DISSECTIONS OF LACUNARY ETA QUOTIENTS AND IDENTICALLY
VANISHING COEFFICIENTS

TIM HUBER, JAMES MCLAUGHLIN, AND DONGXI YE

ABSTRACT. For any function A(q) => > ,ang" define
Ay :={n eN:a, =0}

Now suppose C(gq) and D(q) are two functions whose m-dissections are given by

C(g) = coGo(q™) + c1¢G1(a™) + - + cm—14"" Gm-1(q™),

D(q) = doGo(q™) + d1gG1(q™) + -+ + dm-1¢" " Gm-1(¢™).
If it is the case that ¢; =0 <= d; = 0,7 =0,1,...,m — 1, then we say that C(q) and D(q) have
similar m-dissections, and then it is also clear that C(oy = D(o), in which case we say that C(q)
and D(q) have identically vanishing coefficients.

In the present paper some new 4-dissections of particular eta quotients are developed. These are
used in conjunction with known 2- and 3-dissections to prove many results on the identical vanishing
of coefficients in sets of 4-, 6- and 8- lacunary eta quotients, results which found experimentally and
partially proved in another paper by the present authors.

Similar arguments allow many results of the form C() % Dy to be proved for many pairs of
lacunary eta quotients C'(q) and D(q).

1. INTRODUCTION

The work in the present paper continues to examine the phenomena described in a previous
paper of the authors [12], which was itself a continuation of work that began in [I1], which in turn
was motivated by a result of Han and Ono in [3].

The result of Han and Ono is recast in the next Theorem.

Theorem 1.1. (Han and Ono, [3, Theorem 1.4, page 307]) Define the sequences {a,} and {b,} by

(1.0.1) 13 = Zanq", ];3 =: anq”, where f; := H(l —q™), i€z
n=0 1 n=0 n=1

Then

(1.0.2) anp =0<= b, =0.

Moreover, we have that a,, = b, = 0 precisely for those non-negative n for which ordy(3n + 1) is
odd for some prime p =2 (mod 3).

Their result motivated the work in [I1], where the present authors investigated if a similar
situation held for other pairs of eta quotients (an eta quotient being a finite product of the form
Hj f;lj, for some 7 € N and some n; € Z, with a product with all n; > 0 being termed an eta
product). One example result from that paper is the following:
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If the sequences {a,}, {b,} and {c,} are defined by

A 00 f18 00 110 00
fl = E ang -, f2 = E bnq ) 5 — E tnq
n=0 2 n=0 3 n=0

then
ap=0<—=b,=0<=¢, =0,

with the criterion for a,, = b, = ¢, = 0 being that of Serre [17, page 210].

These investigations were continued in [12], where the results of extensive experimental searches
were described, and it was found that the phenomenon was quite common. To discuss this work
further, we introduce some notation. For a function A(q) =), -, ang" we write

Ay ={n€N:a, =0}

If A(q) and B(q) are two functions for which Ay = B(q), then for ease of discussion, we say that
the coefficients vanish identically, or that A(q) and B(q) have identically vanishing coefficients. If
Ay € B, we say that A(q) has vanishing behavior similar to B(q).

It was found that if A(q) is any one of f], r = 4,6, 8,10, 14 and 26 (lacunary eta quotients whose
vanishing coefficient behaviour was described by Serre [I7]) or f3f3 (the simplest case of an infinite
family of lacunary eta quotients stated by Ono and Robins [14] page 1027]), then in each case there
were a large numbers of eta quotients B(q) such that A9y = B(g). Further, in each case there were
also many other eta quotients C(q) such that Ay & Cg).

To illustrate the full complexity of the situation, we examine the case of f{ in more detail. Our
limited search (see [12] for details about the extent of this experimental search) found a total of 72
eta quotients B(q) for which it appeared ffl(o) = Byg)- In addition, this search found 78 additional

eta quotients with the property that for each such eta quotient C(q), it seemed ffl(o) g Clo)-

Moreover, it appears that all 150 eta quotients B(q) may be organized into 19 collections (labelled
I - XIX in what follows) in a tree-like structure by partially ordering the corresponding Bg) by
inclusion.

Table 1: Eta quotients with vanishing behaviour similar to f

Collection # of eta quotients in Collection || Collection # of eta quotients in Collection
I 72 II* 4
I f 2 v 6
Vi 2 VI * 4
VII * 6 VIII * 8
IX * 4 X 4
X1 14 XI1 ¥ 2
XI1T f 2 XV T 2
XV 4 XVI T 2
XVII 4 XVIII f 2
XIx t 6




Thus, for example, all 14 eta quotients in the collection labelled XI, where

XTI — { fof3t 1t fofd®  fifsfh Y fifs 1 P fefa
FSfeflefas’ fofifiafls’ fifea " f5f76" f3fafoa’ f 176" FIR Sy
5 B Rfifs fife £ Bfifs fifs }
fo 18 fofsfoa fofdfro” 3687 FRfEF3, f5 fls
appeared to have identically vanishing coefficients. Likewise for any other pair of eta quotients that
both lie in any of the other collections. Collection I is the collection containing fi. An asterisk
symbol * next to a group label in Table [l indicates that it is proven in the present paper that all
eta quotients in the corresponding group have identically vanishing coefficients. A dagger symbol |
next to a group label in Table [1| indicates either that the group members trivially have identically
vanishing coefficients (because the group contains just two members, one being the ¢ — —¢q partner
of the other) or that it was shown by the present authors in [12] that all eta quotients in the group
have identically vanishing coefficients.
The relationships between eta quotients in different collections is illustrated in Figure [T}

XIX

X XVII XV

0

Vi

FIGURE 1. The grouping of eta-quotients in Table[I} which have vanishing coefficient
behaviour similar to fi

Thus the arrow from VIII to XIV indicates that if A(q) is any of the 8 eta quotients in collection
VIII and B(q) is either of the 2 eta quotients in collection XIV, where

VIII:{f§f3f8f182 Nlsfly N3 f3fa fsfifoa Nf3fs [5fsha fifafd f2f3f62}
TR IS IS faf2fofay fafafifiy Fufefdfl’ fafa 7 fufife’ fifsfd’ fifiz '
13 318 iz flfgfg}
frfifefoa’ fofsfafaa)’

then A S B(p). A similar meaning for any other arrow in this figure is to be understood. The
inclusion just mentioned, between groups VIII and XIV, is one of several such inclusion results
indicated by the arrows in Figure [1| that are proven in the present paper.
We likewise summarize what experiment suggests about the collections of eta quotients with
vanishing coefficient behaviour similar to f{ in the following table and graph.
3
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Table 2: Eta quotients with vanishing behaviour similar to f{

Collection # of eta quotients in Collection || Collection # of eta quotients in Collection
I 42 Im* 4
I * 4 v 16
v i 2 VI T 2
VII * 4 VIII * 4
IX * 4 X 10
X1t 2 XIT * 4
XIII * 8 XIV * 4
XV 8 XVI T 2
XVII 8 XVIII 2
XIx t 2 XX T 2
XXT * 4 XXIT * 6
XXIIT | 2 XXIV * 4
XXV * 4 XXVI 4
XXVII 2 XXVIII 6

XXIX T 6

XXV

FIGURE 2. The grouping of eta-quotients in Table[2] which have vanishing coefficient
behaviour similar to fJ

As with Table [I} all eta quotients in the same collection (tagged with a Roman numeral) in
Table [2] appear to have identically vanishing coefficients, and the arrows in Figure 2 have the same
meaning as they did in Figure I} For example, the arrow from VIII to XXI indicates that if A(q)
is any of the 4 eta quotients in collection VIII and B(q) is any of the 4 eta quotients in collection
XXI, where

VIII:{ s fifls  fifh f1f3f4f11§)}
TEIAIS ) fof2 13y [ifafefan faféfan 1
cxro (IR )

Faf8 18 fafrafoa” fOfsfSy fsf? )’
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then A ;Cé B(g). Note that collection I is the one containing f9. The * and T symbols in Table
likewise have the same meaning as described above for their use in Table |1, In particular, a *
symbol next to a group label in Table [2| here also indicates that it is proven in the present paper
that all eta quotients in the corresponding group have identically vanishing coefficients.

A smaller number of results were derived for eta quotients with vanishing coefficient behaviour
similar to f7, r € {8,10,14,26} and f}f5. These are described later in the paper, where the tables
and diagrams are to be understood as above, with the arrows and the * and T symbols having the
same meaning as in this section.

We did not prove all of the hundreds of results on the vanishing of eta quotient coefficients sug-
gested by experiment and outlined in [I2]. We described several general methods in [I2), Section 8]
that enable results of the form Ay = B or A ; Byg) to be proved for eta quotients A(q)
and B(q), and did prove a large number of these by way of illustration of these methods. For
example, using the equivalent relation between the lacunarity and CM’ness of a cusp form found
by Serre [16], as well as Ribet’s characterization [I5] of a CM newform, we were able to prove that
ff(o) C Byg) for any B(q) of the 150 eta quotients whose coefficients are experimentally supposed
to have vanishing behaviour similar to that of f{, and similarly, f¢ 0) € Byg) for any eta quotient
B(q) obtained in the search associated with f{. In particular, we showed that f{l(o) ; B for any
eta quotient B(q) in the aforementioned collections XI, VIII, or XIV associated with Table |1} and
flﬁ(o) ; By for any eta quotient B(q) in the aforementioned collections VIII or XXI associated
with Table 21

This present paper concerns a method that was not used to any great extent in [12], but which can
also be used to derive results of the form Ay = Bg) or A(g) & Bg) for eta quotients A(q) and B(q).
This method involves constructing m-dissections of eta quotients whose dissection components differ
by a scalar. We define the m-dissection of a power series next.

Definition 1. By the m-dissection of a function G(q) = >, gng"™ We mean an expansion of the
form

(1.0.3) G(q) = 0Go(¢™) + 11qG1(@™) + - + Ym1¢™ Cr1 (™),

where each dissection component G;(¢"™) is not identically zero (v; = 0 is allowed). In other words,
for each i, 0 < i <m — 1,

0
(104) ’Ysz(qm) = ngnJriqmn'
n=0

Now suppose C(q) and D(q) are two functions whose m-dissections are given by
(1.0.5) C(q) = C()Go(qm) + c19G1 (qm) + -+ Cm71qm_1Gm,1(qm),
D(q) = doGo(q™) + d1gG1(q™) + -+ + dim-1¢" "' Grm1(q"™).

There are two cases of interest.

1) Suppose that ¢; =0 <= d; =0,i=0,1,...,m — 1, and then it is clear that C(5) = D q). If the
c1, d; satisfy the condition just stated, we say that C(q) and D(q) have similar m-dissections.

2) On the other hand, if ¢; # 0 and d; = 0 for one or more j € {0,1,...,m — 1} and otherwise
c; =0«<= D; =0, then C(O) ; D(O)

As will be shown, many pairs of eta quotients (C(q), D(q)) have m-dissections (here m is usually
a small integer such as 2, 3 or 4) that are related in one of the two ways just described, thus allowing
one of the two conclusions about vanishing coefficients to be drawn.

We remark in passing that in what follows, sometimes there may be more than one way to
arrive at, and express, the m-dissection of an eta quotient, in which case equating corresponding
components may possibly lead to some interesting identities.
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Remark: Before proceeding we note the following. Suppose A(q), B(q), C(q) and D(q) are eta
quotients and m > 1 is a positive integer. Let A'(q) := A(¢™), B'(¢q) := B(¢™), C'(¢q) := C(¢"™)
and D'(q) := D(¢™). Then it is easy to see that

(1.0.6) A(O) = B(O) <~ AQO) = BEO)’
Coy © Doy <= Cfo) C Dl)-

What this means is that some inclusion and equality results for groups of eta quotients in Table

and Figure [2] (recall that these represent groups of eta quotients with vanishing coefficient behaviour

similar to f) derive trivially from such results holding in the corresponding tables for, respectively,

f12 and f13 through, respectively, the dilations ¢ — ¢* and ¢ — ¢ (of course a similar statement

may be made about the table for f; and the dilation ¢ — ¢°). See [12] for more on this.

Further, if Table [1] and Figure [1] in their entirety represent the true situation for eta quotients
with vanishing coefficient behaviour similar to f{, then this table and graph are embedded in their
entirety, via the dilation ¢ — ¢, in the corresponding table and graph for £}, namely Table [3| and
Figure [3| below. We return to this in subsection [3.3]

2. SOME ELEMENTARY DISSECTION RESULTS

A fundamental result is the Jacobi triple product identity,

o0

(2.0.1) S ()" = (2¢,0/% 6% o,

n=—oo

stated by Jacobi [I3], but first proved by Gauss [2]. The identities in the Lemma are special
cases of this identity.

