$	2
XIX *	4	XX ${ }^{\dagger}$	2
XXI ${ }^{\dagger}$	2	XXII ${ }^{\dagger}$	2
XXIII	4	XXIV ${ }^{\dagger}$	4
XXV ${ }^{\dagger}$	6		

The Case of f_{1}^{10} II

The Case of f_{1}^{10} II

Figure: The grouping of eta-quotients in Table 4, which have vanishing coefficient behaviour similar to f_{1}^{10}

The Case of f_{1}^{14} I

The Case of f_{1}^{14} I

Table 5: Eta quotients with vanishing behaviour similar to f_{1}^{14}

Collection	\# of eta quotients	Collection	\# of eta quotients
II^{*}	32	II^{*}	4
III^{*}	4	IV^{*}	4
VII^{\dagger}	2	VI^{*}	12
VII^{*}	4	VIII^{\dagger}	XI^{\dagger}
IX^{\dagger}	2	XII^{\dagger}	2
XI^{\dagger}	2	XIV^{\dagger}	2
XV †	2		4

The Case of f_{1}^{14} II

The Case of f_{1}^{14} II

Figure: The grouping of eta-quotients in Table 5, which have vanishing coefficient behaviour similar to f_{1}^{14}

The Case of f_{1}^{26} I

The Case of f_{1}^{26} I

Table 6: Eta quotients with vanishing behaviour similar to f_{1}^{26}

The Case of f_{1}^{26} II

The Case of f_{1}^{26} II

Figure: The grouping of eta-quotients in Table 6, which have vanishing coefficient behaviour similar to f_{1}^{26}

The Case of $f_{1}^{3} f_{2}^{3}$

The Case of $f_{1}^{3} f_{2}^{3}$

Table 7: Eta quotients with vanishing behaviour similar to $f_{1}^{3} f_{2}^{3}$

The Case of $f_{1}^{3} f_{2}^{3}$ II

Figure: The grouping of eta-quotients in Table 7, which have vanishing coefficient behaviour similar to $f_{1}^{3} f_{2}^{3}$

General Inclusion Results

General Inclusion Results

-

General Inclusion Results I

General Inclusion Results I

Recall the amount of work necessary to show that if $A(q)=f_{1}^{4}$ and $B(q)=f_{1}^{8} / f_{2}^{2}$, then

$$
A_{(0)}=B_{(0)}
$$

General Inclusion Results I

Recall the amount of work necessary to show that if $A(q)=f_{1}^{4}$ and $B(q)=f_{1}^{8} / f_{2}^{2}$, then

$$
A_{(0)}=B_{(0)} .
$$

Clearly this method is not practical to prove the many hundreds of cases of identically vanishing coefficients in the various tables and graphs that are suggested by experiment.

General Inclusion Results I

Recall the amount of work necessary to show that if $A(q)=f_{1}^{4}$ and $B(q)=f_{1}^{8} / f_{2}^{2}$, then

$$
A_{(0)}=B_{(0)} .
$$

Clearly this method is not practical to prove the many hundreds of cases of identically vanishing coefficients in the various tables and graphs that are suggested by experiment.
Even if someone did decide to attempt this, the LMFDB (The L-functions and modular forms database (LMFDB)) is incomplete, and many of the CM forms needed to express a particular eta quotient are likely to be absent.

General Inclusion Results I

Recall the amount of work necessary to show that if $A(q)=f_{1}^{4}$ and $B(q)=f_{1}^{8} / f_{2}^{2}$, then

$$
A_{(0)}=B_{(0)} .
$$

Clearly this method is not practical to prove the many hundreds of cases of identically vanishing coefficients in the various tables and graphs that are suggested by experiment.
Even if someone did decide to attempt this, the LMFDB (The L-functions and modular forms database (LMFDB)) is incomplete, and many of the CM forms needed to express a particular eta quotient are likely to be absent.

In the paper that describes this deeper investigation (the paper that has all the various tables and figures shown earlier in the presentation) we do give some proofs,

General Inclusion Results I

Recall the amount of work necessary to show that if $A(q)=f_{1}^{4}$ and $B(q)=f_{1}^{8} / f_{2}^{2}$, then

$$
A_{(0)}=B_{(0)} .
$$

Clearly this method is not practical to prove the many hundreds of cases of identically vanishing coefficients in the various tables and graphs that are suggested by experiment.
Even if someone did decide to attempt this, the LMFDB (The L-functions and modular forms database (LMFDB)) is incomplete, and many of the CM forms needed to express a particular eta quotient are likely to be absent.

In the paper that describes this deeper investigation (the paper that has all the various tables and figures shown earlier in the presentation) we do give some proofs, mostly to illustrate the various methods that may be used.

General Inclusion Results II

General Inclusion Results II

However, we were able to prove some quite general inclusion results.

General Inclusion Results II

However, we were able to prove some quite general inclusion results. To describe those, recall the figure for the collection related to f_{1}^{6} :

General Inclusion Results II

However, we were able to prove some quite general inclusion results. To describe those, recall the figure for the collection related to f_{1}^{6} :

Figure: The grouping of the 172 eta-quotients in Table 2, which have vanishing coefficient behaviour similar to f_{1}^{6}

General Inclusion Results III

General Inclusion Results III

Recall that f_{1}^{6} is in collection I,

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections,

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, f_{1}^{4},

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, f_{1}^{4}, f_{1}^{8},

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}$,

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}$,

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$

General Inclusion Results III

Recall that f_{1}^{6} is in collection I, so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.

三

General Inclusion Results III

Recall that f_{1}^{6} is in collection I , so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.

In each case, two general approaches gave us most of the results,

General Inclusion Results III

Recall that f_{1}^{6} is in collection I , so that the figure suggests that if $A(q)=f_{1}^{6}$, and $B(q)$ is any one of the 172 eta quotients in the various collections, then

$$
A_{(0)} \subseteq B_{(0)}
$$

We were in fact able to prove the above statement.
Similarly, we were able to prove the corresponding statements for the collections involving, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.

In each case, two general approaches gave us most of the results, and a small number of sporadic cases had to be treated separately.

General Inclusion Results IV

General Inclusion Results IV

We illustrate one of the methods by an example for the $A(q):=f_{1}^{6}$ table.

General Inclusion Results IV

We illustrate one of the methods by an example for the $A(q):=f_{1}^{6}$ table. Recall:

Lemma

The equation $x^{2}+y^{2}=n, n>0$ has integral solutions if and only if $\operatorname{ord}_{p} n$ is even for every prime $p \equiv 3(\bmod 4)$.

General Inclusion Results IV

We illustrate one of the methods by an example for the $A(q):=f_{1}^{6}$ table. Recall:

Lemma

The equation $x^{2}+y^{2}=n, n>0$ has integral solutions if and only if $\operatorname{ord}_{p} n$ is even for every prime $p \equiv 3(\bmod 4)$. When that is the case, the number of solutions is

$$
\prod_{p \equiv 1}(\bmod 4)\left(1+\operatorname{ord}_{p} n\right) .
$$

General Inclusion Results IV

We illustrate one of the methods by an example for the $A(q):=f_{1}^{6}$ table. Recall:

Lemma

The equation $x^{2}+y^{2}=n, n>0$ has integral solutions if and only if $\operatorname{ord}_{p} n$ is even for every prime $p \equiv 3(\bmod 4)$. When that is the case, the number of solutions is

$$
\prod_{p \equiv 1}(\bmod 4)\left(1+\operatorname{ord}_{p} n\right) .
$$

Serre's criterion:

General Inclusion Results IV

We illustrate one of the methods by an example for the $A(q):=f_{1}^{6}$ table. Recall:

Lemma

The equation $x^{2}+y^{2}=n, n>0$ has integral solutions if and only if $\operatorname{ord}_{p} n$ is even for every prime $p \equiv 3(\bmod 4)$. When that is the case, the number of solutions is

$$
\prod_{p \equiv 1}(\bmod 4)\left(1+\operatorname{ord}_{p} n\right) .
$$

Serre's criterion: If

$$
f_{1}^{6}=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

one has that $a_{n}=0$ if and only if $4 n+1$ has a prime factor $p \equiv-1(\bmod 4)$ with odd exponent.

= صロค
三

General Inclusion Results V

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series.

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

Consider the following eta quotient in collection XXI

$$
B(q):=\frac{f_{4}^{2} f_{12}^{13}}{f_{6}^{5} f_{8} f_{24}^{5}}=: \sum_{n=0}^{\infty} b_{n} q^{n}
$$

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

Consider the following eta quotient in collection XXI

$$
B(q):=\frac{f_{4}^{2} f_{12}^{13}}{f_{6}^{5} f_{8} f_{24}^{5}}=: \sum_{n=0}^{\infty} b_{n} q^{n}
$$

After applying the dilation $q \rightarrow q^{4}$ and multiplying by q :

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

Consider the following eta quotient in collection XXI

$$
B(q):=\frac{f_{4}^{2} f_{12}^{13}}{f_{6}^{5} f_{8} f_{24}^{5}}=: \sum_{n=0}^{\infty} b_{n} q^{n}
$$

After applying the dilation $q \rightarrow q^{4}$ and multiplying by q :

$$
\sum_{n=0}^{\infty} b_{n} q^{4 n+1}=\frac{f_{16}^{2}}{f_{32}} \times q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}
$$

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

Consider the following eta quotient in collection XXI

$$
B(q):=\frac{f_{4}^{2} f_{12}^{13}}{f_{6}^{5} f_{8} f_{24}^{5}}=: \sum_{n=0}^{\infty} b_{n} q^{n}
$$

After applying the dilation $q \rightarrow q^{4}$ and multiplying by q :

$$
\sum_{n=0}^{\infty} b_{n} q^{4 n+1}=\frac{f_{16}^{2}}{f_{32}} \times q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

Consider the following eta quotient in collection XXI

$$
B(q):=\frac{f_{4}^{2} f_{12}^{13}}{f_{6}^{5} f_{8} f_{24}^{5}}=: \sum_{n=0}^{\infty} b_{n} q^{n}
$$

After applying the dilation $q \rightarrow q^{4}$ and multiplying by q :

$$
\sum_{n=0}^{\infty} b_{n} q^{4 n+1}=\frac{f_{16}^{2}}{f_{32}} \times q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

We can now show $A_{(0)} \subseteq B_{(0)}$

General Inclusion Results V

There are various eta quotients which have expressions as single-sum theta series. For our present purposes,

$$
\frac{f_{1}^{2}}{f_{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{m=1}^{\infty}\left(\frac{-6}{m}\right) m q^{m^{2}}
$$

Consider the following eta quotient in collection XXI

$$
B(q):=\frac{f_{4}^{2} f_{12}^{13}}{f_{6}^{5} f_{8} f_{24}^{5}}=: \sum_{n=0}^{\infty} b_{n} q^{n}
$$

After applying the dilation $q \rightarrow q^{4}$ and multiplying by q :

$$
\sum_{n=0}^{\infty} b_{n} q^{4 n+1}=\frac{f_{16}^{2}}{f_{32}} \times q \frac{f_{48}^{13}}{f_{24}^{5} f_{96}^{5}}=\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

We can now show $A_{(0)} \subseteq B_{(0)}$ (equivalently, $a_{n}=0 \Longrightarrow b_{n}=0$).

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

By the lemma, $4 N+1$ is not representable as a sum of two squares,

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

By the lemma, $4 N+1$ is not representable as a sum of two squares, and in particular not by $m^{2}+16 n^{2}=m^{2}+(4 n)^{2}$.

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

By the lemma, $4 N+1$ is not representable as a sum of two squares, and in particular not by $m^{2}+16 n^{2}=m^{2}+(4 n)^{2}$.
Thus the coefficient of $q^{4 N+1}$ in

$$
\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

is zero.

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

By the lemma, $4 N+1$ is not representable as a sum of two squares, and in particular not by $m^{2}+16 n^{2}=m^{2}+(4 n)^{2}$.
Thus the coefficient of $q^{4 N+1}$ in

$$
\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

is zero.
Hence $b_{N}=0$,

三

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

By the lemma, $4 N+1$ is not representable as a sum of two squares, and in particular not by $m^{2}+16 n^{2}=m^{2}+(4 n)^{2}$.
Thus the coefficient of $q^{4 N+1}$ in

$$
\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

is zero.
Hence $b_{N}=0$, and thus $A_{(0)} \subseteq B_{(0)}$.

General Inclusion Results VI

Suppose $a_{N}=0$, for some integer N.
Then, by Serre's criterion, $4 N+1$ has a prime factor $p \equiv 3(\bmod 4)$ with odd exponent.

By the lemma, $4 N+1$ is not representable as a sum of two squares, and in particular not by $m^{2}+16 n^{2}=m^{2}+(4 n)^{2}$.
Thus the coefficient of $q^{4 N+1}$ in

$$
\sum_{\substack{m=1 \\ n=-\infty}}^{\infty} m(-1)^{n}\left(\frac{-6}{m}\right) q^{m^{2}+16 n^{2}}
$$

is zero.
Hence $b_{N}=0$, and thus $A_{(0)} \subseteq B_{(0)}$.
Remark: All the work in finding representations of eta quotients in the tables as products of two eta quotients with theta series

ミ \quad ○く
$65 / 111$

General Inclusion Results VII

General Inclusion Results VII

The other general result involved expressing eta quotients of weight ≥ 2 involved expressing the appropriate dilations of the eta quotients as certain sums over ideals in various number fields

General Inclusion Results VII

The other general result involved expressing eta quotients of weight ≥ 2 involved expressing the appropriate dilations of the eta quotients as certain sums over ideals in various number fields (recall earlier when expressing the CM forms as linear combinations of theta series).

General Inclusion Results VIII

General Inclusion Results VIII

The 5 exceptional cases (let any one of them be denoted by $B(q)$) in the 172 eta quotients in the f_{1}^{6} table were treated as follows.

General Inclusion Results VIII

The 5 exceptional cases (let any one of them be denoted by $B(q)$) in the 172 eta quotients in the f_{1}^{6} table were treated as follows. Define

$$
\begin{aligned}
& h_{1}(q ; j, k)=\sum_{m, n=0}^{\infty} q^{(24 m+j)^{2}+(24 n+k)^{2}}, \\
& h_{2}(q ; j, k)=\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} q^{(24 m+j)^{2}+4(24 n+k)^{2}}, \\
& g_{1}(q ; j, k)=\sum_{m, n=0}^{\infty} q^{(20 m+j)^{2}+(20 n+k)^{2}}, \\
& g_{2}(q ; j, k)=\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} q^{(20 m+j)^{2}+4(20 n+k)^{2}} .
\end{aligned}
$$

General Inclusion Results VIII

The 5 exceptional cases (let any one of them be denoted by $B(q)$) in the 172 eta quotients in the f_{1}^{6} table were treated as follows. Define

$$
\begin{aligned}
& h_{1}(q ; j, k)=\sum_{m, n=0}^{\infty} q^{(24 m+j)^{2}+(24 n+k)^{2}}, \\
& h_{2}(q ; j, k)=\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} q^{(24 m+j)^{2}+4(24 n+k)^{2}}, \\
& g_{1}(q ; j, k)=\sum_{m, n=0}^{\infty} q^{(20 m+j)^{2}+(20 n+k)^{2}}, \\
& g_{2}(q ; j, k)=\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} q^{(20 m+j)^{2}+4(20 n+k)^{2}} .
\end{aligned}
$$

Then $q B\left(q^{4}\right)$ is a linear combination of $h_{i}(q ; j, k)$ for $i \in\{1,2\}$ and $0 \leq j, k \leq 23$ and $g_{i}(q ;, j, k)$ for $i \in\{1,2\}$ and $0 \leq j, k \leq 19$.