Lemma 2.1.

A S
(2.0.2) = > q,

S
(2.0.3) I i (—1)"g™
f2 n=-—00 ’

The expansions in Lemma [2.1| are fundamental in the derivation of m-dissections of eta quotients,
and easily lead to the first two 2-dissections in Lemma for example.

We often make the substitution ¢ — —¢q in an eta quotient but wish to write the resulting product
also as an eta quotient. This leads to the following frequently employed identity:

@) _ B
7 0oo(qtq" ) fifs

If g(q) = f(—q), for simplicity we will call g(q) the “¢ — —q partner” of f(q). The relevance in
the present context is that a function and its ¢ — —q partner have identically vanishing coefficients.

(2.0.4) (=4 —@)o0 = (

2.1. 2-Dissections.

Lemma 2.2. The following 2-dissections hold:

f3 f3 I
2.1.1 _ 9716
@1.1) 2 n A
(2.1.2) U B

f2 213 qu’
6



R_B_, B

(2.1.3) = f4f
(2.1.5) JE: gﬁ+ f}j
N )

s 1 1313
(2.1.9) = f22f§ ~aTi
- ).
e PRl vty rrm
e oA (el h)
(2.1.13) g _ %}E B 2qf§f;j}§fz4’
(2.1.14) f”iz: g;}i (E}Eﬁi +2qf§f;4f}§fz4>.

Proof. The first two of these follow from separating the corresponding series expansion at (2.0.2)
and (2.0.3)), respectively, into sums over odd and even indices n, and then using the Jacobi triple
product identity (2.0.1)) identity to convert the resulting sums back into inﬁnite products.

Identity ([2.1.3)) is Equation (1.35) in [§], and is derived from (|2 upon the replacement
q— —q.

Identities (2.1.5) and (2.1.6) are stated in Lemma 2.1 of [9], identity (2.1.8) is stated in Lemma
2.4 of [9], and (2.1.7) is derived from the latter identity after replacing ¢ with —g. Finally, (2.1.10))
is stated in Lemma 2.3 of [9], and (2.1.9) follows from ([2.1.10) once again upon replacing g with
_q‘

All four of the 2-dissections (2.1.11)) - (2.1.14)) may be found in [7, Section 30.10]. O

Trivially, the series expansions of eta quotients A(q) and A(—¢q) have identically vanishing coef-
ficients, so we would like to develop less trivial criteria. The first of these that we have is contained
in the following lemma. Although still elementary, it does provide an explanation for many pairs
of eta quotients with identically vanishing coefficients.

Lemma 2.3. Suppose A(q) and B(q) are functions with the indicated 2-dissections.

(2.1.15) A(g) = Ao(¢®) + ¢A1 (4%,

B(q) = Bo(¢*) + qB1(¢°).
7



Suppose
(2.1.16) Ao(q*)B1(¢?) = kA1(¢*)Bo(d?),

for some non-zero real number k. For any even function C(q?), define the pair of functions F(q).
G(q) by

(2.1.17) F(q) == A(g)C(¢°), G(q) := B(q) BO(qQ)C(ff)

Then

(2.1.18) Flo) = Go)-

Proof. From and ,

(2.1.19) A(q)Bo(¢*)C(q%) = Ao(¢*) Bo(¢*)C(¢*) + qA1(¢*) Bo(4*)C (%),
B(q)Ao(q°)C(¢%) = Bo(q*) Ao(¢*)C (%) + ¢B1(q*) Ao(¢*)C(q?)

= Ao(¢*)Bo(¢*)C(¢*) + kqA1(¢*) Bo(a*)C(4%),

and thus both products on the left sides at (2.1.19)) have identical 2-dissections, up to the factor x,
and hence have identically vanishing coefficients. The result at (2.1.18) follows upon making the
replacement C(¢%) — C(¢?)/Bo(q?). O

Theorem 2.1. Let C(g?) be any even eta quotient. Let F(q) and G(q) be any pair of eta quotients
in the following list:

B3 o BESS o BB fife oy 1 FLFE° 2}
(2.1.20) {ffxq%.@ﬁﬁQCQ)’fLﬁﬁJx ) @y
Then

Proof. The claim follows for the first and second eta quotient, since the second is derived from the

first upon replacing ¢ with —¢ and using (2.0.4)).
In Lemma let

_f _ 5
Ag) = 5 B(q) = I

so that (2.1.16]) holds (with x = 3) by (2.1.4) and ({2.1.5)), thus proving the claim for the first and

third eta quotient. The claim for the fourth eta quotient follows upon replacing ¢ with —g in the
third eta quotient and again using (2.0.4]). O

2.2. 3-Dissections.

Lemma 2.4. The following 3-dissections hold.

3 ffd | I
(2.2.1) )
fifs _ fahofls  fofss
(222 o fRf2f% Ths
_ 1, sl
(2:2:) fa fis 2 fefo'
(2.2.4) f3_ fs | 2affofse

7207 72 hafs
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o fefS fers 2 [ofis
2.2.5 Iz _ 2% 4q ,
(225) T A S
(2.2.6) f12f42 _ f§f§2f1lér) _ QQf3f172f?8 + 4q2f§f162f§8
o 5 1 £ 85 ¢

Proof. These are all known results or are easy consequences of known results. Identities (2.2.1)
and may be found in [7, page 132], for example, and identities (2.2.2)) and (2.2.4]) are the
q — —q partners, respectively, of the former two identities.

The identity was proven in [I0, Theorem 1], and is its ¢ — —q partner. O

The next 3-dissection result needs some preliminary notation and results. Recall that the Borwein
theta functions a(q), b(¢) and ¢(q) are defined by

> 2 2 f5f5 f f
2.2.7 = me+mn+n® _ 2J6 4q 4J12
(227 = 2 ¢ mranm g

o 3
b =y m m2+mn+n? — filj
() mmz_oo q 7,
o 3
c(q) = Z q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 _ 3q1/3§‘?’

where w = exp(27i/3). The infinite product representations for a(q), b(¢q) and c(q) were proven by
the authors in [IJ.

Note also that the 2-dissections of the infinite products associated with b(g) and ¢(q), namely
f3/fs and f3/f1, are given in Lemma and these 2-dissections are used elsewhere, for example
in Lemma to prove other dissection results.

Lemma 2.5. The following 3-dissections hold.

(2.2.8) £ = al@®) f3 — 3afs,
1 fs 13 3 2 f§
(2.2.9) :<( 12 +3¢°2a(g®) + 94222 ) .
foofse f3 fi
Proof. The identity at (2.2.8) was proven in [§], where it was stated as a 3-dissection of b(q). The
result (2.2.9) was proven in [6], where it was given as a 3-dissection of 1/b(q). O

Theorem 2.2. Let C(q¢3) be any eta quotient whose series expansion contains only powers of ¢>.
Let F(q) and G(q) be any pair of eta quotients from one the following lists:

fz f1fa fifs 0 sy F3fafiz ., 3}
(2.2.10) {fl C(q°), B ——C(—q )7ff C(q°), flgﬁfﬁgc( ) ¢
Jifs ISfs f3f3 foa 1813 fou 3 }
2. JiJ8 C C C
(22.11) {f4 (@), 75 C (0 >f1f8f12 (@) 557 O g
18 36
9. 60 3 2 C .3 C f1f4f6 f9f360 }
(22.12) {ﬁ (@) G575 (Q)ﬁh(q)h iz, (1)
Then

Proof. For (2.2.10)), the result holds for the first and third eta quotients by (2.2.1)) and (2.2.3). The
claim holds more generally since the second and fourth eta quotients are the ¢ — —¢q partners of
the first and third, respectively.
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For (2.2.11]), the claims follow for the first and third eta quotients, by using, respectively, (2.2.3))

combined with (2.2.2)) (with ¢ replaced with ¢?), and (2.2.1)) combined with (2.2.4)) (with g replaced
with ¢?) to get

s _ 1L hfs _ <f92 _ 261f3f128> <f6f24f356 _ q2f18f72>
fa fa fa f18 fefo T lisl? f36 ’
IR _ I3 1 _ <f6f92 . Qf128> < 36 n 2q2f122f18f72>
fifd KL f3f f3fis  fo fif% fofoafss )

The claims in the theorem hold generally since the second and fourth eta quotients are the ¢ — —q
partners of the first and third, respectively.

For (2.2.12)), the claim for the first and third eta quotients is an immediate consequence of (2.2.8|)

and (2.2.9)), and once more holds generally as the second and fourth eta quotients are again the
q — —q partners of the first and third, respectively.
O

Unless there is cancellation in the expansion of one of m-dissections, if A(g) and B(q) have
identically vanishing coefficients, then trivially so have their squares. However it turns out that
there is an additional eta quotient whose series expansion has coefficients that vanish identically

with those of the squares of the eta quotients at (2.2.10)).

Corollary 2.1. Let C(q¢3) be any eta quotient with a power series expansion in ¢>. Let F(q) and
G(q) be any pair of eta quotients from the following list:

(2.2.14)
f3 sy JESE s STIE s [T s Jifofo oy v [3f3 iz 3}
= , C(—q°), C , =22 (—q"), c C(— .
{f% (), T Cd) O, Ty €00, 7 7O, T g )
Then

Proof. In light of the remark above and the fact that the sixth eta quotient in the list is the ¢ — —¢q
partner of the fifth, all that is necessary is to prove the statement for F'(q) equal to the first eta
quotient in the list and G(q) equal to the fifth. However, this is immediate from the facts that

(-2.1) and 22:3) give that

(2.2.16) Iy f8fs | 2afsfofis | ¢fis

>+ +

f12 B f:% 18 f3 f92 7
(2.217) htbafe _ JEf3fe _ Jéfs  afefofis  24°fis
- f3 fo fifs  fifd f3 g

0

Another variation runs as follows. It can easily be seen from and that f2/f1 and
f2f6/(f2f3) have similar 3-dissections (where “similar” has the meaning assigned following ([L.0.5])).
The same is true if the dilation ¢ — ¢* is applied to this pair of eta quotients, where ¢ is a positive
integer, t # 0 (mod 3). We consider the particular cases t = 2 and ¢ = 4 (to be used later) so that
if C(¢%) is any eta quotient with a power series expansion in ¢3 and F(q) and G(q) are any pair of
eta quotients from one of the following list,

2 2 2 2
(2.2.18) {fgcmi’m Lo 2oy, f}j};a—q%} ,
I8 sy f8 4 sy fifa ., 5 fifu _3}
(2:2.19) {f4C(q ) f40( ) f8f12c(q ) f8f12C( e
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then F(O) = G(O)

2.3. 4-Dissections. Remark: In follows, we sometimes leave a 4-dissection factored in the form
(A(¢") +¢B(g")(C(q") + ¢’ D(¢")),

while still referring to it as the “4-dissection”.

Before stating the next general vanishing coefficient result, we require the following preliminary
results.

Lemma 2.6. The following 4-dissections hold.

5 10 24 N\ 2
23 wi= (- 5) (- 4q2f4f?6>
L ( 7 fm)( 2 42f4f{‘6>2
(232) f12f23 f4 2 + 2 fg 7 %6_‘_ 82
Proof. For (2.3.1)), write
ﬁh—?%)

and use (2.1.2) and (2.1.9), with ¢ replaced with ¢? in the latter identity.
Likewise, for (2.3.2)), write

1 o fF 1
=Ji
187 R (f3)?
and use (2.1.1) and (2.1.10)), with ¢ replaced with ¢? in the latter identity. O

Theorem 2.3. Let C(q*) be any eta quotient with a power series expansion in q*. Let F(q) and
G(q) be any pair of eta quotients in the following list:

(2.3.3) {ﬁﬁcmﬁﬁﬁowﬁ LI gy, S S c<>}
7l @) s 737
Then

Proof. From (2.3.1)) and (2.3.2), elementary algebra shows that, up to sign, the first and third eta
quotients at (2.3.3) have the same 4-dissections and thus have identically vanishing coefficients.
The second and fourth eta quotients at (2.3.3)) are the ¢ — —q partners of the first and third,

respectively. This completes the proof. ([l
Lemma 2.7. The following 4—dissectz’0n5 hold:

f2 fs 3 fis 2 f1 6
(2.3.5) = = + 2¢q + 4q ,

T T f4 16 3

3 f16 5 2 f1fis 5 2¢f3 23,2 8111

2.3.6) fifs = ( —2q —4q = - — 4 fs fis + — 3
080 BE =g 0 ) \am ) T am BRI TR

P 8 s 2 fo 16 3f16
2.3.7 == — 6g + 12¢ — 8¢q
LI B 7 ﬁ? 7o

Proof. The first expansion at (| follows upon writing

f2_2f2 1
1 4ﬁh



and using (2.1.1) and (2.1.10)), with ¢ replaced with ¢? in the latter identity. Likewise, (2.3.6)

follows after writing
f2
=31,
f2
and using (|2 and -, also with ¢ replaced with ¢? in the latter identity.
-

Finally, ) follows similarly after writing

" <f)
13 f2
and using (2.1.2)). O

Theorem 2.4. Let C(q*) be any eta quotient whose series expansion contains only powers of q*.
Let F(q) and G(q) be any pair of eta quotients in the following list:

fo 1 F2F3 F2A 8 o fod 51 }
(2.3.8) {ﬁ o), Hrew, o, Show. Bhow. Elow

Then

Proof. The claim holds if F'(¢) and G(q) are any two of the first, third and fifth eta quotients in
the list, by (2.3.5)-(2.3.7). The full claim follows since the second, fourth and sixth eta quotients
in the list are the ¢ — —q partners of the first, third and fifth, respectively. O

Lemma 2.8. The following 4-dissections hold:
[3fs _ [ifisfss | fahefsy o fifas 3f8f12f48

(2:3.10) fi fRfark T4 f12fa8 1 f16 f4f16f247

f2f3 - f§6f24 f8f16f24 2f8f24f48 3 f8f48
(23.10) F2 T s rhts L fifhe T Fifh T
(2.3.12) 218 Fisfsy 3qf12f16f§’4 Jr3qugf12f48 3 Rh s

fg’f?? fg’ffs fafas fszlﬁ f§f§6f§4
Proof. From ([2.1.12)),

3 f3 _ <f4f16f224 +q J2 s > Fofo = (f4f16f224 +q J8 18 > <f4f126f§14 _ q2f§‘f12ffs>
h Fshiafss @ fiofas Fshiofss @ fiofas f3fi2fis fa ST 34

where the second equality is a result of replacing ¢ with ¢? in (2.1.7]) and applying the result to the
fofe factor. Identity (2.3.10f) follows.

Likewise,

fafs _ (f4f16f224 +q f8f48> (. <f4f16f224 ty f8f48> fsf2a <f4f126f§14 n q2f§1f12ffg)

fifg fsfiafss o) Fofo fefiafas ot B \fBhafls  fafisfs )’
where the second equality is a consequence of replacing ¢ by ¢? in (2.1.8) and applying the result

to the 1/(fafs) factor. Identity (2.3.11)) similarly follows.
The final identity (2.3.12]) is an immediate consequence of using ([2.1.11f) to write

ﬁﬁ:<hﬁf:<mﬁtﬂﬁMhﬁ3
I3r3 faf3 fsfas  fafiefoa )

12



Theorem 2.5. Let C(q*) be any eta quotient whose series expansion contains only powers of q*.
Let F(q) and G(q) be any pair of eta quotients in the following list:

(2.3.13)
f23f3 f1f4f6 f2f3ffff§2 f1f4f6f12 f1f4f6 4 f§f§’f12 4 }
== C , C C C , C Lp.
{ 7 OO g O g OO B g, O s, ) i €D
Then

Proof. By (12.3.10)-(2.3.12)), the claim holds if F'(q) and G(q) are any two of the first, third and fifth
eta quotients in the list. The claims in the theorem hold generally since the second, fourth and
sixth eta quotients in the list are the ¢ — —q partners of the first, third and fifth, respectively. [

Lemma 2.9. The following 4-dissections hold:
hfife _ fSfiefa f8f12f48 3 o f1f1615, +3q s fafs f31fas

(2:3.15) fs  fus f4f16f24 f31% s fi2f16
(2.3.16) L8 f2fafe f8f12f48 3 o fsfiafiofon 30 3 [ [Taf2ulas
o faf3 I3 fas f4 fi6 /31 f1 fas Bhe
N fafshefy  fifeafis 2f4f16f24 5 [if31fas
(2:3.17) fafs — flofss 1 IS fie f8f12f48 +a e
(2.3.18) fofsfd _ f§f12f16f24+ fgf12f4s+ 5 fafr6f3, n 3f8f224f48.

q
fi fafas f4f16f24 f3 fiafag J16
Proof. The proofs are similar to those of the 4-dissections in Lemma From (2.1.11)),

1,0 25— <f16f224 B Qf82f12f48> 3 <f16f224 q,fg2f12f48) <f§’ 3q2fff§’4>

f3 fafais  fafisfoa ) fo \ fsfais  fifieofoa for fsfh

where the second equality is a consequence of applying (2.1.3)), with ¢ replaced with ¢?, to the

13/ fe factor. Identity (2.3.15) follows.
Likewise,

L8 <f16f224 B Qf82f12f48> fo _ <f16f224 B Qf82f12f48) 1 <f§’+ 3q2fff§4>
I3 fa fafas  fafiefoa ) f3 fafas  fafiefaa ) [1f2a \ fou faft
The second equality in the calculation above is a result of replacing ¢ with ¢? in (2.1.4)) and applying

the result to the fs/f5 factor. Identity (2.3.16]) follows.
Next, by similar reasoning,

Sil <f16f24 Qf82f12f48) fo <f16f224 _ Qf82f12f48> fi13y <f83f122 _ q2f§4>
fs fs fsfas  fafiefoa ) 13 fsfas  fafiefoa ) fsfin \ fifou fz )’
this time the second equality being a consequence of applying (2.1.6)), once again with ¢ replaced
with ¢2, to the fo/fs factor. Identity (2.3.17] m likewise follows

Finally, employing (2.1.12) and replacing ¢ by ¢* in and applying the result to the f3/f2

factor below,

fsf 2o <f4f16f224 n f48fsQCJ> fﬁ B <f4f16f224 n Qf§f48> (fé”ffz n q2f§’4>.

f’? fiafisfs  fisfoa ) fo \fshiafis = fiofoa ) \f2faa  fs

This proves (2.3.18]). (|
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Theorem 2.6. Let C(q*) be any eta quotient whose series expansion contains only powers of q*.
Let F(q) and G(q) be any pair of eta quotients in the following list:

f1f2f6 o fafsfie o oan [ififefoa ., an f3fSfoa 4
2.3.19 C 227 C 2= C
(23.19) { By, Bl B RIogy, Bl o),
fifsfh I3 fafsfiy fofsfaf§ o 4 JLIRSG }
e O e L ) =ere 2 C
Totafot 5 C) i O T O, e ),
Then

Proof. By —, the claim holds if F(¢) and G(q) are any two of the first, third, fifth
and seventh eta quotients in the list. The claims in the theorem hold generally since the second,
fourth, sixth and eighth eta quotients in the list are the ¢ — —q partners of the first, third, fifth
and seventh, respectively. O

The next dissection results are not quite so straightforward, and some preliminary identities are
necessary to simplify some of the components of these 4-dissections.

Lemma 2.10. The following identities hold.
£ RBRfE 6afifihs

(2.3.21) A Ffife
313 fif§ 2fafufd

2.3.22 =

( ) fif? i I3 faf?y fiz
IS f3f12 B 317 2qfaf

(2.3.23) s N B

(2.3.24) iSSPty 2f2fi [1a-

13 f3
Proof. These all follow directly from various parts of Lemma upon using the 2-dissections
stated in this lemma to replace f}/fs, f3/fi, f3/f1 and f1/f; in each of the left sides above, and

then simplifying. O
Lemma 2.11. The following 4-dissections hold:
Nf3 1813 f3f5 2q" [16.f3s 3 f12f 7 f1s
2.3.25 = — 4q —4q
( ) fo il f4f12f16:728Jr fs fafas
f%f:& _ f89f224 B f8f24 _ 24 f4f16f43 3f16f48
(23:20) fo  Bhafbds  ThhefE 0 fhe 0 fa
Proof. By first using (2.1.2)) and (2.1.5)), write
BA_RE (R ) (5 0
f2 f2 fu 13 ffs fs ) \ fi2 f3 Ja
s f16> <f£’ (f8f12f24 2f8f122f16f48> f12>
- <fo%6 ) \fe B Tt )R

R . <f8f12 _ 2f§’f16f224) g (_inng126 n 2f86f12f48> 4 3 J12fi6f1s
- fifisfas 1 i1 fifas 1 fafg f3f16f24 1 fafoa
where the third expression above follows from the second upon using , with ¢ replaced with
q?, to replace fZ/f3. The fourth expression above follows from the third upon multiplying out and
14



collecting powers of ¢ in the same arithmetic progressions modulo 4. That the coefficient of ¢ above
is equal to the coefficient of ¢ on the right side of follows from multiplying the identity
t (2.3.22)) across by f3/f?, then replacing ¢ with ¢?, and finally slightly rearranging the resulting
identity. Likewise, that the coefficient of ¢ above is equal to the coefficient of ¢? on the right side
of follows from multiplying the identity at across by 2 and then replacing ¢ with
q*.
In a similar manner, using , with ¢ replaced with ¢, and employing , write

f?ﬁ’,:ﬁﬁ:<ﬁ_3 f12f2>( 31 _9 3f428>
fe  f3fs

f12 fa 18] \ o fis L
_ (ff 3¢ I < faf§ 2 9 2fz%f16f24f48>) ( 5 9 3f48>

f12 f4 f12f16f48 1 foflz f122f4%8 f24
_ (fffél 6 4f8f24f48> 3 B 124 24" fafrefis P <6f4f16f24 B 2f2?ffs)
f§2f4g fife T fiefis faf12 fsfihfas fiafoa )

The third expression follows from the second upon using , with ¢ replaced with ¢?, to re-
place f2/ f62. The fourth expression again follows from the third upon multiplying out and collecting
powers of ¢ in the same arithmetic progressions modulo 4. That the first term of the 4-dissection
above is equal to the first term in the 4-dissection on the right side of ([2.3.26] follows from mul-
tiplying the identity at across by 1/ fg, then replacing ¢ with ¢* and slightly rearranging
the resulting identity. Likewise, that the coefficient of ¢3 in the 4-dissection above is equal to the
coefficient of ¢® on the right side of follows from multiplying the identity at across
by 2/(f2fsf12) and then replacing ¢ with ¢*. O

Theorem 2.7. Let C(q*) be any eta quotient whose series expansion contains only powers of q*.
Let F(q) and G(q) be any pair of eta quotients in the following list:

f1f3 szfé) 4 f§f3f12 4 f2f6 }
(2.5.27) { 7, O s O gy € g O
Then

Proof. The claim holds if F'(¢) and G(q) are the first and third eta quotients in the list, by ([2.3.25))
and ([2.3.26), and holds generally since the second and fourth eta quotients in the list are the ¢ — —¢q
partners of the first and third, respectively. O

The next collection of 4-dissection results are of a slightly different character as the components of
the dissections are not simple quotients of the [ | j f;” , but instead involve more general Jacobi triple
products. Further, the first collection of 4-dissection results above were discovered by examining
series expansions of eta quotients in the table of such eta quotients with vanishing coeflicient
behaviour similar to that of f{, while the next collection of 4-dissection results were derived by
similarly examining eta quotients in the corresponding table for f7.

We recall the notation, for a an integer and m a positive integer (see, for example, [4]),

(2.3.29) Jam = (=¢",—¢""", 4" ¢™ )

We need the following 2-dissections of f; and 1/f;.
15



Lemma 2.12. The following 2-dissections hold.

(2.3.30) 1= :Z (J6,16 — aJ2,16)
(2.3.31) 1o (J6 16+ ¢J2,16 ) -
fl f2
Proof. The identity was proven by Hirschhorn [5, Lemma 1], and isits ¢ = —q
partner. 0

Before we get to the next lemma, we make a general comment. In several of the previous
lemmas, and likewise in the upcoming Lemma [2.13] dissections of many eta quotients are derived
by “multiplying together” (in a certain sense) ex1st1ng dissections, after rewriting the eta quotient
as a product of eta quotients which already have known dissections. We state a simple example of
a family of four eta quotients, containing a free integer parameter, derived in this way such that
all four have identically vanishing coefficients.

Example 1. Let m be a positive integer and let F(q) and G(q) be any two eta quotients in the
following list:

(2.3’32) {lef2m f§f2m flzfz:fm fﬁr)fzi))m }

fo 7 FRfE fafomSsm FRSZ fom fam
Then
Foy) = Go)-

Proof. This follows directly after using (2.1.1)), (2.1.2), and replacing ¢ ¢*™ in (2.3.30) and ([2.3.31].
O

It follows that all four eta quotients have similar 4-dissections.