General Inclusion Results VIII

The 5 exceptional cases (let any one of them be denoted by $B(q)$) in the 172 eta quotients in the f_{1}^{6} table were treated as follows. Define

$$
\begin{aligned}
& h_{1}(q ; j, k)=\sum_{m, n=0}^{\infty} q^{(24 m+j)^{2}+(24 n+k)^{2}}, \\
& h_{2}(q ; j, k)=\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} q^{(24 m+j)^{2}+4(24 n+k)^{2}}, \\
& g_{1}(q ; j, k)=\sum_{m, n=0}^{\infty} q^{(20 m+j)^{2}+(20 n+k)^{2}}, \\
& g_{2}(q ; j, k)=\sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} q^{(20 m+j)^{2}+4(20 n+k)^{2}} .
\end{aligned}
$$

Then $q B\left(q^{4}\right)$ is a linear combination of $h_{i}(q ; j, k)$ for $i \in\{1,2\}$ and $0 \leq j, k \leq 23$ and $g_{i}(q ;, j, k)$ for $i \in\{1,2\}$ and $0 \leq j, k \leq 19$. Since each exponent is a sum of two squares, the same argument can be used.

Dissection Methods

Dissection Methods

Recap I

Recap I

Recall:

Recap I

Recall:

Table 8: Eta quotients with vanishing behaviour similar to f_{1}^{4}

Recap II

Recap II

Figure: The grouping of the 150 eta-quotients in Table 1, which have vanishing coefficient behaviour similar to f_{1}^{4}

Recap III

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, f_{1}^{4},

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, f_{1}^{4}, f_{1}^{8},

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}$,

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}$,

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.
In addition some scattered results of the form $B_{(0)} \varsubsetneqq C_{(0)}$ and $B_{(0)}=C_{(0)}$ were proven.

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.
In addition some scattered results of the form $B_{(0)} \varsubsetneqq C_{(0)}$ and $B_{(0)}=C_{(0)}$ were proven.
However most of the "fine structure" of the tables/graphs

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.
In addition some scattered results of the form $B_{(0)} \varsubsetneqq C_{(0)}$ and $B_{(0)}=C_{(0)}$ were proven.
However most of the "fine structure" of the tables/graphs (identical vanishing of coefficients for all eta quotients in each collection,

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.
In addition some scattered results of the form $B_{(0)} \varsubsetneqq C_{(0)}$ and $B_{(0)}=C_{(0)}$ were proven.
However most of the "fine structure" of the tables/graphs (identical vanishing of coefficients for all eta quotients in each collection, and strict inclusion between sets of vanishing coefficients for any pair of eta quotients in two different collections joined by a line segment in a graph)

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.
In addition some scattered results of the form $B_{(0)} \varsubsetneqq C_{(0)}$ and $B_{(0)}=C_{(0)}$ were proven.
However most of the "fine structure" of the tables/graphs (identical vanishing of coefficients for all eta quotients in each collection, and strict inclusion between sets of vanishing coefficients for any pair of eta quotients in two different collections joined by a line segment in a graph) was not proven.

Recap III

As mentioned previously, we showed that if $A(q)=f_{1}^{4}$ and $B(q)$ is any one of the 150 eta quotients in the table/graph, then

$$
A_{(0)} \subseteq B_{(0)}
$$

A similar result was proved for each of the collections of eta quotients with vanishing coefficient behaviour similar to, respectively, $f_{1}^{4}, f_{1}^{8}, f_{1}^{10}, f_{1}^{14}, f_{1}^{26}$ and $f_{1}^{3} f_{2}^{3}$.
In addition some scattered results of the form $B_{(0)} \varsubsetneqq C_{(0)}$ and $B_{(0)}=C_{(0)}$ were proven.
However most of the "fine structure" of the tables/graphs (identical vanishing of coefficients for all eta quotients in each collection, and strict inclusion between sets of vanishing coefficients for any pair of eta quotients in two different collections joined by a line segment in a graph) was not proven. We next describe a method that allows some of this fine structure to be proven.

三

The m-Dissection of a Function,l

The m-Dissection of a Function,I

Definition

By the m-dissection of a function $G(q)=\sum_{n=0}^{\infty} g_{n} q^{n}$ we mean an expansion of the form

$$
\begin{equation*}
G(q)=\gamma_{0} G_{0}\left(q^{m}\right)+\gamma_{1} q G_{1}\left(q^{m}\right)+\cdots+\gamma_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{19}
\end{equation*}
$$

The m-Dissection of a Function,I

Definition

By the m-dissection of a function $G(q)=\sum_{n=0}^{\infty} g_{n} q^{n}$ we mean an expansion of the form

$$
\begin{equation*}
G(q)=\gamma_{0} G_{0}\left(q^{m}\right)+\gamma_{1} q G_{1}\left(q^{m}\right)+\cdots+\gamma_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{19}
\end{equation*}
$$

where each dissection component $G_{i}\left(q^{m}\right)$ is not identically zero $\left(\gamma_{i}=0\right.$ is allowed).

The m-Dissection of a Function,l

Definition

By the m-dissection of a function $G(q)=\sum_{n=0}^{\infty} g_{n} q^{n}$ we mean an expansion of the form

$$
\begin{equation*}
G(q)=\gamma_{0} G_{0}\left(q^{m}\right)+\gamma_{1} q G_{1}\left(q^{m}\right)+\cdots+\gamma_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{19}
\end{equation*}
$$

where each dissection component $G_{i}\left(q^{m}\right)$ is not identically zero $\left(\gamma_{i}=0\right.$ is allowed). In other words, for each $i, 0 \leq i \leq m-1$,

$$
\gamma_{i} q^{i} G_{i}\left(q^{m}\right)=\sum_{n=0}^{\infty} g_{m n+i} q^{m n+i}=q^{i} \sum_{n=0}^{\infty} g_{m n+i}\left(q^{m}\right)^{n}
$$

Similar m-Dissections

Similar m-Dissections

Now suppose $C(q)$ and $D(q)$ are two functions whose m-dissections are given by

$$
\begin{align*}
& C(q)=c_{0} G_{0}\left(q^{m}\right)+c_{1} q G_{1}\left(q^{m}\right)+\cdots+c_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{20}\\
& D(q)=d_{0} G_{0}\left(q^{m}\right)+d_{1} q G_{1}\left(q^{m}\right)+\cdots+d_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right)
\end{align*}
$$

Similar m-Dissections

Now suppose $C(q)$ and $D(q)$ are two functions whose m-dissections are given by

$$
\begin{align*}
& C(q)=c_{0} G_{0}\left(q^{m}\right)+c_{1} q G_{1}\left(q^{m}\right)+\cdots+c_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{20}\\
& D(q)=d_{0} G_{0}\left(q^{m}\right)+d_{1} q G_{1}\left(q^{m}\right)+\cdots+d_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right)
\end{align*}
$$

There are two cases of interest.

Similar m-Dissections

Now suppose $C(q)$ and $D(q)$ are two functions whose m-dissections are given by

$$
\begin{align*}
& C(q)=c_{0} G_{0}\left(q^{m}\right)+c_{1} q G_{1}\left(q^{m}\right)+\cdots+c_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{20}\\
& D(q)=d_{0} G_{0}\left(q^{m}\right)+d_{1} q G_{1}\left(q^{m}\right)+\cdots+d_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right)
\end{align*}
$$

There are two cases of interest.

1) Suppose that $c_{i}=0 \Longleftrightarrow d_{i}=0, i=0,1, \ldots, m-1$, and then it is clear that $C_{(0)}=D_{(0)}$.

Similar m-Dissections

Now suppose $C(q)$ and $D(q)$ are two functions whose m-dissections are given by

$$
\begin{align*}
& C(q)=c_{0} G_{0}\left(q^{m}\right)+c_{1} q G_{1}\left(q^{m}\right)+\cdots+c_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right), \tag{20}\\
& D(q)=d_{0} G_{0}\left(q^{m}\right)+d_{1} q G_{1}\left(q^{m}\right)+\cdots+d_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right)
\end{align*}
$$

There are two cases of interest.

1) Suppose that $c_{i}=0 \Longleftrightarrow d_{i}=0, i=0,1, \ldots, m-1$, and then it is clear that $C_{(0)}=D_{(0)}$.
If the c_{1}, d_{i} satisfy the condition just stated, we say that $C(q)$ and $D(q)$ have similar m-dissections.

Similar m-Dissections

Now suppose $C(q)$ and $D(q)$ are two functions whose m-dissections are given by

$$
\begin{align*}
& C(q)=c_{0} G_{0}\left(q^{m}\right)+c_{1} q G_{1}\left(q^{m}\right)+\cdots+c_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{20}\\
& D(q)=d_{0} G_{0}\left(q^{m}\right)+d_{1} q G_{1}\left(q^{m}\right)+\cdots+d_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right)
\end{align*}
$$

There are two cases of interest.

1) Suppose that $c_{i}=0 \Longleftrightarrow d_{i}=0, i=0,1, \ldots, m-1$, and then it is clear that $C_{(0)}=D_{(0)}$.
If the c_{1}, d_{i} satisfy the condition just stated, we say that $C(q)$ and $D(q)$ have similar m-dissections.
2) On the other hand, if $c_{j} \neq 0$ and $d_{j}=0$ for one or more $j \in\{0,1, \ldots, m-1\}$ and otherwise $c_{i}=0 \Longleftrightarrow d_{i}=0$,

Similar m-Dissections

Now suppose $C(q)$ and $D(q)$ are two functions whose m-dissections are given by

$$
\begin{align*}
& C(q)=c_{0} G_{0}\left(q^{m}\right)+c_{1} q G_{1}\left(q^{m}\right)+\cdots+c_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right) \tag{20}\\
& D(q)=d_{0} G_{0}\left(q^{m}\right)+d_{1} q G_{1}\left(q^{m}\right)+\cdots+d_{m-1} q^{m-1} G_{m-1}\left(q^{m}\right)
\end{align*}
$$

There are two cases of interest.

1) Suppose that $c_{i}=0 \Longleftrightarrow d_{i}=0, i=0,1, \ldots, m-1$, and then it is clear that $C_{(0)}=D_{(0)}$.
If the c_{1}, d_{i} satisfy the condition just stated, we say that $C(q)$ and $D(q)$ have similar m-dissections.
2) On the other hand, if $c_{j} \neq 0$ and $d_{j}=0$ for one or more $j \in\{0,1, \ldots, m-1\}$ and otherwise $c_{i}=0 \Longleftrightarrow d_{i}=0$, then $C_{(0)} \nRightarrow D_{(0)}$.

Dissections and the Jacobi Triple Product Identity

Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-z)^{n} q^{n^{2}}=\left(z q, q / z, q^{2} ; q^{2}\right)_{\infty} \tag{21}
\end{equation*}
$$

Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-z)^{n} q^{n^{2}}=\left(z q, q / z, q^{2} ; q^{2}\right)_{\infty} \tag{21}
\end{equation*}
$$

The next two identities are special cases of this identity.

Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-z)^{n} q^{n^{2}}=\left(z q, q / z, q^{2} ; q^{2}\right)_{\infty} \tag{21}
\end{equation*}
$$

The next two identities are special cases of this identity.

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\sum_{n=-\infty}^{\infty} q^{n^{2}} \tag{22}\\
\frac{f_{1}^{2}}{f_{2}} & =\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \tag{23}
\end{align*}
$$

Dissections and the Jacobi Triple Product Identity

The Jacobi triple product identity:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-z)^{n} q^{n^{2}}=\left(z q, q / z, q^{2} ; q^{2}\right)_{\infty} \tag{21}
\end{equation*}
$$

The next two identities are special cases of this identity.

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\sum_{n=-\infty}^{\infty} q^{n^{2}} \tag{22}\\
\frac{f_{1}^{2}}{f_{2}} & =\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \tag{23}
\end{align*}
$$

By splitting the series expansion of an eta quotient into sub-series over arithmetic progression, it may be possible to derive an m-dissection in terms of infinite products.

三

The " $q \rightarrow-q$ " Partner of an Eta Quotient

The " $q \rightarrow-q$ " Partner of an Eta Quotient

We often make the substitution $q \rightarrow-q$ in an eta quotient but wish to write the resulting product also as an eta quotient.

The " $q \rightarrow-q$ " Partner of an Eta Quotient

We often make the substitution $q \rightarrow-q$ in an eta quotient but wish to write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

The " $q \rightarrow-q$ " Partner of an Eta Quotient

We often make the substitution $q \rightarrow-q$ in an eta quotient but wish to write the resulting product also as an eta quotient.
This leads to the following frequently employed identity:

$$
\begin{equation*}
f_{1}=(q ; q)_{\infty} \xrightarrow{q \rightarrow-q}(-q ;-q)_{\infty}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}}=\frac{f_{2}^{3}}{f_{1} f_{4}} \tag{24}
\end{equation*}
$$

The " $q \rightarrow-q$ " Partner of an Eta Quotient

We often make the substitution $q \rightarrow-q$ in an eta quotient but wish to write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

$$
\begin{equation*}
f_{1}=(q ; q)_{\infty} \stackrel{q \rightarrow-q}{\longrightarrow}(-q ;-q)_{\infty}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}}=\frac{f_{2}^{3}}{f_{1} f_{4}} \tag{24}
\end{equation*}
$$

If $g(q)=f(-q)$, for simplicity we will call $g(q)$ the " $q \rightarrow-q$ partner" of $f(q)$.

The " $q \rightarrow-q$ " Partner of an Eta Quotient

We often make the substitution $q \rightarrow-q$ in an eta quotient but wish to write the resulting product also as an eta quotient.

This leads to the following frequently employed identity:

$$
\begin{equation*}
f_{1}=(q ; q)_{\infty} \stackrel{q \rightarrow-q}{\longrightarrow}(-q ;-q)_{\infty}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}}=\frac{f_{2}^{3}}{f_{1} f_{4}} \tag{24}
\end{equation*}
$$

If $g(q)=f(-q)$, for simplicity we will call $g(q)$ the " $q \rightarrow-q$ partner" of $f(q)$.
The relevance in the present context is that a function and its $q \rightarrow-q$ partner have identically vanishing coefficients.

Some 2-Dissections, I

Some 2-Dissections, I

The following 2-dissection identities are well known:

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{equation*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}}=\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}} \tag{25}
\end{equation*}
$$

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}, \tag{25}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}, \tag{26}
\end{align*}
$$

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}, \tag{25}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}, \tag{26}\\
\frac{f_{1}^{3}}{f_{3}} & =\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}, \tag{27}
\end{align*}
$$

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}} \tag{25}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}} \tag{26}\\
\frac{f_{1}^{3}}{f_{3}} & =\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}} \tag{27}\\
\frac{f_{3}}{f_{1}^{3}} & =\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right) \tag{28}
\end{align*}
$$

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}} \tag{25}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}} \tag{26}\\
\frac{f_{1}^{3}}{f_{3}} & =\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}, \tag{27}\\
\frac{f_{3}}{f_{1}^{3}} & =\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right), \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}} \Longrightarrow \frac{f_{4}^{3} f_{6}}{f_{2}^{7} f_{12}} \frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right) \tag{29}
\end{equation*}
$$

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}} \tag{25}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}} \tag{26}\\
\frac{f_{1}^{3}}{f_{3}} & =\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}, \tag{27}\\
\frac{f_{3}}{f_{1}^{3}} & =\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right), \tag{28}\\
\frac{f_{3}^{3}}{f_{1}} & =\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}} \Longrightarrow \frac{f_{4}^{3} f_{6}}{f_{2}^{7} f_{12}} \frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right), \tag{29}
\end{align*}
$$

Some 2-Dissections, I

The following 2-dissection identities are well known:

$$
\begin{align*}
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}} \tag{25}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}, \tag{26}\\
\frac{f_{1}^{3}}{f_{3}} & =\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}, \tag{27}\\
\frac{f_{3}}{f_{1}^{3}} & =\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right), \tag{28}\\
\frac{f_{3}^{3}}{f_{1}} & =\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}} \Longrightarrow \frac{f_{4}^{3} f_{6}}{f_{2}^{7} f_{12}} \frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{12}}\left(\frac{f_{4}^{3}}{f_{12}}+q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}\right), \tag{29}\\
\frac{f_{1}}{f_{3}^{3}} & =\frac{f_{2}^{3} f_{12}^{3}}{f_{4} f_{6}^{9}}\left(\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}-q \frac{f_{12}^{3}}{f_{4}}\right), \tag{30}
\end{align*}
$$

Some 2-Dissections, II

Some 2-Dissections, II

$$
\begin{equation*}
f_{1} f_{3}=\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{31}
\end{equation*}
$$

Some 2-Dissections, II

$$
\begin{align*}
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{31}\\
\frac{1}{f_{1} f_{3}} & =\frac{f_{4} f_{12}}{f_{2}^{3} f_{6}^{3}}\left(\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}+q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}}\right) \tag{32}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}, \\
\frac{1}{f_{1}^{4}} & =\frac{f_{4}^{4}}{f_{2}^{12}}\left(\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}+4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}\right) \\
\frac{f_{1}}{f_{3}} & =\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}-q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}}, \\
\frac{f_{3}}{f_{1}} & =\frac{f_{4} f_{6}^{3}}{f_{2}^{3} f_{12}}\left(\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}+q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}}\right)
\end{align*}
$$

Some 2-Dissections, II

$$
\begin{align*}
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{31}\\
\frac{1}{f_{1} f_{3}} & =\frac{f_{4} f_{12}}{f_{2}^{3} f_{6}^{3}}\left(\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}+q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}}\right) \tag{32}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{33}
\end{align*}
$$

Some 2-Dissections, II

$$
\begin{align*}
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{31}\\
\frac{1}{f_{1} f_{3}} & =\frac{f_{4} f_{12}}{f_{2}^{3} f_{6}^{3}}\left(\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}+q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}}\right) \tag{32}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{33}\\
\frac{1}{f_{1}^{4}} & =\frac{f_{4}^{4}}{f_{2}^{12}}\left(\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}+4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}\right) \tag{34}\\
\frac{f_{1}}{f_{3}} & =\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}-q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}}, \\
\frac{f_{3}}{f_{1}} & =\frac{f_{4} f_{6}^{3}}{f_{2}^{3} f_{12}}\left(\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}+q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}}\right)
\end{align*}
$$

Some 2-Dissections, II

$$
\begin{align*}
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{31}\\
\frac{1}{f_{1} f_{3}} & =\frac{f_{4} f_{12}}{f_{2}^{3} f_{6}^{3}}\left(\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}+q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}}\right) \tag{32}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{33}\\
\frac{1}{f_{1}^{4}} & =\frac{f_{4}^{4}}{f_{2}^{12}}\left(\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}+4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}\right) \tag{34}\\
\frac{f_{1}}{f_{3}} & =\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}-q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}} \tag{35}
\end{align*}
$$

Some 2-Dissections, II

$$
\begin{align*}
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{31}\\
\frac{1}{f_{1} f_{3}} & =\frac{f_{4} f_{12}}{f_{2}^{3} f_{6}^{3}}\left(\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}+q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}}\right) \tag{32}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{33}\\
\frac{1}{f_{1}^{4}} & =\frac{f_{4}^{4}}{f_{2}^{12}}\left(\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}+4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}\right), \tag{34}\\
\frac{f_{1}}{f_{3}} & =\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}-q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}} \tag{35}\\
\frac{f_{3}}{f_{1}} & =\frac{f_{4} f_{6}^{3}}{f_{2}^{3} f_{12}}\left(\frac{f_{2} f_{16} f_{24}^{2}}{f_{6}^{2} f_{8} f_{48}}+q \frac{f_{2} f_{8}^{2} f_{12} f_{48}}{f_{4} f_{6}^{2} f_{16} f_{24}}\right) \tag{36}
\end{align*}
$$

Some 2-Dissections, III

Some 2-Dissections, III

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{3}^{2}}=\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}-2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}} \tag{37}\\
& \frac{f_{3}^{2}}{f_{1}^{2}}=\frac{f_{4}^{2} f_{6}^{6}}{f_{2}^{6} f_{12}^{2}}\left(\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}+2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}}\right)
\end{align*}
$$

The 2-dissections mentioned above, and their $q \rightarrow-q$ partners, give the vanishing coefficient result in the next theorem.

Some 2-Dissections, III

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{3}^{2}}=\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}-2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}} \tag{37}\\
& \frac{f_{3}^{2}}{f_{1}^{2}}=\frac{f_{4}^{2} f_{6}^{6}}{f_{2}^{6} f_{12}^{2}}\left(\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}+2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}}\right) . \tag{38}
\end{align*}
$$

The 2-dissections mentioned above, and their $q \rightarrow-q$ partners, give the vanishing coefficient result in the next theorem.

Some 2-Dissections, III

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{3}^{2}}=\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}-2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}}, \tag{37}\\
& \frac{f_{3}^{2}}{f_{1}^{2}}=\frac{f_{4}^{2} f_{6}^{6}}{f_{2}^{6} f_{12}^{2}}\left(\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}+2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}}\right) . \tag{38}
\end{align*}
$$

The 2-dissections mentioned above, and their $q \rightarrow-q$ partners, give the vanishing coefficient result in the next theorem.

A Theorem on Identical Vanishing of Coefficients

Theorem

Let $C\left(q^{2}\right)$ be any even eta quotient.

A Theorem on Identical Vanishing of Coefficients

Theorem

Let $C\left(q^{2}\right)$ be any even eta quotient. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{equation*}
\left\{\frac{f_{3}}{f_{1}^{3}} C\left(q^{2}\right), \frac{f_{1}^{3} f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{3} f_{12}} C\left(q^{2}\right), \frac{f_{3}^{3}}{f_{1}} \frac{f_{4}^{3} f_{6}}{f_{2}^{7} f_{12}} C\left(q^{2}\right), \frac{f_{1}}{f_{3}^{3}} \frac{f_{4}^{4} f_{6}^{10}}{f_{2}^{10} f_{12}^{4}} C\left(q^{2}\right)\right\} . \tag{39}
\end{equation*}
$$

A Theorem on Identical Vanishing of Coefficients

Theorem

Let $C\left(q^{2}\right)$ be any even eta quotient. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{equation*}
\left\{\frac{f_{3}}{f_{1}^{3}} C\left(q^{2}\right), \frac{f_{1}^{3} f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{3} f_{12}} C\left(q^{2}\right), \frac{f_{3}^{3}}{f_{1}} \frac{f_{4}^{3} f_{6}}{f_{2}^{7} f_{12}} C\left(q^{2}\right), \frac{f_{1}}{f_{3}^{3}} \frac{f_{4}^{4} f_{6}^{10}}{f_{2}^{10} f_{12}^{4}} C\left(q^{2}\right)\right\} . \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} . \tag{40}
\end{equation*}
$$

A Theorem on Identical Vanishing of Coefficients

Theorem

Let $C\left(q^{2}\right)$ be any even eta quotient. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{equation*}
\left\{\frac{f_{3}}{f_{1}^{3}} C\left(q^{2}\right), \frac{f_{1}^{3} f_{4}^{3} f_{6}^{3}}{f_{2}^{9} f_{3} f_{12}} C\left(q^{2}\right), \frac{f_{3}^{3}}{f_{1}} \frac{f_{4}^{3} f_{6}}{f_{2}^{7} f_{12}} C\left(q^{2}\right), \frac{f_{1}}{f_{3}^{3}} \frac{f_{4}^{4} f_{6}^{10}}{f_{2}^{10} f_{12}^{4}} C\left(q^{2}\right)\right\} . \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} . \tag{40}
\end{equation*}
$$

Specializing $C\left(q^{2}\right)$ then shows that various collections of 4 eta quotients in some of the tables have identically vanishing coefficients.

Some 3-Dissections, I

Some 3-Dissections, I

The following 3-dissections are also well known:

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{equation*}
\frac{f_{2}^{2}}{f_{1}}=\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}}, \tag{41}
\end{equation*}
$$

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{align*}
\frac{f_{2}^{2}}{f_{1}} & =\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}} \tag{41}\\
\frac{f_{1} f_{4}}{f_{2}} & =\frac{f_{3} f_{12} f_{18}^{5}}{f_{6}^{2} f_{9}^{2} f_{36}^{2}}-q \frac{f_{9} f_{36}}{f_{18}}, \tag{42}
\end{align*}
$$

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{align*}
\frac{f_{2}^{2}}{f_{1}} & =\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}} \tag{41}\\
\frac{f_{1} f_{4}}{f_{2}} & =\frac{f_{3} f_{12} f_{18}^{5}}{f_{6}^{2} f_{9}^{2} f_{36}^{2}}-q \frac{f_{9} f_{36}}{f_{18}} \tag{42}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}} \tag{43}
\end{align*}
$$

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{align*}
\frac{f_{2}^{2}}{f_{1}} & =\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}} \tag{41}\\
\frac{f_{1} f_{4}}{f_{2}} & =\frac{f_{3} f_{12} f_{18}^{5}}{f_{6}^{2} f_{9}^{2} f_{36}^{2}}-q \frac{f_{9} f_{36}}{f_{18}} \tag{42}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}}, \Longrightarrow \frac{f_{6}}{f_{3}} \frac{f_{1}^{2}}{f_{2}}=\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}-2 q \frac{f_{18}^{2}}{f_{9}} \tag{43}
\end{align*}
$$

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{align*}
\frac{f_{2}^{2}}{f_{1}} & =\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}}, \tag{41}\\
\frac{f_{1} f_{4}}{f_{2}} & =\frac{f_{3} f_{12} f_{18}^{5}}{f_{6}^{2} f_{9}^{2} f_{36}^{2}}-q \frac{f_{9} f_{36}}{f_{18}}, \tag{42}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}}, \Longrightarrow \frac{f_{6}}{f_{3}} \frac{f_{1}^{2}}{f_{2}}=\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}-2 q \frac{f_{18}^{2}}{f_{9}} \tag{43}\\
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{18}^{5}}{f_{9}^{2} f_{36}^{2}}+\frac{2 q f_{6}^{2} f_{9} f_{36}}{f_{3} f_{12} f_{18}}, \tag{44}\\
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}}, \\
f_{1}^{2} f_{4}^{2} & =\frac{f_{3}^{8} f_{12}^{8} f_{18}^{15}}{f_{6}^{20} f_{9}^{6} f_{36}^{6}}-\frac{2 q f_{3}^{7} f_{12}^{7} f_{18}^{9}}{f_{6}^{18} f_{9}^{3} f_{36}^{3}}+\frac{4 q^{2} f_{3}^{6} f_{12}^{6} f_{18}^{3}}{f_{6}^{16}}
\end{align*}
$$

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{align*}
\frac{f_{2}^{2}}{f_{1}} & =\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}} \tag{41}\\
\frac{f_{1} f_{4}}{f_{2}} & =\frac{f_{3} f_{12} f_{18}^{5}}{f_{6}^{2} f_{9}^{2} f_{36}^{2}}-q \frac{f_{9} f_{36}}{f_{18}}, \tag{42}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}}, \Longrightarrow \frac{f_{6}}{f_{3}} \frac{f_{1}^{2}}{f_{2}}=\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}-2 q \frac{f_{18}^{2}}{f_{9}} \tag{43}\\
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{18}^{5}}{f_{9}^{2} f_{36}^{2}}+\frac{2 q f_{6}^{2} f_{9} f_{36}}{f_{3} f_{12} f_{18}}, \tag{44}\\
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}}, \tag{45}
\end{align*}
$$

Some 3-Dissections, I

The following 3-dissections are also well known:

$$
\begin{align*}
\frac{f_{2}^{2}}{f_{1}} & =\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}}, \tag{41}\\
\frac{f_{1} f_{4}}{f_{2}} & =\frac{f_{3} f_{12} f_{18}^{5}}{f_{6}^{2} f_{9}^{2} f_{36}^{2}}-q \frac{f_{9} f_{36}}{f_{18}}, \tag{42}\\
\frac{f_{1}^{2}}{f_{2}} & =\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}}, \Longrightarrow \frac{f_{6}}{f_{3}} \frac{f_{1}^{2}}{f_{2}}=\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}-2 q \frac{f_{18}^{2}}{f_{9}} \tag{43}\\
\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}} & =\frac{f_{18}^{5}}{f_{9}^{2} f_{36}^{2}}+\frac{2 q f_{6}^{2} f_{9} f_{36}}{f_{3} f_{12} f_{18}}, \tag{44}\\
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}}, \tag{45}\\
\frac{f_{1}^{2} f_{4}^{2}}{f_{2}^{5}} & =\frac{f_{3}^{8} f_{12}^{8} f_{18}^{15}}{f_{6}^{20} f_{9}^{6} f_{36}^{6}}-\frac{2 q f_{3}^{7} f_{12}^{7} f_{18}^{9}}{f_{6}^{18} f_{9}^{3} f_{36}^{3}}+\frac{4 q^{2} f_{3}^{6} f_{12}^{6} f_{18}^{3}}{f_{6}^{16}} \tag{46}
\end{align*}
$$