Note that all the eta quotients at (2.3.32)) are lacunary for every positive integer m, following an
observation of Ono and Robins [14, page 1023] on the product of two superlacunary eta quotients.

The 2-dissections at (2.3.30) and (2.3.31) above are central in the proof of the following 4-
dissections.

Lemma 2.13. The following 4-dissections hold.

(2.3.33) i _ L < /2 -2 f16> (J12,32 + ¢°Ja32)
2 1R\ 7 o
(2.3.34) fi= ‘Ji: <f4f16 f16> Ji232 — ¢ Ju32)
£ < 3 f16> < f3° 2f42f146> 7 27
2.3.35 === —2 4 J —q°J. ,
( ) Iz T\ 2 fg f4f16+ q 12 (12,32 — ¢ Ja32)
R A flﬁ) < B 2f4f16> 7 2 7
(2.3.36) fifs = 7 <f42f126 2 fs 2L 4 12 (12,32 + ¢*Ja32)
f3 _ fi2 ( fafi6f3s f8f48> (fsf:aszg 2f16f96) ; 27
(2:3.37) A, <f8f12f48 Tt ) Foorfos T4 Foafus ) V22 T )
fifafe _ fafoa [ fafief5 f8f48> <f8f32ffs B 2f16f96> Y
(2.3.38) I3 f3 fr2 <f8f12f48 Trefar) \fioforfos  © faofas (1202 = ¢ Jaz2)
16



(2.3.39)

(2.3.40)

(2.3.41)

(2.3.42)

(2.3.43)

(2.3.44)

(2.3.45)

(2.3.46)

(2.3.47)

(2.3.48)

(2.3.49)

(2.3.50)

(2.3.51)

(2.3.52)

(2.3.53)

(2.3.54)

) (j36,96 + q6j12,96) )

) (j36,96 - q6j12,96) s

> (j36,96 + q6j12,96) )

> (J36,96 — ¢°J12,96) -

> (12,32 + ¢*Ju32) ,

> (12,32 — ¢*Ju32)

h_ fa (f16f24 B f8f12f48> <f32f428 o fisfeafos
fs o \fsfis  Ufafofar) \Fiofos  © Fsfafus
fofsfe _ fsho <f16f24 n f8f12f48> <f32ffs _I_q2f126f24f96
f1 faf \ fsfas f4f16f24 f16fo6 f8f32f18
f1 _ f4 < fs B f16> <f32f4%8 _q2f126f24f96
f6 f12 f4f16 f8 f16f96 f8f32f48
118 _ St < 5 f16> <f32ffs _|_q2f16f24f96
/3 fira \fif% f8 Jos f16 f8f32fa8
f3 fs < 810 + 4f4f16q > (f4f16f224 + f48f§q
f1f23f6 f3f 12 fi2fagfs  fiefoa
fafs f4 ( 20 4f4f16q ) <f4f16f224 n fasf2q
fifs — fs \fifis 12 fi2fasfs  fief2a
f25f3 _ f4 ( _ 2f42ff16> < f§54 3f48> 2
o fs \F2fL 4q 12 22 -2 Fos (12,32 — ¢ Ja32)
18 f8f12< 8 2ffff6>< S5 3f48) 2
Iz 1\ 2 +4 12 2 +2 Fos (J12,32 + ¢°Ju32) ,
23 f4< 5 3f428> 9
o s \FB1A 2q 7, (J12,32 — ¢°Ju32) ,
e f12< 15 3f48> 2
A +2 Tos (12,32 + ¢ Ja32)
fifs 1 <f16f224 f8f12f48> . 27 \3
s~ 5\ fsfis  hafiofon (202 + ¢ Jaz2) ™
hisfs _f<f16f224 f8f12f48> ;97 N3
B B\ Jsfis  Chifofon (202 = 4" Jaz2) ™
ftfe _ fe ( g f16> (f8f32f48 2f16f96> - 9 7
TN i 2 IE f16.f24.foe * f32f18 (22 + 0" Jaz2)
fifs _ fifos ( £ flﬁ) <f8f32f48 2f16f96
fe s \fifé f8 f16f24fo6 f32f48

- > (j12,32 - q2j4,32) )

N _ha <f16f224 g 12 fas
I3 fs \ fsfis " fafiofos
fifg _ 1 <f16f224 f3f12f18
f3f fi\ fefs Tt1frefo
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(2.3.55)

f22f3 f4f24 <f§f122 o 2f24)2(f4f16f24 f48f8 ) ( f8f32fz%8 +q2f96f126> (j +q2j )
AIE J1S \fifa Fiofasfs  “fiofos) \ foafoofic Faafas ) 12 L3
(2.3.56)
1§ fafa <f122f8 ﬁ>2(f4f16f24 3 f1s ) ( fsfaafls 2f16f96> (Fis2 — @ J1ss)
Rfs  Rfe \fra T T ) \Gshefs  Thofa) \Fifutes 7 frafis) e
fE _§4< f16>< 20 6f12f48> 7 67
(2.3.57) I 11\ 72 N7 +4 1, (J36,.96 + 4" J12,96) »
f12f6 _ 2( §’ f16>< 214? _ 6f12f48> 7 _ 67
(2.3.58) B P\ 2L 4q 12 (J36,96 — ¢°J12,96)
ff ( L J0126> 7 67
(2.3.59) ffe 15 \ 22 2q T (J36,96 + 4°J12,96)
f%fa_fm<f§_ f16>— 67
(2.3.60) B \ 2 L (J36,96 — 4°J12,96)
fife _ 1 [ fi6f3s f8f12f48> . 67
(2:3.61) hfs 15 (f8f48 Uufiofar ) (2000 + 0 i206)
Ll fe <f16f224 f8f12f48) ;67
(2:3.62) fofs  for \ Jsfis " fafrofoe (Vo696 =" T1200) -

Proof. The expansion (2.3.33)) follows upon writing f2/f2 = (f?/f2)(1/f2) and then employing
and (2.3.31)), with g replaced with ¢? in the latter identity. The expansion (2.3.34]) follows
similarly after writing fZ = (f2/f2)f2 and then employing and applying (2.3.30)), again with
q replaced with ¢.

The dissection is a consequence of writing f2/f4 as f2(1/f4) and using and
(2.1.10), with ¢ replaced with ¢?. The dissection (2.3.36)) is similarly a consequence of writing fZf3
as (f£/f2)fy and using (2.3.33) and (2.1.9)), also with g replaced with ¢.

Use and (2.1.12)) to write

f3 _ <f4f16f224 tq f8f48) fo 1 fifafs _ <f4f16f224 f8f48> fzf
f1 fsfi2fas f16f24 fa fo’ I3 Jsf12fas f16f24 f6

Then (2.3.37) follows upon replacing ¢ by ¢ in (2.1.12) and replacing ¢ by ¢? in (2.3.31) and

applying the results to the second and third factors on the right side of the first equation above. In

a similar fashion, follows after replacing ¢ by ¢ in and a second time and applying

the results to the second and third factors on the right side of the second equation above. Some

further simple algebraic manipulation is needed to make the similarity of the right sides of

and more apparent. The proofs of ([2.3.39)) and are very similar and so are omitted.
The dissections at (2.3.41)) and ([2.3.42]) follow upon writing

fi_fifl f12f6_f1f6f
65

8 ffefs 5 o f
and then using (2.1.2)) and either , with ¢ replaced with ¢?, and , with ¢ replaced
with ¢% or ith q replaced with ¢?, and , with ¢ replaced with ¢°.

The proofs of the remaining dissections are similar. We sketch the idea and then subsequently
confine ourselves to listing the identities involved when the method is applied. In the case of each
4-dissection, a specified identity or identities is used to express the left side, say L(q), in the form
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L(q) = A1(q¢*)A2(¢?), and then a known 2-dissection for As(q), with ¢ replaced with ¢, is used to
give a 4-dissection of As(g?). This procedure produces the stated 4-dissection of L(q).

Identity (2.3.43) uses (2.1.12)), (2.1.10) and (2.3.31)), with ¢ replaced with ¢? in the latter two
identities. Identity (2.3.44) similarly requires (2.1.12)), (2.1.9) and (2.3.30)).

For (2.3.45), Write fs f3 /fe = (f2/f6)(f2)(f2) and use (2.1.2)), with g replaced with ¢, and
employ 1_’ and , both with ¢ replaced with ¢2. Identity (2.3.46) follows similarly upon
writing fg/(f3 ) = ( 6/(f3f12)) (1/£3)(1/ f2) f7, and using (2.1.1)), (2.1.10) and (2.3.31).

The proofs of the identities (2.3.47) and (2.3.48) are similar to those of ([2.3.45) and (2.3.46)),
except simpler, writing, respectively, fof2/fs = (f3/fe)fo and f§/(f2f2) = (fs/(f3 %)) (1/f2) fr5-

The dissection follows as consequence of employing (2.1.11)) and , while
is derived similarly from using in combination with (2.3.30)).

Identity (2.3.51)) follows upon writing f2fs/f5 as (f1 /fg)(fﬁ/fg)(l/fg) and using -
and (2.3.31). Identity (2.3.52) follows upon writing f2fa/ fs as (f2/f2)(f2/ fe)(f2) and using 1_'
(2.1.11)) and (2.3.30)).

As with (2.3.49)) and (2.3.50E, the claims in (2.3.53) and ([2.3.54]) follow from using (2.1.11)) in

combination with either (2.3.30]) or (2.3.31)).

For (2.3.55) and (2.3.56), write

BWEHOE G D@
fif§ 18 fife) \f2) \f2)’ faf3 f2 fs fa) \ fo
and then use (2.1.11)), (2.1.12)), (2.3.30) and (2.3.31)).

To get (2.3.57) and (2.3.58), use (2.1.2), [2.1.9), (2.1.10), (2-3.30) and (2.3.31)) (with ¢ replaced
with ¢% in some instances).

The proofs of (2.3.59) and ([2.3.60) use (2.1.2]) in combination with either (2.3.30) or (2.3.31]),
also with ¢ replaced with ¢% in the latter identity.

The dissections (2.3.61]) and (2.3.62)) follow from using (2.1.11]) with either (2.3.30) or (2.3.31)),

again with g replaced with ¢% in the latter identity.

O

Theorem 2.8. Let C(q*) be any eta quotient with a power series expansion in q*. Let F(q) and
G(q) be any pair of eta quotients from one the following lists:

(2363 (o) o) Bleh Bhew).

2301 {rizew) Laow) SHew) Bliew),

eam {fow) g o Apptiow) Jatpew)
ase  {ow) Frirew) REERew SRR 0w,
2367 {Bow) ot B o B e g |

(g g i e
(2.3.69) {figgc(q) };2&0( . %C(q“) f2ffs

;



Pl e RfS . B RS 4}

(2370) e, 2 BRm ) g O g
f1f3 12 13 f3f12 fifif3 f3f8fiz 4 }

(2:3.71) { 7 C@) g O s O s Ol ¢
2 3

eam {ffew) Jhow IR oW il ),
Julg oay Bfshe o ay AFRSE o 4y fofsfifie 4}

(2373) o Srow grp e BEEEow ],
Nfs f2f3f6f120 n S3f3fi8 oo A3 c 4}

(2:3.74) {fgfsc(q)’ nh C@) 5 e O e Ol g
F2oa BB o PR o SRS }

3. ——C C C C

(2375) {fo ( ) f1f4f6 (q)’ f2f1125 (q) f2f4f15 ( )
o f3 o fEifefaa o an [5fefoa 4}

(2:3.76) {f2f6 (@) iy, €)= Cl) ol Cla) ¢
fife o ay F3fafiz 4y ifdfoa ) 4y fofa3foa 4}

(2:3.77) {fzfsc(q)’f1f4fgc ) hters € g, L) g

Then

Proof. We will prove the statement for F'(¢) and G(q) equal to the first and third eta quotients in
each list. The second and fourth eta quotients in each list are the ¢ — —¢q partners of the first- and
third eta quotient respectively.

Taking the previous statement into account, the proofs for the identities listed in (2.3.63]) to
2.3.77)) follow directly from, respectively, the pairs of dissections ((2.3.33)), (2.3.34))) to ((2.3.61]),
2.3.62))) in Lemma [2.13] 0

Remark: If m is an odd integer, and ¢ is replaced with ¢ in any of the lists in Theorem
(but leaving the C(g*) factor as is), then the result still holds. For example, making this change
with m = 3 in the list leads to the following result:

If C(q*) is any eta quotient with a power series expansion in ¢*, and F(q) and G(q) are any pair
of eta quotients in the list

2 4 fg 4 f3f12 4 félf12 4 }
(2'3'79) {f3C(q )7f32f1220(q ) f6f24C( )’f??fmc(q ) )
then
Floy = G-

This kind of result is necessary to prove identically vanishing coefficient results for some collections
of eta quotients.