The Borwein Theta Functions

三 \ddagger のく

The Borwein Theta Functions

Recall that the Borwein theta functions $a(q), b(q)$ and $c(q)$ are defined by

The Borwein Theta Functions

Recall that the Borwein theta functions $a(q), b(q)$ and $c(q)$ are defined by

$$
\begin{equation*}
a(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}}=\frac{f_{2}^{5} f_{6}^{5}}{f_{1}^{2} f_{3}^{2} f_{4}^{2} f_{12}^{2}}+4 q \frac{f_{4}^{2} f_{12}^{2}}{f_{2} f_{6}}, \tag{47}
\end{equation*}
$$

where $\omega=\exp (2 \pi i / 3)$

The Borwein Theta Functions

Recall that the Borwein theta functions $a(q), b(q)$ and $c(q)$ are defined by

$$
\begin{align*}
& a(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}}=\frac{f_{2}^{5} f_{6}^{5}}{f_{1}^{2} f_{3}^{2} f_{4}^{2} f_{12}^{2}}+4 q \frac{f_{4}^{2} f_{12}^{2}}{f_{2} f_{6}} \tag{47}\\
& b(q)=\sum_{m, n=-\infty}^{\infty} \omega^{n-m} q^{m^{2}+m n+n^{2}}=\frac{f_{1}^{3}}{f_{3}}
\end{align*}
$$

where $\omega=\exp (2 \pi i / 3)$

The Borwein Theta Functions

Recall that the Borwein theta functions $a(q), b(q)$ and $c(q)$ are defined by

$$
\begin{align*}
& a(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}}=\frac{f_{2}^{5} f_{6}^{5}}{f_{1}^{2} f_{3}^{2} f_{4}^{2} f_{12}^{2}}+4 q \frac{f_{4}^{2} f_{12}^{2}}{f_{2} f_{6}}, \tag{47}\\
& b(q)=\sum_{m, n=-\infty}^{\infty} \omega^{n-m} q^{m^{2}+m n+n^{2}}=\frac{f_{1}^{3}}{f_{3}}, \\
& c(q)=\sum_{m, n=-\infty}^{\infty} q^{(m+1 / 3)^{2}+(m+1 / 3)(n+1 / 3)+(n+1 / 3)^{2}}=3 q^{1 / 3} \frac{f_{3}^{3}}{f_{1}},
\end{align*}
$$

The Borwein Theta Functions

Recall that the Borwein theta functions $a(q), b(q)$ and $c(q)$ are defined by

$$
\begin{align*}
& a(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}}=\frac{f_{2}^{5} f_{6}^{5}}{f_{1}^{2} f_{3}^{2} f_{4}^{2} f_{12}^{2}}+4 q \frac{f_{4}^{2} f_{12}^{2}}{f_{2} f_{6}} \tag{47}\\
& b(q)=\sum_{m, n=-\infty}^{\infty} \omega^{n-m} q^{m^{2}+m n+n^{2}}=\frac{f_{1}^{3}}{f_{3}} \\
& c(q)=\sum_{m, n=-\infty}^{\infty} q^{(m+1 / 3)^{2}+(m+1 / 3)(n+1 / 3)+(n+1 / 3)^{2}}=3 q^{1 / 3} \frac{f_{3}^{3}}{f_{1}}
\end{align*}
$$

where $\omega=\exp (2 \pi i / 3)$.

The Borwein Theta Functions

Recall that the Borwein theta functions $a(q), b(q)$ and $c(q)$ are defined by

$$
\begin{align*}
& a(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}}=\frac{f_{2}^{5} f_{6}^{5}}{f_{1}^{2} f_{3}^{2} f_{4}^{2} f_{12}^{2}}+4 q \frac{f_{4}^{2} f_{12}^{2}}{f_{2} f_{6}} \tag{47}\\
& b(q)=\sum_{m, n=-\infty}^{\infty} \omega^{n-m} q^{m^{2}+m n+n^{2}}=\frac{f_{1}^{3}}{f_{3}} \\
& c(q)=\sum_{m, n=-\infty}^{\infty} q^{(m+1 / 3)^{2}+(m+1 / 3)(n+1 / 3)+(n+1 / 3)^{2}}=3 q^{1 / 3} \frac{f_{3}^{3}}{f_{1}}
\end{align*}
$$

where $\omega=\exp (2 \pi i / 3)$.
Aside: The functions above satisfy the identity

$$
a(q)^{3}=b(q)^{3}+c(q)^{3}
$$

Some 3-Dissections, I

Some 3-Dissections, I

Lemma

The following 3-dissections hold.

Some 3-Dissections, I

Lemma

The following 3-dissections hold.

$$
\begin{equation*}
f_{1}^{3}=a\left(q^{3}\right) f_{3}-3 q f_{9}^{3}, \tag{48}
\end{equation*}
$$

Some 3-Dissections, I

Lemma

The following 3-dissections hold.

$$
\begin{align*}
& f_{1}^{3}=a\left(q^{3}\right) f_{3}-3 q f_{9}^{3} \tag{48}\\
& \frac{1}{f_{1}^{3}}=\frac{f_{9}^{3}}{f_{3}^{10}}\left(a\left(q^{3}\right)^{2}+3 q \frac{f_{9}^{3}}{f_{3}} a\left(q^{3}\right)+9 q^{2} \frac{f_{9}^{6}}{f_{3}^{2}}\right) \tag{49}
\end{align*}
$$

Some 3-Dissections, I

Lemma

The following 3-dissections hold.

$$
\begin{align*}
& f_{1}^{3}=a\left(q^{3}\right) f_{3}-3 q f_{9}^{3} \tag{48}\\
& \frac{1}{f_{1}^{3}}=\frac{f_{9}^{3}}{f_{3}^{10}}\left(a\left(q^{3}\right)^{2}+3 q \frac{f_{9}^{3}}{f_{3}} a\left(q^{3}\right)+9 q^{2} \frac{f_{9}^{6}}{f_{3}^{2}}\right) \tag{49}
\end{align*}
$$

More Vanishing Coefficient Results, I

三 \quad 次

More Vanishing Coefficient Results, I

Theorem

Let $C\left(q^{3}\right)$ be any eta quotient whose series expansion contains only powers of q^{3}.

More Vanishing Coefficient Results，I

Theorem

Let $C\left(q^{3}\right)$ be any eta quotient whose series expansion contains only powers of q^{3} ．Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists：

More Vanishing Coefficient Results, I

Theorem

Let $C\left(q^{3}\right)$ be any eta quotient whose series expansion contains only powers of q^{3}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{equation*}
\left\{\frac{f_{2}^{2}}{f_{1}} C\left(q^{3}\right), \frac{f_{1} f_{4}}{f_{2}} C\left(-q^{3}\right), \frac{f_{1}^{2} f_{6}}{f_{2} f_{3}} C\left(q^{3}\right), \frac{f_{2}^{5} f_{3} f_{12}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} C\left(-q^{3}\right)\right\} \tag{50}
\end{equation*}
$$

Then

$F_{(0)}=G_{(0)}$.

More Vanishing Coefficient Results, I

Theorem

Let $C\left(q^{3}\right)$ be any eta quotient whose series expansion contains only powers of q^{3}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{align*}
& \left\{\frac{f_{2}^{2}}{f_{1}} C\left(q^{3}\right), \frac{f_{1} f_{4}}{f_{2}} C\left(-q^{3}\right), \frac{f_{1}^{2} f_{6}}{f_{2} f_{3}} C\left(q^{3}\right), \frac{f_{2}^{5} f_{3} f_{12}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} C\left(-q^{3}\right)\right\} \tag{50}\\
& \left\{\frac{f_{1}^{2} f_{8}}{f_{4}} C\left(q^{3}\right), \frac{f_{2}^{6} f_{8}}{f_{1}^{2} f_{4}^{3}} C\left(-q^{3}\right), \frac{f_{3} f_{4}^{5} f_{24}}{f_{1} f_{8}^{2} f_{12}^{2}} C\left(q^{3}\right), \frac{f_{1} f_{4}^{6} f_{6}^{3} f_{24}}{f_{2}^{3} f_{3} f_{8}^{2} f_{12}^{3}} C\left(-q^{3}\right)\right\}, \tag{51}
\end{align*}
$$

Then

More Vanishing Coefficient Results, I

Theorem

Let $C\left(q^{3}\right)$ be any eta quotient whose series expansion contains only powers of q^{3}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{align*}
& \left\{\frac{f_{2}^{2}}{f_{1}} C\left(q^{3}\right), \frac{f_{1} f_{4}}{f_{2}} C\left(-q^{3}\right), \frac{f_{1}^{2} f_{6}}{f_{2} f_{3}} C\left(q^{3}\right), \frac{f_{2}^{5} f_{3} f_{12}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} C\left(-q^{3}\right)\right\}, \tag{50}\\
& \left\{\frac{f_{1}^{2} f_{8}}{f_{4}} C\left(q^{3}\right), \frac{f_{2}^{6} f_{8}}{f_{1}^{2} f_{4}^{3}} C\left(-q^{3}\right), \frac{f_{3} f_{4}^{5} f_{24}}{f_{1} f_{8}^{2} f_{12}^{2}} C\left(q^{3}\right), \frac{f_{1} f_{4}^{6} f_{6}^{3} f_{24}}{f_{2}^{3} f_{3} f_{8}^{2} f_{12}^{3}} C\left(-q^{3}\right)\right\}, \tag{51}\\
& \left\{f_{1}^{6} C\left(q^{3}\right), \frac{f_{2}^{18}}{f_{1}^{6} f_{4}^{6}} C\left(-q^{3}\right), \frac{f_{3}^{12}}{f_{1}^{3} f_{9}^{3}} C\left(q^{3}\right), \frac{f_{1}^{3} f_{4}^{3} f_{6}^{33} f_{9}^{3} f_{36}^{3}}{f_{2}^{9} f_{3}^{12} f_{12}^{12} f_{18}^{9}} C\left(-q^{3}\right)\right\}, \tag{52}
\end{align*}
$$

Then

More Vanishing Coefficient Results, I

Theorem

Let $C\left(q^{3}\right)$ be any eta quotient whose series expansion contains only powers of q^{3}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{align*}
& \left\{\frac{f_{2}^{2}}{f_{1}} C\left(q^{3}\right), \frac{f_{1} f_{4}}{f_{2}} C\left(-q^{3}\right), \frac{f_{1}^{2} f_{6}}{f_{2} f_{3}} C\left(q^{3}\right), \frac{f_{2}^{5} f_{3} f_{12}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} C\left(-q^{3}\right)\right\}, \tag{50}\\
& \left\{\frac{f_{1}^{2} f_{8}}{f_{4}} C\left(q^{3}\right), \frac{f_{2}^{6} f_{8}}{f_{1}^{2} f_{4}^{3}} C\left(-q^{3}\right), \frac{f_{3} f_{4}^{5} f_{24}}{f_{1} f_{8}^{2} f_{12}^{2}} C\left(q^{3}\right), \frac{f_{1} f_{4}^{6} f_{6}^{3} f_{24}}{f_{2}^{3} f_{3} f_{8}^{2} f_{12}^{3}} C\left(-q^{3}\right)\right\}, \tag{51}\\
& \left\{f_{1}^{6} C\left(q^{3}\right), \frac{f_{2}^{18}}{f_{1}^{6} f_{4}^{6}} C\left(-q^{3}\right), \frac{f_{3}^{12}}{f_{1}^{3} f_{9}^{3}} C\left(q^{3}\right), \frac{f_{1}^{3} f_{4}^{3} f_{6}^{33} f_{9}^{3} f_{36}^{3}}{f_{2}^{9} f_{3}^{12} f_{12}^{12} f_{18}^{9}} C\left(-q^{3}\right)\right\}, \tag{52}
\end{align*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} \tag{53}
\end{equation*}
$$

More Vanishing Coefficient Results, II

More Vanishing Coefficient Results, II

As with the previous theorem, here also Specializing $C\left(q^{3}\right)$ then shows that various collections of 4 eta quotients in some of the tables have identically vanishing coefficients.

Some 4－Dissections，I

Some 4-Dissections, I

Recall

$$
\begin{equation*}
\frac{f_{1}^{2}}{f_{2}}=\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}, \tag{54}
\end{equation*}
$$

We will use the second identity with $q \rightarrow q^{2}$.

Some 4-Dissections, I

Recall

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{2}}=\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}} \tag{54}\\
& f_{1}^{4}=\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{55}
\end{align*}
$$

We will use the second identity with $q \rightarrow q^{2}$.

Some 4-Dissections, I

Recall

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{2}}=\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}} \tag{54}\\
& f_{1}^{4}=\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}}, \tag{55}
\end{align*}
$$

We will use the second identity with $q \rightarrow q^{2}$.

Some 4-Dissections, II

Some 4-Dissections, II

Lemma

Some 4-Dissections, II

Lemma

The following 4-dissections hold.

Some 4-Dissections, II

Lemma

The following 4-dissections hold.

$$
\begin{equation*}
f_{1}^{2} f_{2}^{7}=\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{56}
\end{equation*}
$$

Some 4-Dissections, II

Lemma

The following 4-dissections hold.

$$
\begin{align*}
f_{1}^{2} f_{2}^{7} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{56}\\
\frac{1}{f_{1}^{2} f_{2}^{3}} & =\frac{f_{8}^{8}}{f_{4}^{22}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{57}
\end{align*}
$$

Some 4-Dissections, II

Lemma

The following 4-dissections hold.

$$
\begin{align*}
f_{1}^{2} f_{2}^{7} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{56}\\
\frac{1}{f_{1}^{2} f_{2}^{3}} & =\frac{f_{8}^{8}}{f_{4}^{22}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{57}
\end{align*}
$$

Proof.

For (56), write

$$
f_{1}^{2} f_{2}^{7}=\frac{f_{1}^{2}}{f_{2}}\left(f_{2}^{4}\right)^{2}
$$

Some 4-Dissections, II

Lemma

The following 4-dissections hold.

$$
\begin{align*}
f_{1}^{2} f_{2}^{7} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{56}\\
\frac{1}{f_{1}^{2} f_{2}^{3}} & =\frac{f_{8}^{8}}{f_{4}^{22}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} . \tag{57}
\end{align*}
$$

Proof.

For (56), write

$$
f_{1}^{2} f_{2}^{7}=\frac{f_{1}^{2}}{f_{2}}\left(f_{2}^{4}\right)^{2}
$$

and use (54) and (55), with q replaced with q^{2} in the latter identity.

Some 4-Dissections, II

Lemma

The following 4-dissections hold.

$$
\begin{align*}
f_{1}^{2} f_{2}^{7} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} \tag{56}\\
\frac{1}{f_{1}^{2} f_{2}^{3}} & =\frac{f_{8}^{8}}{f_{4}^{22}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)^{2} . \tag{57}
\end{align*}
$$

Proof.

For (56), write

$$
f_{1}^{2} f_{2}^{7}=\frac{f_{1}^{2}}{f_{2}}\left(f_{2}^{4}\right)^{2}
$$

and use (54) and (55), with q replaced with q^{2} in the latter identity. The proof of (57) is similar.

Some 4-Dissections, III

Some 4-Dissections, III

Observe that $f_{1}^{2} f_{2}^{7}$ and $f_{4}^{22} /\left(f_{1}^{2} f_{2}^{3} f_{8}^{8}\right)$ have similar 4-dissections.

Some 4-Dissections, III

Observe that $f_{1}^{2} f_{2}^{7}$ and $f_{4}^{22} /\left(f_{1}^{2} f_{2}^{3} f_{8}^{8}\right)$ have similar 4-dissections.

Theorem

Some 4-Dissections, III

Observe that $f_{1}^{2} f_{2}^{7}$ and $f_{4}^{22} /\left(f_{1}^{2} f_{2}^{3} f_{8}^{8}\right)$ have similar 4-dissections.

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}.

Some 4-Dissections, III

Observe that $f_{1}^{2} f_{2}^{7}$ and $f_{4}^{22} /\left(f_{1}^{2} f_{2}^{3} f_{8}^{8}\right)$ have similar 4-dissections.

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

Some 4-Dissections, III

Observe that $f_{1}^{2} f_{2}^{7}$ and $f_{4}^{22} /\left(f_{1}^{2} f_{2}^{3} f_{8}^{8}\right)$ have similar 4-dissections.

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{equation*}
\left\{f_{1}^{2} f_{2}^{7} C\left(q^{4}\right), \frac{f_{2}^{13}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{1}{f_{1}^{2} f_{2}^{3}} \frac{f_{4}^{22}}{f_{8}^{8}} C\left(q^{4}\right), \frac{f_{1}^{2}}{f_{2}^{9}} \frac{f_{4}^{24}}{f_{8}^{8}} C\left(q^{4}\right)\right\} \tag{58}
\end{equation*}
$$

Some 4-Dissections, III

Observe that $f_{1}^{2} f_{2}^{7}$ and $f_{4}^{22} /\left(f_{1}^{2} f_{2}^{3} f_{8}^{8}\right)$ have similar 4-dissections.

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{equation*}
\left\{f_{1}^{2} f_{2}^{7} C\left(q^{4}\right), \frac{f_{2}^{13}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{1}{f_{1}^{2} f_{2}^{3}} \frac{f_{4}^{22}}{f_{8}^{8}} C\left(q^{4}\right), \frac{f_{1}^{2}}{f_{2}^{9}} \frac{f_{4}^{24}}{f_{8}^{8}} C\left(q^{4}\right)\right\} \tag{58}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} . \tag{59}
\end{equation*}
$$

Some 4-Dissections, IV

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections,

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

The aim of course was to prove that the pair of eta quotients had identically vanishing coefficients,

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

The aim of course was to prove that the pair of eta quotients had identically vanishing coefficients, by determining the m-dissection of each (with proof),

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

The aim of course was to prove that the pair of eta quotients had identically vanishing coefficients, by determining the m-dissection of each (with proof), and thus proving that the pair of eta quotients did indeed have identically vanishing coefficients.

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

The aim of course was to prove that the pair of eta quotients had identically vanishing coefficients, by determining the m-dissection of each (with proof), and thus proving that the pair of eta quotients did indeed have identically vanishing coefficients.

These experimental searches did indeed lead to a quite large number of m-dissection identities,

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

The aim of course was to prove that the pair of eta quotients had identically vanishing coefficients, by determining the m-dissection of each (with proof), and thus proving that the pair of eta quotients did indeed have identically vanishing coefficients.

These experimental searches did indeed lead to a quite large number of m-dissection identities, which in turned allowed us to prove that certain collections of eta quotients did indeed have identically vanishing coefficients.

Some 4-Dissections, IV

Apart from the known dissections, the new dissection identities were motivated by computer searches that went through the various tables of eta quotients and looked for pairs of eta quotients that seemed to similar m-dissections, for $m=2,3,4,5,6,7$ and 8 .

The aim of course was to prove that the pair of eta quotients had identically vanishing coefficients, by determining the m-dissection of each (with proof), and thus proving that the pair of eta quotients did indeed have identically vanishing coefficients.

These experimental searches did indeed lead to a quite large number of m-dissection identities, which in turned allowed us to prove that certain collections of eta quotients did indeed have identically vanishing coefficients.

All of the new dissection results in the paper were derived to prove similar m-dissection results for pairs of eta quotients that were found experimentally.

More New m-Dissection Results, I

More New m-Dissection Results, I

All of the dissections in the next several lemmas were derived by combining the "basic" (well known) 2- and 3- dissections in various ways.

More New m-Dissection Results, I

All of the dissections in the next several lemmas were derived by combining the "basic" (well known) 2- and 3- dissections in various ways.

In the case of any particular set of m dissections, multiplying each m-dissection across by certain functions of q^{m} will result in eta quotients that have similar m-dissections,

More New m-Dissection Results, I

All of the dissections in the next several lemmas were derived by combining the "basic" (well known) 2- and 3- dissections in various ways.

In the case of any particular set of m dissections, multiplying each m-dissection across by certain functions of q^{m} will result in eta quotients that have similar m-dissections, so that these eta quotients will then have identically vanishing coefficients.

More New m-Dissection Results, II

More New m-Dissection Results, II

Lemma

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

$$
\begin{equation*}
\frac{f_{2}}{f_{1}^{2}}=\frac{f_{8}^{4}}{f_{4}^{10}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right) \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
\frac{f_{1}^{6}}{f_{2}^{3}}=\frac{f_{8}^{15}}{f_{4}^{6} f_{16}^{6}}-6 q \frac{f_{8}^{9}}{f_{4}^{4} f_{16}^{2}}+12 q^{2} \frac{f_{8}^{3} f_{16}^{2}}{f_{4}^{2}}-8 q^{3} \frac{f_{16}^{6}}{f_{8}^{3}} \tag{62}
\end{equation*}
$$

Notice that $f_{2} / f_{1}^{2}, f_{1}^{2} f_{2}^{3}\left(f_{8}^{4} / f_{4}^{10}\right)$ and $f_{1}^{6} f_{8}^{4} / f_{2}^{3} f_{4}^{8}$ have similar 4-dissections,

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

$$
\begin{align*}
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{8}^{4}}{f_{4}^{10}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right), \tag{60}\\
f_{1}^{2} f_{2}^{3} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right) \tag{61}
\end{align*}
$$

Notice that $f_{2} / f_{1}^{2}, f_{1}^{2} f_{2}^{3}\left(f_{8}^{4} / f_{4}^{10}\right)$ and $f_{1}^{6} f_{8}^{4} / f_{2}^{3} f_{4}^{8}$ have similar 4-dissections,

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

$$
\begin{align*}
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{8}^{4}}{f_{4}^{10}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right), \tag{60}\\
f_{1}^{2} f_{2}^{3} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right) \tag{61}\\
& =\frac{f_{8}^{15}}{f_{4}^{4} f_{16}^{6}}-\frac{2 q f_{8}^{9}}{f_{4}^{2} f_{16}^{2}}-4 q^{2} f_{8}^{3} f_{16}^{2}+\frac{8 q^{3} f_{4}^{2} f_{16}^{6}}{f_{8}^{3}}, \tag{62}
\end{align*}
$$

Notice that $f_{2} / f_{1}^{2}, f_{1}^{2} f_{2}^{3}\left(f_{8}^{4} / f_{4}^{10}\right)$ and $f_{1}^{6} f_{8}^{4} / f_{2}^{3} f_{4}^{8}$ have similar 4-dissections,

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

$$
\begin{align*}
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{8}^{4}}{f_{4}^{10}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right), \tag{60}\\
f_{1}^{2} f_{2}^{3} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right) \tag{61}\\
& =\frac{f_{8}^{15}}{f_{4}^{4} f_{16}^{6}}-\frac{2 q f_{8}^{9}}{f_{4}^{2} f_{16}^{2}}-4 q^{2} f_{8}^{3} f_{16}^{2}+\frac{8 q^{3} f_{4}^{2} f_{16}^{6}}{f_{8}^{3}}, \tag{62}\\
\frac{f_{1}^{6}}{f_{2}^{3}} & =\frac{f_{8}^{15}}{f_{4}^{6} f_{16}^{6}}-6 q \frac{f_{8}^{9}}{f_{4}^{4} f_{16}^{2}}+12 q^{2} \frac{f_{8}^{3} f_{16}^{2}}{f_{4}^{2}}-8 q^{3} \frac{f_{16}^{6}}{f_{8}^{3}} . \tag{63}
\end{align*}
$$

Notice that $f_{2} / f_{1}^{2}, f_{1}^{2} f_{2}^{3}\left(f_{8}^{4} / f_{4}^{10}\right)$ and $f_{1}^{6} f_{8}^{4} / f_{2}^{3} f_{4}^{8}$ have similar 4-dissections,

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

$$
\begin{align*}
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{8}^{4}}{f_{4}^{10}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right), \tag{60}\\
f_{1}^{2} f_{2}^{3} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right) \tag{61}\\
& =\frac{f_{8}^{15}}{f_{4}^{4} f_{16}^{6}}-\frac{2 q f_{8}^{9}}{f_{4}^{2} f_{16}^{2}}-4 q^{2} f_{8}^{3} f_{16}^{2}+\frac{8 q^{3} f_{4}^{2} f_{16}^{6}}{f_{8}^{3}}, \tag{62}\\
\frac{f_{1}^{6}}{f_{2}^{3}} & =\frac{f_{8}^{15}}{f_{4}^{6} f_{16}^{6}}-6 q \frac{f_{8}^{9}}{f_{4}^{4} f_{16}^{2}}+12 q^{2} \frac{f_{8}^{3} f_{16}^{2}}{f_{4}^{2}}-8 q^{3} \frac{f_{16}^{6}}{f_{8}^{3}} . \tag{63}
\end{align*}
$$

Notice that $f_{2} / f_{1}^{2}, f_{1}^{2} f_{2}^{3}\left(f_{8}^{4} / f_{4}^{10}\right)$ and $f_{1}^{6} f_{8}^{4} / f_{2}^{3} f_{4}^{8}$ have similar 4-dissections,

More New m-Dissection Results, II

Lemma

The following 4-dissections hold:

$$
\begin{align*}
\frac{f_{2}}{f_{1}^{2}} & =\frac{f_{8}^{4}}{f_{4}^{10}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}+2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right), \tag{60}\\
f_{1}^{2} f_{2}^{3} & =\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right) \tag{61}\\
& =\frac{f_{8}^{15}}{f_{4}^{4} f_{16}^{6}}-\frac{2 q f_{8}^{9}}{f_{4}^{2} f_{16}^{2}}-4 q^{2} f_{8}^{3} f_{16}^{2}+\frac{8 q^{3} f_{4}^{2} f_{16}^{6}}{f_{8}^{3}}, \tag{62}\\
\frac{f_{1}^{6}}{f_{2}^{3}} & =\frac{f_{8}^{15}}{f_{4}^{6} f_{16}^{6}}-6 q \frac{f_{8}^{9}}{f_{4}^{4} f_{16}^{2}}+12 q^{2} \frac{f_{8}^{3} f_{16}^{2}}{f_{4}^{2}}-8 q^{3} \frac{f_{16}^{6}}{f_{8}^{3}} . \tag{63}
\end{align*}
$$

Notice that $f_{2} / f_{1}^{2}, f_{1}^{2} f_{2}^{3}\left(f_{8}^{4} / f_{4}^{10}\right)$ and $f_{1}^{6} f_{8}^{4} / f_{2}^{3} f_{4}^{8}$ have similar 4-dissections, so that if each of these is multiplied by any eta quotient $C\left(q^{4}\right)$, the resulting eta quotients will have identically vanishing coefficients.

More New m-Dissection Results, III

More New m-Dissection Results, III

Theorem

More New m-Dissection Results, III

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient whose series expansion contains only powers of q^{4}.

More New m-Dissection Results, III

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient whose series expansion contains only powers of q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

More New m-Dissection Results, III

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient whose series expansion contains only powers of q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{align*}
\left\{\frac{f_{2}}{f_{1}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{2}}{f_{2}^{5}} C\left(q^{4}\right),\right. & \frac{f_{1}^{2} f_{2}^{3} f_{8}^{4}}{f_{4}^{10}} C\left(q^{4}\right), \\
& \left.\frac{f_{2}^{9} f_{8}^{4}}{f_{1}^{2} f_{4}^{12}} C\left(q^{4}\right), \frac{f_{1}^{6} f_{8}^{4}}{f_{2}^{3} f_{4}^{8}} C\left(q^{4}\right), \frac{f_{2}^{15} f_{8}^{4}}{f_{1}^{6} f_{4}^{14}} C\left(q^{4}\right)\right\} . \tag{64}
\end{align*}
$$

More New m-Dissection Results, III

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient whose series expansion contains only powers of q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{align*}
\left\{\frac{f_{2}}{f_{1}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{2}}{f_{2}^{5}} C\left(q^{4}\right),\right. & \frac{f_{1}^{2} f_{2}^{3} f_{8}^{4}}{f_{4}^{10}} C\left(q^{4}\right), \\
& \left.\frac{f_{2}^{9} f_{8}^{4}}{f_{1}^{2} f_{4}^{12}} C\left(q^{4}\right), \frac{f_{1}^{6} f_{8}^{4}}{f_{2}^{3} f_{4}^{8}} C\left(q^{4}\right), \frac{f_{2}^{15} f_{8}^{4}}{f_{1}^{6} f_{4}^{14}} C\left(q^{4}\right)\right\} . \tag{64}
\end{align*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} . \tag{65}
\end{equation*}
$$

Remark: The claim for three of these eta quotients follow from the remarks on the previous slide,

More New m-Dissection Results, III

Theorem

Let $C\left(q^{4}\right)$ be any eta quotient whose series expansion contains only powers of q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients in the following list:

$$
\begin{align*}
\left\{\frac{f_{2}}{f_{1}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{2}}{f_{2}^{5}} C\left(q^{4}\right),\right. & \frac{f_{1}^{2} f_{2}^{3} f_{8}^{4}}{f_{4}^{10}} C\left(q^{4}\right), \\
& \left.\frac{f_{2}^{9} f_{8}^{4}}{f_{1}^{2} f_{4}^{12}} C\left(q^{4}\right), \frac{f_{1}^{6} f_{8}^{4}}{f_{2}^{3} f_{4}^{8}} C\left(q^{4}\right), \frac{f_{2}^{15} f_{8}^{4}}{f_{1}^{6} f_{4}^{14}} C\left(q^{4}\right)\right\} . \tag{64}
\end{align*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} . \tag{65}
\end{equation*}
$$

Remark: The claim for three of these eta quotients follow from the remarks on the previous slide, and the claim for the other three follow, since they are the $q \rightarrow-q$ partners of the first three.

More New m-Dissection Results, IV

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections,

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections, thus leading to results about collections of eta quotients with identically vanishing coefficients.

三

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections, thus leading to results about collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result,

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections, thus leading to results about collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result, one in which the components of the dissections are not just simple eta quotients.

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections, thus leading to results about collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result, one in which the components of the dissections are not just simple eta quotients. .

We need the lemma in the next slide.

三

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections, thus leading to results about collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result, one in which the components of the dissections are not just simple eta quotients. .

We need the lemma in the next slide.

We recall the notation, for a an integer and m a positive integer,

More New m-Dissection Results, IV

There are several other collections of eta quotients in the paper which are shown to have similar m-dissections, thus leading to results about collections of eta quotients with identically vanishing coefficients.

However, we wish to consider a new type of dissection result, one in which the components of the dissections are not just simple eta quotients. .

We need the lemma in the next slide.