The first pair of dissections in the next lemma were discovered while looking at eta quotients
with vanishing coefficient behaviour similar to f? ([I2, Lemma 4.4]). The second pair of dissection
arose while examining eta quotients with vanishing coefficient behaviour similar to f{°. The first
pair of dissections permits a second proof of ([2.3.63] m
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Lemma 2.14. Define

(2.3.80) Ao = A0(q) = (0" ¢¥)oo(—0"*, =0, ¢**: ¢®) oo (=", =", ¢*; ¢*) o
Ay = A1(q) = — (6% %) oo (—0"% =%, %% ) o (=%, —1, 6% ¢%) 0,
Ay = A3(q) = — (0" 6%) e (—¢*, 0%, ¢** ¢**) o (—¢*, =", ¢°; ¢°)
Az = A3(q) = (¢4 %) o (—a* —0®, 6% ¢*) oo (=%, — 1, 6% ¢®) o0
Then
(2.3.81) [T =A0+qA1 + ¢ Ay + ¢* A3,
(2.3.82) @—A Al — ?Ay + 3A
3. fffs_ 0 —qA1 —q A2 + q" As,
2 r4 2 3 810 foffﬁ
(2.3.83) F21E = (Ao + AL + *As + ¢* Ag) <f2f4 —4q I ) :
4J16 8
( ) 413 (A A 2A SA) 810 QfofLG
2.3.84 = (Ag—qA1 —q"As 4+ q° A3 < + 4q )
J213 f2 1 f2

Proof. The expansions ([2.3.81)) and ([2.3.82]) were proven in [12, Lemma 4.4]. Upon multiplying

(2.3.81) by f# and using (2.1.9), with ¢ replaced with ¢?, one gets (2.3.83)), and (2.3.84)) follows
similarly upon multiplying (2.3.82)) by fi2/(f¢fs) and using (2.1.10) (with g replaced with ¢%). O

Theorem 2.9. Let C(q*) be any eta quotient with a power series expansion in q*. Let F(q) and
G(q) be any pair of eta quotients from one the following lists:

Sofa qpay TR oy 2y S5 1 }
3. 1274 & c c c
(2.3.85) {f%fg (q)’f§f8 (a%) . fi (q)vflzﬁ (a) ¢
(2.3.86) { i 0(q4),f%fEC(q“),fffé‘C(q‘l), - 0(q4)}-
1213 113 fifi
Then

Proof. The proof for F(q) equal to the first eta quotient in each list and G(q) equal to the third
follows in each case from Lemma [2.14] The full statement of the theorem holds in each case, since
the second and fourth eta quotients in each case are, respectively, the ¢ — —¢q partners of the first
and third eta quotients. ]

2.4. General Inclusion Results. Some strict inclusion results follow quite trivially from 2-
dissections. If

(2.4.1) A(q) = agAo(¢®) + a1941(¢)

for non-zero functions Ag(g?) and Aj(¢?), and F(q) = A(q)C(¢?) and G(q) = Ao(¢*)C(¢?), then
Fo) & Go) (assuming a; # 0).
The results in the next two lemmas are not quite so trivial.

Lemma 2.15. Let C(g*) be any eta quotient with a power series expansion in q*, and define F(q)
and G(q) by

(2.4.2) F(q) = f7 f3C(a"),
G(q) — fl2 E%O C(q4).
Fof2 s
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Then

Fo) & Gy
Proof. From ([2.1.2)),
iy,
N
and the claim follows upon comparison with ([2.3.6)). O

Lemma 2.16. Let C(g*) be any eta quotient with a power series expansion in q*, and define F(q)
and G(q) by

_ N
(2.4.3) F(q) = Tt Clq"),
fifafdr3f
¢la) = faf3fis c(a").
Then
Foy & Gy

Proof. From ,
Afafdfifsn _ fafshefay fsf24f4s

f2f3f172 f172f48 f12f16
and the claim follows upon comparison with (2.3.17)). (|

3. APPLICATIONS TO VANISHING COEFFICIENTS IN THE SERIES EXPANSION OF LACUNARY ETA
QUOTIENTS

We now apply the general results on m-dissections and identically vanishing coefficients in the
previous section to prove some of the conjectures from [12] on lacunary eta quotients. We remark
that in one sense there is nothing to be gained by specializing the C'(¢™) functions in the various
theorems in the previous section (for example, C (q4) in any of the lists in Theorem . However,
our purpose is to prove some of the vanishing coefficient relationships between collections of lacunary
eta quotients which were found experimentally and described in [12].

3.1. Eta quotients with vanishing coefficient behaviour similar to fi. The results in the
following theorems prove some of the results found experimentally and described in Table [1] and

Figure [}
Theorem 3.1. Let F(q) and G(q) be any two eta quotients from one of the following lists.

(3'1_1) {f26f3féL f13f4f67 ff’?f4f65 flff é4}
RIS Bl fufafy 31357
(3.1.2) {f2f3f127 flfzfﬁ f1f2f12 f214f3f12}
f1f4f6 f3f4 f3f4f6 f1f4f6
(3.1 {f1f4f6 f3f4 P82 fé’fgff}
f2f3 f1f2 f2f3f f§f6f12
(3.1.4) {f1f4f6 fof3 f1f6 f2f3f12}
f2f3 f1f6 f2f3 f1f4f6
(3.1.5) { f1f2 213 }
R38R fgfg’ fi R
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f2f4 f1 . f2 f12f2 f16f4 215
o0 G e T )
i { f2f6f8 Risfihe RIS f1f§’f§’}
[2fsfifoa’ fifefaa " FLf3 13S0 on’ fafafou )7
(3.1.8) {fzfsf4f12 Lfifefty AS 135 f1f4f6 f2f3f12}
Sifdfsfoa’ f3 fafsfoa’ fafro’ fifa’ [31505° 1118
(3.1.9) {fzfsfsfu’ fifsfis ’f1f4f6f24’ f3f4f24 ’f1f2f6 f2f3f12 fifafd f2f3f62}‘
flf4f6f24 f3f4f6f24 f2f3f8f12 flf2f8 f3f4 f1f4 f2f3f12 f1f12
Then
Flo) = G(oy-
Proof. These results for - (3.1.4)), respectively, follow from with C(q?) equalling,
respectively,
1315 2 fo 1318 f3fr2
f42 ty fffﬁ ’ fofro’ g

The claim for (3.1.5)) follows from Wlth C ( 4) = 1/f3. Similarly, the result for ([3.1.6]) follows

from ([2.3.8)) w1th C( Y = £/ that for ) follows from (2.3.27) with C(q*) = f3/(f1f24),
that for (3.1.8) from (2.3.13)) with C(¢*) =1 / f4, and that for (3.1.9) is derived from ([2.3.19)), also
with C(q*) =1/ fa. O

Remark: The eta quotients in collections (3.1.1]), (3.1.2)), (3.1.5) and (3.1.6) are all in group

I of Table [1] and Figure [ while collections (3.1.3), (3.1.4), (3.1.7), (3.1.8) and (3.1.9) comprise,
respectively, groups VI, IX, II, VII and VIII (so that our theorem has completed the task of showing
identical vanishing of coefficients within all of these latter groups). We next prove some inclusion
results.

Theorem 3.2. Consider any one of the following pairs of collections of eta quotients (3.1.10]) -

(B31.19):
(3.1.10) { b f } {fg{f,fzi;}’
1/4 3J8
(3 1 11) { f2f3f6 f1f4f6 f3f4f6 flff 14} {fgfg f4f6 }
(3.1.12) {f2f3 f1f4f6} {f2f8f12 fift }
tfe’ 1313 1t f2fo f3fsfon
(3.1.13) { 131 f}f;ﬂ%} {?;f}”m fJ;A;f; }
312 6fsfos fof§ fi2
(3.1.14) { f3f12 f1f2f6 f1f2f12 214f3f122} { 17 fofaa f2}
o RIS B fafife T fRASfE ) F3Ifs " fo
B8 } {f2fsf12 f4f6f8f12}
(8.1.15) {f1f3 fifafafi2 fifef3,  fofou
(3.1.16) {f1f4f6 f3f4 fL1 s fgfsff} {f§f8f12 [ }
o B Ifafh 13 fh fifsfiz )’ e I3 1
(3.1.17) {f1f4f6 f2f i fszfw} {fzfsfu f4f6}
o 31318 [l fafs’ [ 2 fefoa " fafi2
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(3.1.18) {f2f4 Y B RE 215} {f% 10 g5¢10 }
FLfS Sl Sife fa o 8RS RAifl R
(3.1.19) {fafsfsfu fifsfly DIM o fflfos
NI IEI3 [3fifefsy fafafdfy hifef3 ft
f113 fs f2f3f12 f1f4f6 fgfgfg} {f22f3f§’f12 FLfRfe }
fafa ' f1f4 f2f3f12 fifiz )’ fififefoa fofsfafoa )’

Let F(q) be any eta quotient in the collection on the left, and let G(q) be any eta quotient in the
corresponding collection on the right. Then

(3.1.20) F(o) G(0)-

Proof. Several of these claims follow for some pairs (F(q),G(q)) as a straightforward consequence
of the remark at . In each case we prove the claim for just one eta quotient in each collection
on the left and one eta quotient in the corresponding collection on the right. The result will hold
generally if there are just two eta quotients in a collection, since the second will be the ¢ — —¢q
(or ¢> — —q?) partner of the first. In any collection with more than two members, all were shown
to have identically vanishing coefficients in Theorem For most proofs, we simply state which
2-dissection is used, and which eta quotient C(¢?) it is multiplied by to produce the eta quotients
F(q) and G(q), as described following (the F'(q) so produced will be an eta quotient in the
left collection and the G(g) will be an eta quotient in the right collection).

We supply the details for (3.1.11)). Recall (2.1.3)):

BB B
f3 S f4f6
If this identity is multiplied across by C(q?) = f1fd/(f3fi,) one gets
ffafs _ fif§ 18
5.3 — 3 04
f2f3f12 f2f12 f2
and thus clearly Fjoy & G0y, if
FRfaf§ fife
F(q) = G(q) = .
STV D=

The full claim is true by the preceding remarks and Theorem part (3.1.1]).
The proof of (3.1.10]) follows immediately from (2.1.9) (with C(¢?) = 1).

remaining parts of the theorem may be summarized thus:

The proof for the

- (3.1.12) follows from ([2.1.13]), with C(qz) = ]”42!)‘}?/(fgfl%)7

- (3.1.13)) follows from (2.1.13)), with C(¢?) = f4 fé/ 2

- (3.1.14) follows from (2.1.3)), with C(¢? ) f3 f12/(f4 f6) and finally Theorem [3.1] . part (3.1.2);
- (3.1.15)) follows immediately from (w1th C(¢%) =1);

- (3.1.16) follows from (2.1.3), with C(¢*) = f{f2/(f3f%) and Theorem part (3.1.3] -,

- (3-1.17) follows from (2.1.3), with C(¢?) = f6 /f2 and Theorem [3.1], part t3 1.4

- (3.1.18 (¢*) = 1/f4 and Theorem part @,

3.1.19

follows from Lemma [2.15, with C'
follows from Lemma with C(g*

) = fsfia/(f7f3y and Theorem part (3.1.9).

Remark: Parts (3.1.10) -(3.1.14) of Theorem give some partial results on inclusion of van-
ishing coefficients between groups I and XI in Figure [1f while parts (3.1.15)), (3.1.16)) and (3.1.19)),
respectively, complete the proof of inclusion between, respectively, groups III and XIII, groups IV
and XII and groups VIII and XIV. Parts (3.1.17)) and (3.1.18)), respectively, show partial inclusion
results, respectively, between groups IX and XV and groups I and X. This does not show identical
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vanishing of coefficients of all eta quotients in group I, and this has likewise not been shown for all
eta quotients in groups X and XV.

3.2. Eta quotients with vanishing coefficient behaviour similar to f{. Some of the results
suggested by Table 2| and Figure [2| were proved in [I2]. We next use the methods of the present
paper to prove some other such results. All the eta quotients in the next two theorems are from the
list of eta quotients from which Table [2| and Figure [2[ are derived (see [12] for the complete list).

Theorem 3.3. Let F(q) and G(q) be any two eta quotients from one of the following lists.