We recall the notation, for a an integer and m a positive integer,

$$
\bar{J}_{a, m}:=\left(-q^{a},-q^{m-a}, q^{m} ; q^{m}\right)_{\infty}
$$

More New m-Dissection Results, V

More New m-Dissection Results, V

Lemma
The following 2-dissections hold.

More New m-Dissection Results, V

Lemma

The following 2-dissections hold.

$$
\begin{align*}
& f_{1}=\frac{f_{2}}{f_{4}}\left(\bar{J}_{6,16}-q \bar{J}_{2,16}\right) \tag{67}\\
& \frac{1}{f_{1}}=\frac{1}{f_{2}^{2}}\left(\bar{J}_{6,16}+q \bar{J}_{2,16}\right)
\end{align*}
$$

More New m-Dissection Results, V

Lemma

The following 2-dissections hold.

$$
\begin{align*}
& f_{1}=\frac{f_{2}}{f_{4}}\left(\bar{J}_{6,16}-q \bar{J}_{2,16}\right), \tag{67}\\
& \frac{1}{f_{1}}=\frac{1}{f_{2}^{2}}\left(\bar{J}_{6,16}+q \bar{J}_{2,16}\right) . \tag{68}
\end{align*}
$$

More New m-Dissection Results, V

Lemma

The following 2-dissections hold.

$$
\begin{align*}
& f_{1}=\frac{f_{2}}{f_{4}}\left(\bar{J}_{6,16}-q \bar{J}_{2,16}\right) \tag{67}\\
& \frac{1}{f_{1}}=\frac{1}{f_{2}^{2}}\left(\bar{J}_{6,16}+q \bar{J}_{2,16}\right) .
\end{align*}
$$

Proof.

The identity (68) was proven by Hirschhorn,

More New m-Dissection Results, V

Lemma

The following 2-dissections hold.

$$
\begin{align*}
& f_{1}=\frac{f_{2}}{f_{4}}\left(\bar{J}_{6,16}-q \bar{J}_{2,16}\right) \tag{67}\\
& \frac{1}{f_{1}}=\frac{1}{f_{2}^{2}}\left(\bar{J}_{6,16}+q \bar{J}_{2,16}\right) .
\end{align*}
$$

Proof.

The identity (68) was proven by Hirschhorn, and (67) is its $q \rightarrow-q$ partner.

More New m-Dissection Results, V

Lemma

The following 2-dissections hold.

$$
\begin{align*}
f_{1} & =\frac{f_{2}}{f_{4}}\left(\bar{J}_{6,16}-q \bar{J}_{2,16}\right) \tag{67}\\
\frac{1}{f_{1}} & =\frac{1}{f_{2}^{2}}\left(\bar{J}_{6,16}+q \bar{J}_{2,16}\right) \tag{68}
\end{align*}
$$

Proof.

The identity (68) was proven by Hirschhorn, and (67) is its $q \rightarrow-q$ partner.

The next long list of pairs of 4-dissections is derived by combining the dissections above with the basic 2 - and 3 - dissections in ways similar to what has been seen already.

More New m-Dissection Results, VI

More New m-Dissection Results, VI

The following 4-dissections hold.

More New m-Dissection Results, VI

The following 4-dissections hold. In each case, it may be observed that multiplying one of the equations by the appropriate eta quotient $C\left(q^{4}\right)$ will result in a pair of eta quotients with similar 4-dissections,

More New m-Dissection Results, VI

The following 4-dissections hold. In each case, it may be observed that multiplying one of the equations by the appropriate eta quotient $C\left(q^{4}\right)$ will result in a pair of eta quotients with similar 4-dissections, and this pair of eta quotients will thus have identically vanishing coefficients.

More New m-Dissection Results, VI

The following 4-dissections hold. In each case, it may be observed that multiplying one of the equations by the appropriate eta quotient $C\left(q^{4}\right)$ will result in a pair of eta quotients with similar 4-dissections, and this pair of eta quotients will thus have identically vanishing coefficients.

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{2}^{2}}=\frac{1}{f_{4}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right), \tag{69}\\
& f_{1}^{2}=\frac{f_{4}}{f_{8}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{70}
\end{align*}
$$

More New m-Dissection Results, VI

The following 4-dissections hold. In each case, it may be observed that multiplying one of the equations by the appropriate eta quotient $C\left(q^{4}\right)$ will result in a pair of eta quotients with similar 4-dissections, and this pair of eta quotients will thus have identically vanishing coefficients.

$$
\begin{gather*}
\frac{f_{1}^{2}}{f_{2}^{2}}=\frac{1}{f_{4}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(J_{12,32}+q^{2} \bar{J}_{4,32}\right), \tag{69}\\
f_{1}^{2}=\frac{f_{4}}{f_{8}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{70}\\
\frac{f_{1}^{2}}{f_{2}^{4}}=\frac{f_{8}^{3}}{f_{4}^{11}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{71}\\
f_{1}^{2} f_{2}^{2}=\frac{1}{f_{4}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right), \tag{72}
\end{gather*}
$$

More New m-Dissection Results, VIII

More New m-Dissection Results, VIII

$$
\begin{align*}
& \frac{f_{3}}{f_{1}}= \\
& \frac{f_{12}}{f_{4}^{4}}\left(\frac{f_{4} f_{16} f_{24}^{2}}{f_{8} f_{12} f_{48}}+q \frac{f_{8}^{2} f_{48}}{f_{16} f_{24}}\right)\left(\frac{f_{8} f_{32} f_{48}^{2}}{f_{16} f_{24} f_{96}}+q^{2} \frac{f_{16}^{2} f_{96}}{f_{32} f_{48}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right) \\
& \frac{f_{1} f_{2} f_{6}}{f_{3}}= \\
& \frac{f_{4} f_{24}}{f_{8}^{2} f_{12}}\left(\frac{f_{4} f_{16} f_{24}^{2}}{f_{8} f_{12} f_{48}}-q \frac{f_{8}^{2} f_{48}}{f_{16} f_{24}}\right)\left(\frac{f_{8} f_{32} f_{48}^{2}}{f_{16} f_{24} f_{96}}-q^{2} \frac{f_{16}^{2} f_{96}}{f_{32} f_{48}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right) \tag{73}
\end{align*}
$$

More New m-Dissection Results, IX

More New m-Dissection Results, IX

$$
\begin{align*}
& \frac{f_{1}}{f_{3}}= \\
& \frac{f_{4}}{f_{12}^{4}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\frac{f_{32} f_{48}^{2}}{f_{16} f_{96}}-q^{2} \frac{f_{16}^{2} f_{24} f_{96}}{f_{8} f_{32} f_{48}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right) \\
& \frac{f_{2} f_{3} f_{6}}{f_{1}}= \\
& \frac{f_{8} f_{12}}{f_{4} f_{24}^{2}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}+q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\frac{f_{32} f_{48}^{2}}{f_{16} f_{96}}+q^{2} \frac{f_{16}^{2} f_{24} f_{96}}{f_{8} f_{32} f_{48}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right) \tag{74}
\end{align*}
$$

More New m-Dissection Results, X

More New m-Dissection Results, X

$$
\begin{align*}
\frac{f_{1}^{2}}{f_{6}^{2}} & =\frac{f_{4}}{f_{12}^{4}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{32} f_{48}^{2}}{f_{16} f_{96}}-q^{2} \frac{f_{16}^{2} f_{24} f_{96}}{f_{8} f_{32} f_{48}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right), \tag{75}\\
\frac{f_{1}^{2} f_{6}^{2}}{f_{2}^{2}} & =\frac{f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{32} f_{48}^{2}}{f_{96} f_{16}}+q^{2} \frac{f_{16}^{2} f_{24} f_{96}}{f_{8} f_{32} f_{48}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right), \tag{76}
\end{align*}
$$

More New m-Dissection Results, X

$$
\begin{align*}
\frac{f_{1}^{2}}{f_{6}^{2}} & =\frac{f_{4}}{f_{12}^{4}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{32} f_{48}^{2}}{f_{16} f_{96}}-q^{2} \frac{f_{16}^{2} f_{24} f_{96}}{f_{8} f_{33} f_{48}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right), \tag{75}\\
\frac{f_{1}^{2} f_{6}^{2}}{f_{2}^{2}} & =\frac{f_{8} f_{12}^{2}}{f_{4}^{2} f_{24}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{32} f_{48}^{2}}{f_{96} f_{16}}+q^{2} \frac{2_{16}^{2} f_{24} f_{96}}{f_{8} f_{32} f_{48}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right), \tag{76}\\
\frac{f_{3}}{f_{1} f_{2}^{3} f_{6}} & =\frac{f_{8}^{4}}{f_{4}^{14}}\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+\frac{4 f_{4}^{2} f_{16}^{4} q^{2}}{f_{8}^{2}}\right)\left(\frac{f_{4} f_{16} f_{24}^{2}}{f_{12} f_{48} f_{8}}+\frac{f_{48} f_{8}^{2} q}{f_{16} f_{24}}\right)\left(J_{12,32}+q^{2} J_{4,32}\right), \tag{77}\\
\frac{f_{2}^{7} f_{3}}{f_{1} f_{6}} & =\frac{f_{4}}{f_{8}}\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-\frac{4 f_{4}^{2} f_{16}^{4} q^{2}}{f_{8}^{2}}\right)\left(\frac{f_{4} f_{16} f_{24}^{2}}{f_{12} f_{48} f_{8}}+\frac{f_{48} f_{8}^{2} q}{f_{16} f_{24}}\right)\left(J_{12,32}-q^{2} J_{4,32}\right), \tag{78}
\end{align*}
$$

More New m-Dissection Results, XI

More New m-Dissection Results, XI

$$
\begin{align*}
& \frac{f_{2}^{5} f_{3}^{2}}{f_{6}}=\frac{f_{4}}{f_{8}}\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)\left(\frac{f_{24}^{5}}{f_{12}^{2} f_{48}^{2}}-2 q^{3} \frac{f_{48}^{2}}{f_{24}}\right)\left(J_{12,32}-q^{2} J_{4,32}\right), \\
& \frac{f_{6}^{5}}{f_{2}^{5} f_{3}^{2}}=\frac{f_{8}^{4} f_{12}^{2}}{f_{4}^{14}}\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)\left(\frac{f_{24}^{5}}{f_{12}^{2} f_{48}^{2}}+2 q^{3} \frac{f_{48}^{2}}{f_{24}}\right)\left(J_{12,32}+q^{2} J_{4,32}\right), \tag{80}
\end{align*}
$$

More New m-Dissection Results, XI

$$
\begin{gather*}
\frac{f_{2}^{5} f_{3}^{2}}{f_{6}}=\frac{f_{4}}{f_{8}}\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}-4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)\left(\frac{f_{24}^{5}}{f_{12}^{2} f_{48}^{2}}-2 q^{3} \frac{f_{48}^{2}}{f_{24}}\right)\left(J_{12,32}-q^{2} J_{4,32}\right), \tag{79}\\
\frac{f_{6}^{5}}{f_{2}^{5} f_{3}^{2}}=\frac{f_{8}^{4} f_{12}^{2}}{f_{4}^{14}}\left(\frac{f_{8}^{10}}{f_{4}^{2} f_{16}^{4}}+4 q^{2} \frac{f_{4}^{2} f_{16}^{4}}{f_{8}^{2}}\right)\left(\frac{f_{24}^{5}}{f_{12}^{2} f_{48}^{2}}+2 q^{3} \frac{f_{48}^{2}}{f_{24}}\right)\left(J_{12,32}+q^{2} J_{4,32}\right), \tag{80}\\
\frac{f_{2} f_{3}^{2}}{f_{6}}=\frac{f_{4}}{f_{8}}\left(\frac{f_{24}^{5}}{f_{12}^{2} f_{48}^{2}}-2 q^{3} \frac{f_{48}^{2}}{f_{24}}\right)\left(J_{12,32}-q^{2} J_{4,32}\right), \\
\frac{f_{6}^{5}}{f_{2} f_{3}^{2}}=\frac{f_{12}^{2}}{f_{4}^{2}}\left(\frac{f_{24}^{5}}{f_{12}^{2} f_{48}^{2}}+2 q^{\frac{f_{48}^{2}}{4}} \frac{f_{24}}{f_{2}}\right)\left(J_{12,32}+q^{2} J_{4,32}\right),
\end{gather*}
$$

More New m-Dissection Results, XII

More New m-Dissection Results, XII

$$
\begin{align*}
\frac{f_{1} f_{6}^{2}}{f_{2}^{4} f_{3}} & =\frac{1}{f_{4}^{6}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right)^{3}, \tag{83}\\
\frac{f_{1} f_{2}^{2} f_{6}^{2}}{f_{3}} & =\frac{f_{4}^{3}}{f_{8}^{3}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right)^{3}, \tag{84}
\end{align*}
$$

More New m-Dissection Results, XII

$$
\begin{gather*}
\frac{f_{1} f_{6}^{2}}{f_{2}^{4} f_{3}}=\frac{1}{f_{4}^{6}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right)^{3}, \\
\frac{f_{1} f_{2}^{2} f_{6}^{2}}{f_{3}}=\frac{f_{4}^{3}}{f_{8}^{3}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right)^{3}, \\
\frac{f_{1}^{2} f_{6}}{f_{2}^{3}}=\frac{f_{12}}{f_{4}^{4}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8} f_{32} f_{48}^{2}}{f_{16} f_{24} f_{96}}+q^{2} \frac{f_{16}^{2} f_{96}}{f_{32} f_{48}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right), \tag{85}\\
\frac{f_{1}^{2} f_{2}}{f_{6}}=\frac{f_{4}^{2} f_{24}}{f_{8}^{2} f_{12}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{8} f_{32} f_{48}^{2}}{f_{16} f_{24} f_{96}}-q^{2} \frac{f_{16}^{2} f_{96}}{f_{32} f_{48}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{86}
\end{gather*}
$$

More New m-Dissection Results, XIII

More New m-Dissection Results, XIII

$$
\begin{align*}
& \frac{f_{1} f_{6}^{2}}{f_{3}}=\frac{f_{4}}{f_{8}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{87}\\
& \frac{f_{1} f_{6}^{2}}{f_{2}^{2} f_{3}}=\frac{1}{f_{4}^{2}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right), \tag{88}
\end{align*}
$$

More New m-Dissection Results, XIII

$$
\begin{gather*}
\frac{f_{1} f_{6}^{2}}{f_{3}}=\frac{f_{4}}{f_{8}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{87}\\
\frac{f_{1} f_{6}^{2}}{f_{2}^{2} f_{3}}=\frac{1}{f_{4}^{2}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right), \tag{88}\\
\frac{f_{2}^{2} f_{3}}{f_{1} f_{6}^{6}}=\frac{f_{4}^{2} f_{24}^{6}}{f_{8}^{2} f_{12}^{17}}\left(\frac{f_{8}^{3} f_{12}^{2}}{f_{4}^{2} f_{24}}-q^{2} \frac{f_{24}^{3}}{f_{8}}\right)^{2} \\
\times\left(\frac{f_{4} f_{16} f_{24}^{2}}{f_{12} f_{48} f_{8}}+q \frac{f_{48} f_{8}^{2}}{f_{16} f_{24}}\right)\left(\frac{f_{8} f_{32} f_{48}^{2}}{f_{24} f_{96} f_{16}}+q^{2} \frac{f_{96} f_{16}^{2}}{f_{32} f_{48}}\right)\left(\bar{J}_{12,32}+q^{2} \bar{J}_{4,32}\right), \\
\frac{f_{1} f_{6}^{7}}{f_{2} f_{3}}=\frac{f_{4} f_{24}}{f_{8}^{2} f_{12}}\left(\frac{f_{12}^{2} f_{8}^{3}}{f_{4}^{2} f_{24}}+q^{2} \frac{f_{24}^{3}}{f_{8}}\right)^{2} \\
\times\left(\frac{f_{4} f_{16} f_{24}^{2}}{f_{8} f_{12} f_{48}}-q \frac{f_{8}^{2} f_{48}}{f_{16} f_{24}}\right)\left(\frac{f_{8} f_{32} f_{48}^{2}}{f_{16} f_{24} f_{96}}-q^{2} \frac{f_{16}^{2} f_{96}}{f_{32} f_{48}}\right)\left(J_{12,32}-q^{2} \bar{J}_{4,32}\right), \tag{89}
\end{gather*}
$$

More New m-Dissection Results, XIV

More New m-Dissection Results, XIV

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{2} f_{6}^{5}}=\frac{f_{24}^{4}}{f_{12}^{14}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{24}^{10}}{f_{12}^{2} f_{48}^{4}}+4 q^{6} \frac{f_{12}^{2} f_{48}^{4}}{f_{24}^{2}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right), \tag{90}\\
& \frac{f_{1}^{2} f_{6}^{5}}{f_{2}}=\frac{f_{12}}{f_{24}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{24}^{10}}{f_{12}^{2} f_{48}^{4}}-4 q^{6} \frac{f_{12}^{2} f_{48}^{4}}{f_{24}^{2}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right), \tag{91}
\end{align*}
$$

More New m-Dissection Results, XIV

$$
\begin{align*}
& \frac{f_{1}^{2}}{f_{2} f_{6}^{5}}=\frac{f_{24}^{4}}{f_{12}^{14}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{24}^{10}}{f_{12}^{2} f_{48}^{4}}+4 q^{6} \frac{f_{12}^{2} f_{48}^{4}}{f_{24}^{2}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right), \tag{90}\\
& \frac{f_{1}^{2} f_{6}^{5}}{f_{2}}=\frac{f_{12}}{f_{24}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\frac{f_{24}^{10}}{f_{12}^{2} f_{48}^{4}}-4 q^{6} \frac{f_{12}^{2} f_{48}^{4}}{f_{24}^{2}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right), \tag{91}\\
& \frac{f_{1}^{2}}{f_{2} f_{6}}=\frac{1}{f_{12}^{2}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right), \tag{92}\\
& \frac{f_{1}^{2} f_{6}}{f_{2}}=\frac{f_{12}}{f_{24}}\left(\frac{f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{16}^{2}}{f_{8}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right), \tag{93}
\end{align*}
$$

More New m-Dissection Results, XV

More New m-Dissection Results, XV

$$
\begin{align*}
\frac{f_{1} f_{6}}{f_{2} f_{3}} & =\frac{1}{f_{12}^{2}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{36,96}+q^{6} \bar{J}_{12,96}\right), \tag{94}\\
\frac{f_{1} f_{6}^{3}}{f_{2} f_{3}} & =\frac{f_{12}}{f_{24}}\left(\frac{f_{16} f_{24}^{2}}{f_{8} f_{48}}-q \frac{f_{8}^{2} f_{12} f_{48}}{f_{4} f_{16} f_{24}}\right)\left(\bar{J}_{36,96}-q^{6} \bar{J}_{12,96}\right) . \tag{95}
\end{align*}
$$

More New m-Dissection Results, XVI

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.
Theorem. Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}.

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.
Theorem. Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.
Theorem. Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{equation*}
\left\{f_{1}^{2} \mathrm{C}\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}} \mathrm{C}\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3}}{f_{2}^{2} f_{8}} \mathrm{C}\left(q^{4}\right), \frac{f_{2}^{4} f_{4}}{f_{1}^{2} f_{8}} C\left(q^{4}\right)\right\} \tag{96}
\end{equation*}
$$

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.
Theorem. Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{align*}
& \left\{f_{1}^{2} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3}}{f_{2}^{2} f_{8}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4}}{f_{1}^{2} f_{8}} C\left(q^{4}\right)\right\}, \tag{96}\\
& \left\{f_{1}^{2} f_{2}^{2} C\left(q^{4}\right), \frac{f_{2}^{8}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{9}}{f_{2}^{4} f_{8}^{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{4}^{7}}{f_{1}^{2} f_{8}^{3}} C\left(q^{4}\right)\right\}, \tag{97}
\end{align*}
$$

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.
Theorem. Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{align*}
& \left\{f_{1}^{2} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3}}{f_{2}^{2} f_{8}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4}}{f_{1}^{2} f_{8}} C\left(q^{4}\right)\right\}, \tag{96}\\
& \left\{f_{1}^{2} f_{2}^{2} C\left(q^{4}\right), \frac{f_{2}^{8}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{9}}{f_{2}^{4} f_{8}^{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{4}^{7}}{f_{1}^{2} f_{8}^{3}} C\left(q^{4}\right)\right\}, \tag{97}\\
& \left\{\frac{f_{3}}{f_{1}} C\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{3}}{f_{2}^{3} f_{3} f_{12}} C\left(q^{4}\right), \frac{f_{1} f_{2} f_{6} f_{8}^{2} f_{12}^{2}}{f_{3} f_{4}^{5} f_{24}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{3} f_{8}^{2} f_{12}^{3}}{f_{1} f_{4}^{6} f_{6}^{2} f_{24}} C\left(q^{4}\right) \cdot\right\}, \tag{98}
\end{align*}
$$

More New m-Dissection Results, XVI

The 4-dissections above lead to the following theorem on collections of eta quotients with identically vanishing coefficients.
Theorem. Let $C\left(q^{4}\right)$ be any eta quotient with a power series expansion in q^{4}. Let $F(q)$ and $G(q)$ be any pair of eta quotients from one the following lists:

$$
\begin{align*}
& \left\{f_{1}^{2} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3}}{f_{2}^{2} f_{8}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4}}{f_{1}^{2} f_{8}} C\left(q^{4}\right)\right\}, \tag{96}\\
& \left\{f_{1}^{2} f_{2}^{2} C\left(q^{4}\right), \frac{f_{2}^{8}}{f_{1}^{2} f_{4}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{9}}{f_{2}^{4} f_{8}^{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{4}^{7}}{f_{1}^{2} f_{8}^{3}} C\left(q^{4}\right)\right\}, \tag{97}\\
& \left\{\frac{f_{3}}{f_{1}} C\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{3}}{f_{2}^{3} f_{3} f_{12}} C\left(q^{4}\right), \frac{f_{1} f_{2} f_{6} f_{8}^{2} f_{12}^{2}}{f_{3} f_{4}^{5} f_{24}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{3} f_{8}^{2} f_{12}^{3}}{f_{1} f_{4}^{6} f_{6}^{2} f_{24}} C\left(q^{4}\right) \cdot\right\}, \tag{98}\\
& \left\{\frac{f_{1}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}^{3}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{6} f_{24}^{2}}{f_{1} f_{8} f_{12}^{5}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{2}}{f_{2}^{2} f_{3} f_{8} f_{12}^{6}} C\left(q^{4}\right)\right\}, \tag{99}
\end{align*}
$$

More New m-Dissection Results, XVII

More New m-Dissection Results, XVII

$$
\begin{equation*}
\left\{\frac{f_{1}^{2}}{f_{6}^{2}} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3} f_{6}^{2} f_{24}^{2}}{f_{2}^{2} f_{8} f_{12}^{6}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4} f_{6}^{2} f_{24}^{2}}{f_{1}^{2} f_{8} f_{12}^{6}} C\left(q^{4}\right)\right\} \tag{100}
\end{equation*}
$$

More New m-Dissection Results, XVII

$$
\begin{align*}
& \left\{\frac{f_{1}^{2}}{f_{6}^{2}} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}+f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3} f_{f}^{2} f_{24}^{2}}{f_{2}^{2} f_{f}^{f} f_{12}^{f}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4} f_{6}^{2} f_{24}^{2}}{f_{1}^{2} f_{8}^{\prime} f_{12}^{f 4}} C\left(q^{4}\right)\right\} \text {, } \tag{100}\\
& \left\{\frac{f_{3}}{f_{1} f_{2}^{f} f_{6}} c\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{2}}{f_{2}^{6} f_{3} f_{12}} c\left(q^{4}\right), \frac{f_{2}^{7} f_{3} f_{8}^{5}}{f_{1} f_{4}^{15} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{2}^{4} f^{2} f_{8}^{5}}{f_{3} f_{4}^{14} f_{12}} C\left(q^{4}\right)\right\} \text {, } \tag{101}
\end{align*}
$$

More New m-Dissection Results, XVII

$$
\begin{align*}
& \left\{\frac{f_{1}^{2}}{f_{6}^{2}} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3} f_{6}^{2} f_{24}^{2}}{f_{2}^{2} f_{8} f_{12}^{6}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4} f_{6}^{2} f_{24}^{2}}{f_{1}^{2} f_{8} f_{12}^{6}} C\left(q^{4}\right)\right\}, \tag{100}\\
& \left\{\frac{f_{3}}{f_{1} f_{2}^{3} f_{6}} \mathrm{C}\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{2}}{f_{2}^{6} f_{3} f_{12}} \mathrm{C}\left(q^{4}\right), \frac{f_{2}^{7} f_{3} f_{8}^{5}}{f_{1} f_{4}^{15} f_{6}} \mathrm{C}\left(q^{4}\right), \frac{f_{1} f_{2}^{4} f_{6}^{2} f_{8}^{5}}{f_{3} f_{4}^{14} f_{12}} \mathrm{C}\left(q^{4}\right)\right\}, \tag{101}\\
& \left\{\frac{f_{2}^{5} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{4}^{15} f_{6}^{5}}{f_{2}^{5} f_{3}^{2} f_{8}^{5} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{3}^{2} f_{4}^{15}}{f_{2}^{5} f_{6} f_{8}^{5}} C\left(q^{4}\right)\right\}, \tag{102}
\end{align*}
$$

More New m-Dissection Results, XVII

$$
\begin{align*}
& \left\{\frac{f_{1}^{2}}{f_{6}^{2}} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}+f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3} f_{f}^{2} f_{24}^{2}}{f_{2}^{2} f_{f}^{f} f_{12}^{f}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4} f_{6}^{2} f_{24}^{2}}{f_{1}^{2} f_{8}^{\prime} f_{12}^{f 4}} C\left(q^{4}\right)\right\} \text {, } \tag{100}\\
& \left\{\frac{f_{3}}{f_{1} f_{2} f_{6} c} c\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{2}}{f_{2}^{6} f_{3} f_{12}} C\left(q^{4}\right), \frac{f_{2}^{7} f_{5} f_{5}^{5}}{f_{1} f_{4}^{15} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{2}^{4} f^{2} f_{8}^{2}}{f_{3} f_{4}^{4} f_{12}} c\left(q_{1}^{4}\right)\right\} \text {, } \tag{101}\\
& \left\{\frac{f_{2}^{5} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{5}^{15} f_{5}^{5}}{f_{2}^{5} f_{3}^{2} f_{8}^{5} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{3}^{2} f_{4}^{15}}{f_{2}^{5} f_{6} f_{8}^{5}} C\left(q^{4}\right)\right\} \text {, } \tag{102}\\
& \left\{\frac{f_{2} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2} f_{5}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{4}^{3} f_{f}^{5}}{f_{2} f_{3}^{5} f_{8} f_{12}^{2}} c\left(q^{4}\right), \frac{f_{3}^{2} f_{4}^{3}}{f_{2} f_{6} f_{8}} C\left(q^{4}\right)\right\}, \tag{103}
\end{align*}
$$

More New m-Dissection Results, XVII

$$
\begin{align*}
& \left\{\frac{f_{1}^{2}}{f_{6}^{2}} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}+f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3} f_{f}^{2} f_{24}^{2}}{f_{2}^{2} f_{f} f_{12}^{f}} C\left(q^{4}\right), \frac{f_{2}^{4} f_{4} f_{6}^{2} f_{24}^{2}}{f_{1}^{2} f_{8}^{\prime} f_{12}^{f 4}} C\left(q^{4}\right)\right\} \text {, } \tag{100}\\
& \left\{\frac{f_{3}}{f_{1} f_{2}^{f} f_{6}} \subset\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{2}}{f_{2}^{6} f_{3} f_{12}} C\left(q^{4}\right), \frac{f_{2}^{7} f_{7} f_{5}^{5}}{f_{1} f_{4}^{15} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{2}^{4} f^{2} f_{8}^{2}}{f_{3} f_{4}^{4} f_{12}} c\left(q^{4}\right)\right\} \text {, } \tag{101}\\
& \left\{\frac{f_{2}^{5} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{5}^{15} f_{5}^{5}}{f_{2}^{5} f_{3}^{2} f_{8}^{5} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{3}^{2} f_{4}^{15}}{f_{2}^{5} f_{6} f_{8}^{5}} C\left(q^{4}\right)\right\} \text {, } \tag{102}\\
& \left\{\frac{f_{2} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2} f_{5}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{4}^{3} f_{f}^{5}}{f_{2} f_{3}^{5} f_{8} f_{12}^{2}} c\left(q^{4}\right), \frac{f_{3}^{2} f_{4}^{3}}{f_{2} f_{6} f_{8}^{3}} c\left(q^{4}\right)\right\}, \tag{103}\\
& \left\{\frac{f_{1} f_{2}^{2} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{9} f_{f_{2}^{2}}^{2}}{f_{2}^{4} f_{3} f_{8}^{3}} C\left(q^{4}\right), \frac{f_{5} f_{4}^{f} f_{12}}{f_{1} f_{2} f_{6} f_{8}^{3}} C\left(q^{4}\right)\right\},
\end{align*}
$$