(3.2.1) {f1f4f§0 f513fs 1218 fgfs}
f2f3 ’ f1f12 ,f3f12’f1f4
f1f4f6 f3f4 f1f4f6 f2f3f12}
f2f3 f1f6 f2f3 f1f4f6
6 218 f3? f1f4f§’6f9f36}
RIS RIS s
Ofgfu f1f6 f3 f1f4 f3 fsfiz f1f2f6}
fififs I AR s )
fzfs f1f8 f1f4f6f24 f3f4f24}
f2f3f8f12 flf8f12

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

f1f4f f2f3 f1f3 f2 }
f2f3f127fl f2f6 f1f3f4f12
f1f4f f2f3f6 R B }
fof3 i f1f12 fafia T RF3IR D
f1f3f4 613 f1 3 fzfgfl?}
f2f f1f3f127f2f3f12’ f1f4f6

(3.2.7)

(3.2.8)

(3.2.9) f3 £ fi f1f12 3 fis f1f3f4f1120}

f? f4f6 oS3 18 Fifsfefa fafd T

Ui
{
U
U
{
{
{
Ui
(3.2.10) {f6f8 f3f8f12 111 f5f4f12}
{
{
U
{
{
.
U

f1af3) fafd f3 f3f8f12f24 f6f8f24
15 3113 f1f4f f5 1 fL1 }
f1f6f24,f2f3f6f247f1f4f6f24,f2f6f24
f1f4f6 f2f3f6 f1f6 f2f6 }
f2f3f12’ flf f2f12 f1f4f12
f1f3f4 f2f6 f1f6 f2f3f12}
Chifshe fafifi” fRFRRG

f2f3f12 f1f4f6f12 f2f12 f1f12 }
fifgfaa’ fofsfoa 7 fRfifofoa’ fafofoa )’
fufafs f2f3 f1f6 fsz}
f2f3f12 Widh

113 fafs fi1i f4f65}
Safo 1Sy fafrafod’ 5113y fsfta
f410f6f24 f2f12 ff f4 f2f8f12 f4f6}
ffsfty” fife’ ’f2f8 fifefoa’ f3 frz

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)




(3.2.18)

f8f12 f6f8f12 f4f12 f42f6}
fafefa,” fafoa W fefsfoa' fs )’

f2fefoa f3f12 f2f8 f4}
f2f8f f4f6 f2

8
f2f4 f1f4 27f1f2}

f2 f1f4 f2f8 f1f8}
f1f47 f4

(3.2.19)

(3.2.20)

(3.2.21)

(3.2.22) f3f4 Nf°fE 15 f1f22f4f62}

fifafefs’ fafsfdfie’ fifs”  fafiz
fafafiz fifafs fLf8fe foa f3f4f24}

(3.2.23) ffaf’ 3 3 fsfRf fififd

(3.2.24) f1f4f6f24 f2f4f6f24 ftfafi2 f2f12}
f2f8 flfg ’ f4f6 f1f4f6

{
{7
{i
U
{
{
{ 2
(3225 {flfos Fhls 1S f2f3f4}’
i
{
t
{
{7
{7

fafiz " fifafe’ fifsfie’ fife

s Brifh 531 f4f66}

f3fo” fEfa iz f3f

f2f3f ffafiy  fufafd fzfst}

flfﬁ f2f3f6 f2f3f12’ f1f12

115’ fifi 3 R B3 }

f1f4f6 f2f6 f2f flfz%leQ ’

f2f3f12 f1f4f6f12 f1f4f6 f22f3}

fifefoa’ fofsfoa " fofsfr2’ fr )
f2f12 f1f12 f12f6 fér)fﬁ}

J2f2fefoa’ fofofor” f2 7 fRS3

fofiz 31 2 f8 }

f3foa” ™" 131

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)

(3.2.31)

Then
Flo) = Go)-

Proof. The various parts of this theorem are proved as follows:
- (3.2.1) by using ([2.1.20) with C(¢?) = f2 /£
- (3.2.2) by using (2.1.20)) with C(¢?) = f4 flg/(f4f6),
- (3.2.3)) follows directly from (2.2.12) (with C(¢®) = 1);
- (3.2.4) follows directly from (2.2.14)) (with C(¢3) = 1);
- (3.2.5) follows directly from (2.2.11)) (with C(¢3) = 1);

- (3.2.6) by using (2.2.10) with C(¢*) = f3/f62;

- (3.2.7) by using (2.2.10) with C(¢%) = £$ fe/ f12;

- (3.2.8) by using (2.2.10) with C(¢®) = f&3/(f3fs);

- (3.2.9) by using (2.2.10) with C(q3):f12/(f3f6f24)
- (3.2.10) by using (2.2.19) with C(¢3) = f§/(f3f%);

- (3.2.11) by using (2.2.10) with C(q3):f3f11§>/(f6f24)
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- (3.2.12)) by using (2.2.10) with C(q¢? fgfﬁ/flg,

- (3.2.13)) by using (2.2.10) with C(¢? /(f3f12)

- (3.2.14) by using (2.2.10) with C(¢* fgfu/(fﬁfm)
f37

- (3.2.16)) by using (2.2.18) with C 4/(f3£5,) and then applying the dilation q - q%
- (3.2.17) by using (2.2.14) with C = f3/f6 and then applying the dilation ¢ — ¢

- (3.2.18) by using (2.2.18) with C fé/(fsf%) and then applying the dllatlon q— ¢%
- (3.2.19) by using (2.2.10) with C(¢3) = 1 and then applying the dilation ¢ — ¢?;

- (3.2.20)) follows directly from (2.3.64) (with C(¢*) = 1);

- (3:2.21) by using (2.3.63) with C(q") = fs/fa;

(¢°) =
(¢°) =
(°) =
- (3.2.15)) by using ([2.2.10) with C(q¢?) =
(¢°) =
(¢°)
() =

- (3:2:22) by using (2-3.71) with C(q*) = fa/f12;

- (3.2.23) by using (2.3.65)) with C(q*) = £ faa/ (f213);

- (3-2.24) by using (2.3.72) with C(¢*) = £ foa/ (f212);

- (3.2.25) by using (2.3.73) with C(¢*) = fs/f12;

- (3.2.26)) by using (2.3.79) with C(¢*) = £3/f12;

- (3.2.27)) by using (2.3.74) with C(q*) = f1/ fis;

- (3-2.28) by using (2.3.75) with C(¢*) = £13/f2,;

- (3.2.29) by using (2.3.77) with C(q*) = f1f%/ fou;

- (3.2.30) by using (2.3.76) with C(q*) = £33,/ fos;

- (3.2.31)) follows directly from (2.3.79) (with C(g*) = 1). O

Remark: We discuss briefly to what extent Theorem has allowed us to prove what was
suggested by experiment in terms of the claims in Table 2] and Figure

The largest collection of eta quotients for which any of the theorems in the previous section
enable us to show identical vanishing of coefficients is eight (Theorem , with most theorems
showing identical vanishing of coefficients for collections of four eta quotients. Corollary and
Theorems and allow this to be done for collections of six eta quotients. Therefore, unless
one of the collections tagged with a Roman numeral in Table [2| and Figure [2]is fairly small, it may
take several of the theorems of the previous section to prove all the eta quotients in the collection
have identically vanishing coefficients.

For example, (3.2.13]) and (3.2.14]) each show that two (disjoint) sets of four eta quotients from
collection XIII in Table |2 and Figure [2| have identically vanishing coefficients (but not that two eta
quotients from different sets have identically vanishing coefficients). Note that the set of four eta
quotients , which has two eta quotients from and two from , thus shows
that all eight eta quotients in collection XIII have identically vanishing coefficients.

On the other hand, if a collection is too large, there may not be enough information to conclude
identical vanishing of coefficients for all eta quotients in the collection. For example, all that
Theorem allows to conclude about collection I (which contains 42 eta quotients) is that there
is one subset of 10 eta quotients with identically vanishing coefficients, and three other disjoint
subsets of size 4, such that within each of the three subsets, the eta quotients have identically
vanishing coefficients.

Overall, Theorem provides a good deal of general information. Theorem shows that all
of the eta quotients in each of collections II, III, VII, VIII, IX, XII, XIII, XIV, XXI, XXII, XXIV
and XXV have identically vanishing coefficients. Collections V, VI, XI, XVI, XVIII, XIX, XX and
XXVII each have just two eta quotients, one being the ¢ — —g partner of the other (in some
cases, the ¢> — —¢? partner), so trivially all the eta quotients in each of these collections also have
identically vanishing coefficients.

In addition there are partial results for some of the other collections. The claims for collection
I have already been described. For the 16 eta quotients in collection IV, Theorem shows the
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existence of three disjoint subsets, two of size 4 and one of size 6, with identical vanishing of
coefficients for all eta quotients in each subset. For the 10 eta quotients in collection X, Theorem
shows that 8 of these have identically vanishing coefficients.

As was done with eta quotients with vanishing coefficient behaviour similar to ff, we next prove
some inclusion results.

Theorem 3.4. Consider any one of the following pairs of collections of eta quotients (3.2.32)) -
(13.2.40) :

(3.2.32)
{f210f3f12 f1f6 fz f1f4 f2f8 fifs f3fshie fifefe f1f4f6f24 f3f4f24}
f1f4 f2 2’ f1 f4 f1f4f f3 f2f3f8 f1f8f12
{fgfmf fefél}
fofofss f3fis
(3.2.33)
{ 5 f1f4} {fg)ff 411}
iR fs T8
(3.2.34)
{f%f:?ff fffffg} { S8 f12 f23f§f12}
fifefi2’ f3 131 f3fsfoa’ fafos J~
(3.2.35)
{ 5 fo f1f25f3f12} {f2f8f12 fi4f6f24}
hfsfd fifd fife f3 18 s
(3.2.36)
{f1f4fé0 513 1506 s FfS f2f3} {fff172 fffg}
Fof3fh fufiz 7 fofiz T FRFRFRLE fafi2’ R 30 1y
(3.2.37)

{ 15 f3 11 f1f12 15 f1s f1f3f4f11§} { R o i fffé’}
f1f4f6 f2f3 f1f3f6f24 f2félf§4 f4f65f24’f4f12f24 f6f8f24’f8f122 ’
(3.2.38)

{ fo13 f3f8f12 fifd f3f4f12} { By R i fffg}

Fafaf3 fafdf3 fifshafea f2fafoa Faf8 18 fafiafoa’ f6f8f24’f8f122
(3.2.39)

{f1f3f4 B8 i f25f3?f12} { fefts fefdfe [ifis fff(s}

fo T fifshie’ fafifie’ fRfESE fafef2, fafoa " fefsfoa' fs )

(3.2.40)
{flff]% f3fa fEfafe f27f3f12} {fiofﬁfm f3 f12

f2f3 flfﬁ f22f3 7fig’fszﬁz
(3.2.41)

{f3f6 613} {f6f162 f?z}
fi2 7 fE I3 fefa )

Let F(q) be any eta quotient in the collection on the left, and let G(q) be any eta quotient in the
corresponding collection on the right. Then

(3.2.42) Fo) S G).
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Proof. For each pair, we prove the statement for just one eta quotient in each collection, since all
the eta quotients in each collection have identically vanishing coefficients, either by Theorem [3.3
or because there are just two eta quotients in a collection, each being the ¢ — —¢q or ¢> — —¢?
partner of the other.

As with Theorem several proofs for particular pairs (F'(q),G(q)) are a straightforward con-
sequences of the remark at . We use the notation of the remark at and simply state
which dissection identity is used; the form of the function C'(¢?); and which parts of Theorem
give the full result. The mechanics of this type of proof have been described in some detail in the
proof of Theorem The proofs of the various parts may be summarized as follows:

- (3.2.32) follows directly from (2.2.17), together Theorem [3.3] parts (3.2.4), (3.2.5)) and (3.2.21));
- (3.2.33) follows from (2.1.9) with C(¢%) = f1/ f2;

- (3.2.34) follows from (2.1.13)) with C(¢?) = f5£5/(faf);

- (3.2.35)) follows from (2.1.7) with C(q?) = f35 f12/(f2 £3);

- (3.2.36)) follows from (2.1.5) with C(q?) = f2fs/f12 and Theorem parts (3.2.1)) and (3.2.7));

3.2.37) follows from ([2.1.13) with C(¢%) = fi»/(f2fs;) and Theorem parts (3.2.9) and

(3-2.10);
follows from , after first applying a dilation ¢ — ¢3, then multiplying across by
C(q?) = f2 fis/(faf3f3,), and finally using Theorem parts (3.2.10)) and 13.2.16%;
- (3.2.39) follows from ([2.1.7) with C(q?) = f1/f2 and Theorem parts (3.2.13 and;
- (3.2.40) follows from ([2.1.5) with C(q?) = f1/fs and Theorem parts (3.2.2) and (3.2.17));
, then multiplying across by
C(q*) = fo/ fr2- 0

- (3.2.41) follows from ([2.1.9)), after first applying a dilation ¢ — ¢
Remark: Parts — of Theorem respectively complete the proof of inclusion (as
indicated by arrows in Figure [2)) between the following collections of eta quotients from Table
VIII and XXI; IX and XXI; XII and XXIV; and XIV and XXII. In addition, the other parts of
Theorem show partial inclusion results between collections I and XVII; I and XV; as well as
XVII and XXVI.

3.3. Eta quotients with vanishing coefficient behaviour similar to f{. As was done with
fiand f9, we summarize what experiment suggests (see [12]) about the collections of eta quotients
with vanishing coefficient behaviour similar to f2 in the following table and graph.

Table 3: Eta quotients with vanishing behaviour similar to f}

Collection # of eta quotients in Collection || Collection # of eta quotients in Collection
I 24 It 2
I f 2 v 60
v i 2 VI 6
VII 2 VIII 4
IX f 2 Xt 2
XTI * 4 XIT * 4
XI1T * 4 XIV 4
XV i 2 XVI T 2
XVII 2 XVIII f 2
XIX 6 XX T 2
XXI t 2 XXIT f 4
XXIIT ¥ 2 XXIV 4
XXV T 6
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XXV

FIGURE 3. The grouping of eta-quotients in Table[3] which have vanishing coefficient
behaviour similar to f?

At the end of Section [1] we remarked that if Table [1| and Figure [1| represented the true situation
for eta quotients with vanishing coefficient behaviour similar to f{, then this table and graph are
embedded in their entirety, via the dilation ¢ — ¢ in the corresponding Table [3| and Figure
above. We did indeed discover experimental evidence for this. This correspondence is summarized
in the following table.

Table 4: Groups of eta quotients in Table [3| that arise as
g — ¢2 dilations of groups of eta quotients in Table

Table [1] Group (f{f) Table 3| Group (f?) || Table [1] Group (fi) Table 3| Group (f¥)
I IV ITI \Y
1A% VI % VII
VII XI VIII XII
IX X111 X1 XIX
XVI XXI XVII XXII
XVIII XXIII XIX XXV

Some comments are in order.

(1) Not all of the groups in Table [I] are represented via their ¢ — ¢? dilations in Table [3| This
is because the eta quotients formed via the ¢ — ¢? dilation lay outside the range of the
search performed and described in [12].

(2) Likewise, the reason some of the groups in Table[l|are larger than the corresponding groups
in Table [3|is that some of the eta quotients formed via the ¢ — ¢? dilation also lay outside
the range of this search.

(3) All of the results in Table [3|with a * were derived via this ¢ — ¢ dilation of results in Table
as may be easily seen from Table [4]

To be more precise about item (3) above, the proof that all of the eta quotients in each of groups
XI, XII and XIII from Table [3|have identically vanishing coefficients may be justified by applying a

q — ¢? dilation to the collections of eta quotients at (3.1.8)), (3.1.9) and (3.1.4)), respectively. Such
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analysis provides the proof of identically vanishing coefficients in each of groups, VII, VIII and IX,
respectively, from Table

Apart from what has been described above, in this subsection we confine ourselves to deriving
some results that may not be derived via dilation. The next result concerns two groups of four eta
quotients each from group I of Table

Theorem 3.5. Let F(q) and G(q) be any two eta quotients from either of the following lists.

(53.1) {ﬁh(ﬁﬁﬁ 1313 ﬁﬁﬁ}

ffe fafsfie” fufie f3f3fh )
(3.3.2) {f27f3f12 18 13 fufafd }

2R fe” 13137 f 3131
Then

Fo) = Go)-

Proof. Each of and , respectively, follow from upon setting, respectively,
C(¢%) = f3/fo and C(¢®) = f3 fr2/(f} fo)- O

The following inclusion results are, in part, elementary consequences of some of the 2-dissections
listed in Lemma and the remark at . However, they do provide further supporting evi-
dence for the connections between the various groups of eta quotients in Table |3, which experiment
suggests are connected as in Figure [3 Many of the eta quotients in Table [3 derive from the ¢ — ¢?
dilation of eta quotients in Table[I} and perhaps it is not surprising that some of these are the even
part of other eta quotients in Table

Theorem 3.6. Consider any one of the following pairs of collections of eta quotients (3.3.3) -
(13.3.13):

(33.3) {f§f3 IS f313 flfffg} {f22f82ff12 fffg}
- fife’ f3fafi2’ fifie’ 313 f1s ) 1212, 1213,

(3.3.11) f2f16 J1 i } {f8f16 11 fis

T2 fsf32” f2faf32 fifs2’ fafs f4
fS f2f8} {f8f16 f4f16 2

(3.3.12) fifs2’ f3fz2’ f4f16

(3.3.4) {f2f3f12 fife f3 Sufuf§ } {f2f8f12 f4f6}
f1f4f6 f2f3 fl f2f3f12 f4f6 f2f12
(3.3.5) {ﬁ% ﬁﬁhm} {hkhghk}
f1f3f4 f4f6 ’ f4f6 f2f12
(336) {f2f4f6 flf2f3f4} {f2f8f12 f4f6 }
o Nifsfiz’ fs ’ fefa f2f1
(3.3.7) {f1 i } {f }
L ”ﬁk
fifafs f2f3f12} { firh }
(3:3.8) {hﬁﬁmthh& Fofofsfor 120
f1f4 f2f4} { 810 f4f8}
(3.3.9) { Fofs’ f1f8 f16
f2f8 flfS} { §0 f4fs}
(3.3.10) {f f2f16 f16

31



242 5 13
(3.3.13) {fl i, fé} : { L ,f—s fis  fs }

f2 f1 fg f32 f8f32
Let F(q) be any eta quotient in the collection on the left, and let G(q) be any eta quotient in the
corresponding collection on the right. Then

(3.3.14) Fo) G Goy-

Proof. Once again it is enough in each case to prove each statement for one choice of eta quotient
for F'(q) and likewise for one choice for G(g), since all the eta quotients in each collection have
identically vanishing coefficients. This follows either from what has already been said about the
groups in Table I labelled with either a * or T, or from Theorem. As in the proof of Theorem
with the notation of the remark at ( -, we limit the proof to stating which dissection 1dent1ty is
used; the form of the function C(¢?); and possibly which parts of Theorem [3.5) . give the full result.
The proofs of the various parts of Theorem [3.6| - may be summarized as follows:

- (3.3.3) follows from (2.1.4) with C(¢*) = f{/f12 and (3.3.1);

- (3.3.4) follows from (2.1.4) with C(¢*) =1 and (3.3.2);

- (3.3.5) follows from (2.1.7) with C(¢%) = fafiz/(f1fs);

- (3.3.6)) follows from (2.1.7) with C'(¢?) = fgff/fg;

- (3.3.7) follows from (2.1.9) with C(q¢?) = f3/f3;

- (3.3.8)) follows from (2.1.13)) with ( %) = f4f6/(f22f12);

- (3.3.9) follows from (2.1.2) with C'(¢?) = /fg,

- (3.3.10) follows from (2.1.1)) with C(¢?) = f8 /i

- (3.3.11)) follows from (2.1.1)) with C(¢?) = f16/(f8f12) and [12, Corollary 8.2];
- (3.3.12) follows from ([2.1.2) with C(qZ) fs and [12, Corollary 8.2];

- (3.3.13)) follows from (£2.1.2)) with C(¢?) = f? and [12] Corollary 8.2]. O

Remark: The inclusion statements represented by - prove partial inclusion results
between group I and group IV; shows partial inclusion between group II and group IV; (3.3.8))
completes the proof of proving inclusion between group III and group V; (3.3.9) and (3.3.10) prove
partial inclusion results between groups IX and XIV and group XIX; (3.3.11)) completes the proof
of proving inclusion between group XVIII and group XXII; (3.3.12)) completes the proof of proving
inclusion between group XX and group XXII; and shows partial inclusion between group
XXIV and group XXV.

3.4. Eta quotients with vanishing coefficient behaviour similar to f{°. What the experi-
ments in [I2] suggested about eta quotients with vanishing coefficient behaviour similar to fi°
summarized in the following table and graph, where the * and T symbols and arrows have the same
meaning as in similar tables and graphs elsewhere in the paper.

Table 5: Eta quotients with vanishing behaviour similar

to f1°
Collection # of eta quotients in Collection || Collection # of eta quotients in Collection

I 38 = 4

I 2 IV * 4
\Y% 4 VI T 2
VII 6 VIIT 2
IX * 4 Xf 2
XTI * 4 XII T 2
X111 2 XIv f 2
XV i 2 XVIf 2
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XVII 8 XVIII f 2
XIX * 4 XX T 2
XXI 1 2 XXIT f 2
XXIII 4 XXIV T 4
XXV | 6

XXV XX

XXII XVl VIVl
0 0o_ 0 0

“l‘ XX /S

FIGURE 4. The grouping of eta-quotients in Table[5] which have vanishing coefficient
behaviour similar to f{°

We next show that various collections of eta quotients from Table 5] and Figure [4] have identically
vanishing coefficients.

Theorem 3.7. Let F(q) and G(q) be any two eta quotients from any one of the following lists.

(3.4.1)
(3.4.2)
(3.4.3)
(3.4.4)
(3.4.5)
(3.4.6)
(3.4.7)
(3.4.8)

(3.4.9)

0f3f12 e 1313 f1f6}
f1f4f6 f3f4 f1f4 f3f12

13 15 10
f4 fl 4 22af1f2}

f2f4 f1f4 f2

f1f8 fzf

f2f3f6 f1f4f6 f2f3f8f12 f1f8f12}
f2f3f12 f1f4f6 f3f4f24

U
77
U
U
{ f2f8f12 f1f8f12 f1f4f6 f2f4f6}’
{
{
¥
{

e f4}

111 " fifi2 ] fihe
f3fi2 fiz flfi?’fg /3 f3f12 f1f2f6}
NI fefs 153087 hfife’ f3fi )’
fefsfifie A 1§ f2f3f12}
fifefs 7 f3fafs’ f3 7 fifafe
f1f4f6 f2f3f12 f1f12 f2f3f12}
31315 Al 0 ffs 11
f1f2o 3ty fiho f25f10}
fafrofao’ f1f4f10f4o fo TR




Then
Flo) = G-

Proof. Once again the proofs of the various statements are straightforward consequences of what
has been shown in Section 2

- (3.4.7) by using (2.1.20) with C(¢?) = f1°f12/(fifs);

- (3.4.2)) by using (2.3.86)) with C(q4):1,

- (3.4.3) by using (2.3.85) with C(¢*) = f%;

- (3.4.4) by using (2.3.66) with C(¢*) = fsfD/(f2f2,);

- (3.4.5) by using (2.3.67) with C(¢*) = fgf12/f24,

- (3.4.6) by using (2.3.68) with C(¢*) = fi2f12/f3;

- (3.4.7) by using ([2.3.73)) with C(q4):1

- (3.4.8) by using (2.1.20) with C(¢%) = f51%/(f3£3);

- (3.4.9) by using (2.3.32) with m = 5. g

Remark: The collections of eta quotients in collections - are all in group I of Table
/ Figure 4] The collections - comprise respectively, groups II, IV, IX, XTI and XIX,
(so that here also our theorem has completed the task of showing identical vanishing of coefficients
within all of these latter groups).

We next prove some inclusion results that support the relationship between the various groups
of eta quotients in Table 5] as indicated by the arrows in Figure [4]

Theorem 3.8. Consider any one of the following pairs of collections of eta quotients (3.3.3))-

B313):
Ny 4} {ﬁ’fs 413}
ftiy ’ T

f2°f3f12 B 1313 flfﬁ} 21 fszfé}
Bfife” fsfa 7 fifa’ [3F f2f62f8f224’ fiz )7

F
(3.4.12) }flf3f4f6 fofs } Fa 3 1 f6f8f12}
Ui
{
A%

(3.4.10)

(3.4.11)

f2f12 f1f3ff’2 f4f6 f2f4f24

f211fsf12 filfg?ffé} { f4f12 f2f6f8}

(3:4.13) NN

f1f3fi0f12 f4f6 }
fafefs " hifafsfs )’

Nfshe 313 } fof8 i f4f62f8}

" fifsfa 216130 fafiz J7
Sufafe faf3hie fifie f3fsfh /i

(3:410) {f2f3 S v aksny i1 R

Let F(q) be any eta quotient in the collection on the left, and let G(q) be any eta quotient in the

corresponding collection on the right. Then

(3.4.17) F(o) G( 0)-

f fﬁfS f4f12
f4f12 f2f6f8}

4.14
(3.4.14) FBREE fufs

(3.4.15)

Proof. As in the proof of similar theorems in the paper, it is enough to prove each statement for
one choice of eta quotient F'(¢q) and likewise one choice for G(g), since all the eta quotients in each
collection have identically vanishing coefficients. The proofs of the various parts of Theorem
may be summarized as follows:

- (3.4.10) follows from ([2.1.9) with C(¢?) = £3/f3;
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- (3.4.11

- (3.4.12

- (3.4.13

- (3.4.14

- (3.4.15

- (3.4.16

We note that (3.4.10) and (3.4.11)) provide some partial evidence for the inclusion of group I
in group XVII. Note that (3.4.12)) likewise supports the experimental evidence for the inclusion
of group III in group XVII. Together, and complete the proof that group V is
included in group XVIII; likewise shows that group VIII is included in group XX; and
(3.4.16) completes the proof that group XI is included in group XXI.