More New m-Dissection Results, XVII

$$
\begin{align*}
& \left\{\frac{f_{1}^{2}}{f_{6}^{2}} C\left(q^{4}\right), \frac{f_{2}^{6}}{f_{1}^{2} f_{4}^{2}+f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{4}^{3} f_{6}^{2} f_{24}^{2}}{f_{2}^{2} f_{f} f_{12}^{f}} \mathrm{f}\left(q^{4}\right), \frac{f_{2}^{4} f_{4} f_{6}^{2} f_{24}^{2}}{f_{1}^{2} f_{8} f_{12}^{f 4}} C\left(q^{4}\right)\right\} \text {, } \tag{100}\\
& \left\{\frac{f_{3}}{f_{1} f_{2}^{f} f_{6}} \subset\left(q^{4}\right), \frac{f_{1} f_{4} f_{6}^{2}}{f_{2}^{6} f_{3} f_{12}} C\left(q^{4}\right), \frac{f_{2}^{7} f_{7} f_{5}^{5}}{f_{1} f_{4}^{15} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{2}^{4} f^{2} f_{8}^{2}}{f_{3} f_{4}^{4} f_{12}} c\left(q^{4}\right)\right\} \text {, } \tag{101}\\
& \left\{\frac{f_{2}^{5} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{5}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{4}^{15} f_{5}^{5}}{f_{2}^{5} f_{3}^{2} f_{8}^{5} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{3}^{2} f^{15}}{f_{2}^{5} f_{6} f_{8}^{5}} C\left(q^{4}\right)\right\} \text {, } \tag{102}\\
& \left\{\frac{f_{2} f_{3}^{2}}{f_{6}} C\left(q^{4}\right), \frac{f_{2} f_{5}^{5}}{f_{3}^{2} f_{12}^{2}} C\left(q^{4}\right), \frac{f_{4}^{3} f_{f}^{5}}{f_{2} f_{3}^{5} f_{8} f_{12}^{2}} c\left(q^{4}\right), \frac{f_{3}^{2} f_{4}^{3}}{f_{2} f_{6} f_{8}^{3}} c\left(q^{4}\right)\right\}, \tag{103}\\
& \left\{\frac{f_{1} f_{2}^{2} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{9} f_{f}^{2}}{f_{2}^{4} f_{3} f_{8}^{3}} C\left(q^{4}\right), \frac{f_{3} f_{4}^{f} f_{12}}{f_{1} f_{2} f_{6} f_{8}^{3}} C\left(q^{4}\right)\right\} \text {, } \tag{104}
\end{align*}
$$

More New m-Dissection Results, XVIII

More New m-Dissection Results, XVIII

$$
\begin{equation*}
\left\{\frac{f_{1} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{3} f_{8}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{12}}{f_{1} f_{6} f_{8}} C\left(q^{4}\right)\right\}, \tag{106}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} \tag{111}
\end{equation*}
$$

More New m-Dissection Results, XVIII

$$
\left.\begin{array}{l}
\left\{\frac{f_{1} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{3} f_{8}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{12}}{f_{1} f_{6} f_{8}} C\left(q^{4}\right)\right\},
\end{array}\right\}, \begin{aligned}
& \left\{\frac{f_{1} f_{6}^{7}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{6}^{4} f_{12}}{f_{1} f_{4}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}^{16}}{f_{1} f_{4} f_{6}^{6} f_{24}^{5}} C\left(q^{4}\right), \frac{f_{1} f_{12}^{15}}{f_{2} f_{3} f_{6}^{3} f_{24}^{5}} C\left(q^{4}\right)\right\},
\end{aligned}
$$

Then

$$
F_{(0)}=G_{(0)} .
$$

More New m-Dissection Results, XVIII

$$
\begin{align*}
& \left\{\frac{f_{1} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{3} f_{8}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{12}}{f_{1} f_{6} f_{8}} C\left(q^{4}\right)\right\}, \tag{106}\\
& \left\{\frac{f_{1} f_{6}^{7}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{6}^{4} f_{12}}{f_{1} f_{4}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}^{16}}{f_{1} f_{4} f_{6}^{6} f_{24}^{5}} C\left(q^{4}\right), \frac{f_{1} f_{12}^{15}}{f_{2} f_{3} f_{6}^{3} f_{24}^{5}} C\left(q^{4}\right)\right\}, \tag{107}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6}^{5} f_{24}^{5}}{f_{2} f_{12}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5} f_{24}^{5}}{f_{1}^{2} f_{4}^{2} f_{12}^{15}} C\left(q^{4}\right)\right\}, \tag{108}
\end{align*}
$$

More New m-Dissection Results, XVIII

$$
\begin{align*}
& \left\{\frac{f_{1} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{3} f_{8}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{12}}{f_{1} f_{6} f_{8}} C\left(q^{4}\right)\right\}, \tag{106}\\
& \left\{\frac{f_{1} f_{6}^{7}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{6}^{4} f_{12}}{f_{1} f_{4}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}^{16}}{f_{1} f_{4} f_{6}^{6} f_{24}^{5}} C\left(q^{4}\right), \frac{f_{1} f_{12}^{15}}{f_{2} f_{3} f_{6}^{3} f_{24}^{5}} C\left(q^{4}\right)\right\}, \tag{107}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6}^{5} f_{24}^{5}}{f_{2} f_{12}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5} f_{24}^{5}}{f_{1}^{2} f_{4}^{2} f_{12}^{15}} C\left(q^{4}\right)\right\} \text {, } \tag{108}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6} f_{24}}{f_{2} f_{12}^{3}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6} f_{24}}{f_{1}^{2} f_{4}^{2} f_{12}^{3}} \mathrm{C}\left(q^{4}\right)\right\}, \tag{109}\\
& \left\{\begin{array}{l}
f_{1} \\
f_{2} \\
f_{2}
\end{array}\right.
\end{align*}
$$

More New m-Dissection Results, XVIII

$$
\begin{align*}
& \left\{\frac{f_{1} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{3} f_{8}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{12}}{f_{1} f_{6} f_{8}} C\left(q^{4}\right)\right\}, \tag{106}\\
& \left\{\frac{f_{1} f_{6}^{7}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{6}^{4} f_{12}}{f_{1} f_{4}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}^{16}}{f_{1} f_{4} f_{6}^{6} f_{24}^{5}} C\left(q^{4}\right), \frac{f_{1} f_{12}^{15}}{f_{2} f_{3} f_{6}^{3} f_{24}^{5}} C\left(q^{4}\right)\right\}, \tag{107}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6}^{5} f_{24}^{5}}{f_{2} f_{12}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5} f_{24}^{5}}{f_{1}^{2} f_{4}^{2} f_{12}^{15}} C\left(q^{4}\right)\right\} \text {, } \tag{108}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6} f_{24}}{f_{2} f_{12}^{3}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6} f_{24}}{f_{1}^{2} f_{4}^{2} f_{12}^{3}} \mathrm{C}\left(q^{4}\right)\right\} \text {, } \tag{109}\\
& \left\{\frac{f_{1} f_{6}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}}{f_{1} f_{4} f_{6}^{2}} \mathrm{C}\left(q^{4}\right), \frac{f_{1} f_{6}^{3} f_{24}}{f_{2} f_{3} f_{12}^{3}} \mathrm{C}\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{24}}{f_{1} f_{4} f_{12}^{2}} \mathrm{C}\left(q^{4}\right)\right\} \text {. } \tag{110}
\end{align*}
$$

More New m-Dissection Results, XVIII

$$
\begin{align*}
& \left\{\frac{f_{1} f_{6}^{2}}{f_{3}} C\left(q^{4}\right), \frac{f_{2}^{3} f_{3} f_{12}}{f_{1} f_{4} f_{6}} C\left(q^{4}\right), \frac{f_{1} f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{3} f_{8}} C\left(q^{4}\right), \frac{f_{2} f_{3} f_{4}^{2} f_{12}}{f_{1} f_{6} f_{8}} C\left(q^{4}\right)\right\}, \tag{106}\\
& \left\{\frac{f_{1} f_{6}^{7}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{6}^{4} f_{12}}{f_{1} f_{4}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}^{16}}{f_{1} f_{4} f_{6}^{6} f_{24}^{5}} C\left(q^{4}\right), \frac{f_{1} f_{12}^{15}}{f_{2} f_{3} f_{6}^{3} f_{24}^{5}} C\left(q^{4}\right)\right\}, \tag{107}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}^{5}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6}^{5} f_{24}^{5}}{f_{2} f_{12}^{5}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6}^{5} f_{24}^{5}}{f_{1}^{2} f_{4}^{2} f_{12}^{15}} C\left(q^{4}\right)\right\} \text {, } \tag{108}\\
& \left\{\frac{f_{1}^{2}}{f_{2} f_{6}} C\left(q^{4}\right), \frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2} f_{6}} C\left(q^{4}\right), \frac{f_{1}^{2} f_{6} f_{24}}{f_{2} f_{12}^{3}} C\left(q^{4}\right), \frac{f_{2}^{5} f_{6} f_{24}}{f_{1}^{2} f_{4}^{2} f_{12}^{3}} C\left(q^{4}\right)\right\} \text {, } \tag{109}\\
& \left\{\frac{f_{1} f_{6}}{f_{2} f_{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{12}}{f_{1} f_{4} f_{6}^{2}} C\left(q^{4}\right), \frac{f_{1} f_{6}^{3} f_{24}}{f_{2} f_{3} f_{12}^{3}} C\left(q^{4}\right), \frac{f_{2}^{2} f_{3} f_{24}}{f_{1} f_{4} f_{12}^{2}} C\left(q^{4}\right)\right\} \text {. } \tag{110}
\end{align*}
$$

Then

$$
\begin{equation*}
F_{(0)}=G_{(0)} . \tag{111}
\end{equation*}
$$

More New m-Dissection Results, XIX

Now $C\left(q^{4}\right)$ can be specialized in any of the collections above to prove vanishing coefficient results for collections of eta quotients which experiment indicated had vanishing coefficient similar to that of one of f_{1}^{r}, $r=4,6,8,10,14$ and 26 or $f_{1}^{3} f_{2}^{3}$.

More New m-Dissection Results, XIX

Now $C\left(q^{4}\right)$ can be specialized in any of the collections above to prove vanishing coefficient results for collections of eta quotients which experiment indicated had vanishing coefficient similar to that of one of f_{1}^{r}, $r=4,6,8,10,14$ and 26 or $f_{1}^{3} f_{2}^{3}$.

Similar reasoning also leads to strict inclusion results.

More New m-Dissection Results, XIX

Now $C\left(q^{4}\right)$ can be specialized in any of the collections above to prove vanishing coefficient results for collections of eta quotients which experiment indicated had vanishing coefficient similar to that of one of f_{1}^{r}, $r=4,6,8,10,14$ and 26 or $f_{1}^{3} f_{2}^{3}$.

Similar reasoning also leads to strict inclusion results.

Together, these allow some of the "fine structure" of the tables/graphs to be proven.

More New m-Dissection Results, XIX

Now $C\left(q^{4}\right)$ can be specialized in any of the collections above to prove vanishing coefficient results for collections of eta quotients which experiment indicated had vanishing coefficient similar to that of one of f_{1}^{r}, $r=4,6,8,10,14$ and 26 or $f_{1}^{3} f_{2}^{3}$.

Similar reasoning also leads to strict inclusion results.

Together, these allow some of the "fine structure" of the tables/graphs to be proven.

We close with two examples.

A Collection of Eta Quotients with Identically Vanishing Coefficients

A Collection of Eta Quotients with Identically Vanishing Coefficients

Let $F(q)$ and $G(q)$ be any two eta quotients from the following collection (which is from the table/graph for f_{1}^{4}):

A Collection of Eta Quotients with Identically Vanishing Coefficients

Let $F(q)$ and $G(q)$ be any two eta quotients from the following collection (which is from the table/graph for f_{1}^{4}):

$$
\begin{array}{r}
\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}}\right. \\
\left.\qquad \frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}
\end{array}
$$

A Collection of Eta Quotients with Identically Vanishing Coefficients

Let $F(q)$ and $G(q)$ be any two eta quotients from the following collection (which is from the table/graph for f_{1}^{4}):

$$
\left\{\begin{array}{r}
\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}} \\
\left.\qquad \frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}
\end{array}\right.
$$

Then Then

$$
F_{(0)}=G_{(0)}
$$

An Example of Strict Inclusion of Sets of Vanishing Coefficients

An Example of Strict Inclusion of Sets of Vanishing Coefficients

The following pair of collections of eta quotients are also from the table/graph for f_{1}^{4} (actually VIII is the collection in the previous example) :

An Example of Strict Inclusion of Sets of Vanishing Coefficients

The following pair of collections of eta quotients are also from the table/graph for f_{1}^{4} (actually VIII is the collection in the previous example) :

$$
\begin{aligned}
& \text { VIII }=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}},} \begin{array}{c}
\left.\frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
\text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\} .
\end{array} .\right.
\end{aligned}
$$

An Example of Strict Inclusion of Sets of Vanishing Coefficients

The following pair of collections of eta quotients are also from the table/graph for f_{1}^{4} (actually VIII is the collection in the previous example) :

$$
\begin{aligned}
& \text { VIII }=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}},} \begin{array}{l}
\left.\frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
\text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\} .
\end{array}\right.
\end{aligned}
$$

If $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV,

An Example of Strict Inclusion of Sets of Vanishing Coefficients

The following pair of collections of eta quotients are also from the table/graph for f_{1}^{4} (actually VIII is the collection in the previous example) :

$$
\begin{aligned}
& V I I I=\left\{\frac{f_{2}^{3} f_{3} f_{8} f_{12}^{8}}{f_{1} f_{4}^{3} f_{6}^{4} f_{24}^{3}, \frac{f_{1} f_{8} f_{12}^{7}}{f_{3} f_{4}^{2} f_{6} f_{24}^{3}}, \frac{f_{1} f_{4}^{8} f_{6}^{3} f_{24}}{f_{2}^{4} f_{3} f_{8}^{3} f_{12}^{3}}, \frac{f_{3} f_{4}^{7} f_{24}}{f_{1} f_{2} f_{8}^{3} f_{12}^{2}},} \begin{array}{c}
\left.\frac{f_{1} f_{2}^{2} f_{6}}{f_{3} f_{4}}, \frac{f_{2}^{5} f_{3} f_{12}}{f_{1} f_{4}^{2} f_{6}^{2}}, \frac{f_{1} f_{4} f_{6}^{5}}{f_{2}^{2} f_{3} f_{12}^{2}}, \frac{f_{2} f_{3} f_{6}^{2}}{f_{1} f_{12}}\right\}, \\
\text { XIV }=\left\{\frac{f_{2}^{2} f_{3} f_{8}^{3} f_{12}}{f_{1} f_{4}^{2} f_{6} f_{24}}, \frac{f_{1} f_{6}^{2} f_{8}^{3}}{f_{2} f_{3} f_{4} f_{24}}\right\} .
\end{array}\right.
\end{aligned}
$$

If $A(q)$ is any of the 8 eta quotients in collection VIII and $B(q)$ is either of the 2 eta quotients in collection XIV, then

$$
A_{(0)} \not \ni B_{(0)} .
$$

The Table for f_{1}^{4}

Table 9: Eta quotients with vanishing behaviour similar to f_{1}^{4}

Collection	\# of eta quotients	Collection	\# of eta quotients
1	72	II *	4
III ${ }^{\dagger}$	2	IV	6
V^{\dagger}	2	VI *	4
VII *	6	VIII *	8
IX*	4	X	4
XI	14	XII ${ }^{\dagger}$	2
XIII ${ }^{\dagger}$	2	XIV ${ }^{\dagger}$	2
XV	4	XVI ${ }^{\dagger}$	2
XVII	4	XVIII ${ }^{\dagger}$	2
XIX ${ }^{\dagger}$	6		

The Graph for f_{1}^{4}

The Graph for f_{1}^{4}

Figure: The grouping of the 150 eta-quotients in Table 9, which have vanishing coefficient behaviour similar to f_{1}^{4}

Thanks

Thank you for listening/watching.