3.5. Eta quotients with vanishing coefficient behaviour similar to f}*. Once again, we
begin by summarizing what the experiments whose output was described in [12] suggested about
eta quotients with vanishing coefficient behaviour similar to f{*, where the * and  symbols and

follows from
follows from
follows from
follows from
follows from
follows from

2. 1.5)with C(¢?) = f3/f1 and
1.7) with C(g?
2.1.9) with C(g?
2.1.7) with C(q
2.1.7) with C’(q2 f12/f6;
2.1.3) with C(¢®) = fi2/f2 and (3.4.8).

arrows have the same meaning as elsewhere in the paper.

Collection # of eta quotients in Collection

[3.4.1);
) = fafe/ (311
) = f3 [/ (2213 f30);

2; = fi°f12/ (f3 e f3):

Table 6: Eta quotients with vanishing behaviour similar
to f14

Collection # of eta quotients in Collection

I

I *
v i
VII *
IX T
X1t
XIIT ¥
Xv i
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FIGURE 5. The grouping of eta-quotients in Table[6 which have vanishing coefficient
behaviour similar to f}*

As elsewhere, dissection methods are next used to show that various collections of eta quotients
from Table [6] and Figure [5] have identically vanishing coefficients.

Theorem 3.9. Let F(q) and G(q) be any two eta quotients from any one of the following lists.

B fif
JEIET 187
f2f4’f1f4 f2f8,f1f4fs}
f2f12 f1f2f4f12 f2f4f6f24 f1f4f6f24}
f1f4f6 f6 f1f8 f2f8f12 ’
fofsfafiz [Lf21E Fifefs f2f3f8f12}
Nfe 7 fifs T fafs T fifife )
f2f3f12 flfzf@ f1f4f6 f3f§f12}
fifafe " [z T fafsfS fifafefs

Ui
U7
U
{
{
(3.5.6) {f3f4f24 f1f4f6f24 f2f3f12 f1f2f6f12}’
s
{
{
{

(3.5.1)

=3 f1f2f4}

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

ffgfi2’ fzf?:fg ' NWIEfET fsha

f2f3f f1f4f12 f3f4f12 f1f4f6f12}
f1f4f6f8f247f2f3f6f8f24’f1f6f8f247f2f3f8f24
813 foa Fifif§foa fL 12 fofou f2f3f24}
f1f6f8f12 f2f3f8f12 f2f3f8f12 f1f4f6f8
f1f4f12 f2f12 f1f4f6 f2f6}

fafofod fifofos’  fo 7 f7

fhfis i Bfifs hfs }
flf4f6f247f2f3f6f24’f1f4f12 f2f3f12

(3.5.7)

(3.5.8)

(3.5.9)

(3.5.10)




fffifis f313 fffffé” 1518
(3.5'11) {f2f6 f1f6 f2f12 f12f122}
(3.5.12) { f2f3f12 f1f6f12 3 f3f12 flfé”}.

fifafdfoa fofsfoa’ fifs 7 fofs
Then

Flo) = G(o)-

Proof. Here also proofs of the various statements follow from what has been shown in Section

- (3.5.1)) follows from (2.3.64) with C(q*) = f;

- (3.5.2) follows from (2.3.63) with C(¢*) = f4f8,

- (3.5.3) follows from (2.3.72) with C(q*) = £ foa/(f2f%);
- (3.5.4) follows from (2.3.73) with C(q*) = f1/fs;

- (3.5.5) follows from (2.3.71)) with C(¢*) = 1;

- (3.5.6)) follows from (2.3.65) with C(q*) = f4 faa/ (f2 f12);
- (3.5.7) follows from (2.1.20) with C(¢?) = fa f13/(faf8 fsf3));
- (3.5.8) follows from (2.1.20) with C(q?) = f4 faa/(faf2fs);
- (35.9) follows from (2.3.76) with C(qh) = 213,/ fou;

- (3-5.10) follows from 374} with C(g*) = 1/ f3;

- (3.5.11)) follows from (2.3.75)) with C(q*) = f2 13/ fou;

- (3.5.12)) follows from (2.3.77) with C(q*) = f3,/ fo4.

Remark: Collections are in group I of Table / Figure l Whl‘le_* ‘_P
together make up the twelve eta quotlents in group VI. Collections (3.5.6)), (3.5.7), (3.5.8) and
comprise respectively, groups 11, III, IV and VII. Thus the last theorem has completed the
task of showing identical vanishing of coefficients within all of these latter groups.

Inclusion results for groups of eta quotients in Table [6] and Figure [5] that are derivable by
dissection methods are contained in the next theorem.

Theorem 3.10. Consider any one of the following pairs of collections of eta quotients (3.5.13)) -
(13.5.16)) :

R AR £
(3.5.13) {f{* i”f2f4}’ {fo& f2f8}
(3.5.14) { B R B flffféffz} { fifty fzfé”fs}
FRISS I3, B3I I3 1o 03y oI fsf3y F3 03 fsf3, P23 fsf3) fafie
(3.5.15) {fg’fff24 N2 fE foa £ 17 fofos f§f3f24} {f4f6f24 fzfsfu}
Ifelfshie’ 315 fsfis” f3fsfshe” ffafgfs )’ ffsfs fifs )’
S1fsfifoa [3 Faf foa fafia
(3.5.16) { o fs f1o ’f1f3f8f122}’ {ff2 ,fefs}.

Let F(q) be any eta quotient in the collection on the left, and let G(q) be any eta quotient in the
corresponding collection on the right. Then

(3.5.17) F(o) G( 0)-

Proof. As before, and for similar reasons, it is enough in each case to prove each statement for one
choice of eta quotient F'(q) and likewise one for G(q). The proofs of the various parts of Theorem
[3.10] may be summarized as follows:

- (3.5.13) follows from (2.1.9) with C(¢?) = f2/(f2f4);

- (3.5.14)) follows from (2.1.5) with C(¢?) = f2f15/(f3 £ fsf3,) and (3.5.7));
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- (3.5.15)) follows from (2.1.5) with C(q?) = f2 fefoa/(f2fsf12) and (3.5.8);
- (3:5.16) follows from (2.1.7) with C(q2) = f2fos/(fofsfi2)- O

Note that parts (3.5.14]), (3.5.15)) and (3.5.16]), respectively, of Theorem complete the proof
of showing inclusion between, respectively, group III and group IX; group IV and group X; and
group V and group XIII of Table @/Figure

3.6. Eta quotients with vanishing coefficient behaviour similar to f2°. What the experi-
ments in [I2] suggested about eta quotients with vanishing coefficient behaviour similar to f2° is
summarized in Tabl and Figure @ with the * and T symbols and the arrows having the same
meaning as elsewhere in the paper.

Table 7: Eta quotients with vanishing behaviour similar

to f26
Collection # of eta quotients in Collection || Collection # of eta quotients in Collection

I 12 11 4
I * 4 IVl 2
Vi 2 VI T 2
VII 2 VIII 4
IX 8 X T 2
X1 8 X1t 2
XIIT 12 X1V 10
XV i 2 XVIT 2
XVII | 4 XVIII f 6

FIGURE 6. The grouping of eta-quotients in Table[7, which have vanishing coefficient
behaviour similar to f2°

This time our dissection methods have less success, in that we are able to prove fewer results
about identical vanishing coefficients, and no inclusion results whatsoever.

Theorem 3.11. Let F(q) and G(q) be any two eta quotients from any one of the following lists.

1R BR f%f%fé”}
3.6.1
R { P R ’
(3.6.2) {f%fé F3f8 fR1af féfg’}

PR i
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(3.6.3) {f25f§f122 318 132 figfé’}
fife T3 el 338 )7
(3.6.4) {f2f32f122 fofs Bk 1 }
fo 7 137 fafefs T faf3fs
Then

Floy = Go)-

Proof. Once again, proofs of the various statements follow from what has been shown in Section
- (3.6.1)) follows from (2.3.64) with C(q¢*) = £3/fs;
- (3.6.2) follows from (2.3.63) with C(q?) = fi/f%;
- (3.6.3) follows from (2.3.69) with C(¢*) = f3/f3;
- (3.6.4) follows from (2.3.70) with C(¢*) = f5. O

Note that shows identical vanishing of coefficients for four eta quotients in group I, and
completes the proof of showing identical vanishing of coefficients for the four eta quotients
in group III. Together, and show identical vanishing of coefficients in two distinct
collections of four eta quotients each in group IX.

3.7. Eta quotients with vanishing coefficient behaviour similar to ff5. We next summa-
rize what the experiments in [12] suggested about eta quotients with vanishing coefficient behaviour
similar to f$f3, as indicated in Table [§| and Figure [7} with the * and T symbols and the arrows
having the same meaning as previously.

Table 8: Eta quotients with vanishing behaviour similar

to f2f3
Collection # of eta quotients in Collection || Collection # of eta quotients in Collection

I 40 I+ 6
I 2 VAl 2
Al 2 VI T 2
VII 2 VIII 8
IX 14 X T 2
XTI * 4 XIT * 4
XIIT 10 XV T 2
XV i 2 XVIT 2
XVII T 6 XVIIT 6
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FIGURE 7. The grouping of eta-quotients in Table[8] which have vanishing coefficient
behaviour similar to f3 f3

This time it is 3-dissections that allow us to prove statements about sets of eta quotients with
identically vanishing coefficients.

Theorem 3.12. Let F(q) and G(q) be any two eta quotients from any one of the following lists.

(3.7.1)
(3.7.2)
(3.7.3)
(3.7.4)

(3.7.5)

Then

f1f2f12 f2f12 f1f4f6 f2f3f12 f1f12 f210f3f12}
f1f4f6 f2f37 f1f6 f2f3 f1f4f6

f1f4f6 518 8 f§’f3f§)}
fof il f2f3f2’f12fff12

{f2f3f12 f3fs® fifs® fgff}

f4f6 f3f4f f2f3 f2f6
fifafe f2f6 fife f2f3f12}
f2 " fafs’ fRfES

/3 f3f12 f2f6 fsfi fifé }
fafe " fsfa’ fo 7 fofsfio

Flo) = Go)-

Proof. Once again proofs of the various statements follow from what has been shown in Section

1
b B
ol i | ol bl =

follows from ([2.2.14) with C(q®) = f3f12/f6,

follows from (2.2.10) with C(¢?) = f6 /f12,

follows from (2.2.18) with C(¢3) = f3/f2;

follows from ([2.2.10) with C(¢3) = f6,

follows from ([2.2.18) with C(¢?) = O

Note that (| - and (3.7.5)) complete the proofs of showing identical vanishing of coeffi-
cients in groups II, XI and XII, respectlvely, while ( and (| give partial results for groups
VIIT and IX, respectively.
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4. CONCLUDING REMARKS

All of the vanishing coefficient results proved in the present paper employed m-dissections, for
m € {2,3,4}, and all of the m-dissections derived in this paper were derived with the purpose of
proving such results. It may be the case that other vanishing coefficient results could be proved
using m-dissections for m > 4.

We remark in closing that being able to derive m-dissections (some positive integer m) for two
eta quotients, eta quotients that experiment suggests have identically vanishing coefficients, may
not be enough to prove what experiment suggests. For example, experiment suggests that if

_ fsfafiafiy _ [3f3foe
F1I3 18 fs6” f3faf2’
then B(q) and C(q) have identically vanishing coefficients (and also that each has identically van-

ishing coefficients with A(q) = f{f3). Further, experiment also suggests that B(q) and C(q) have

similar 3-dissections. By writing f1/f1 = (fi1f1/f2)(f2/f?) and employing and @ , one
can obtain its 3-dissection. Likewise, by writing f3/(f2f1) = (f2/f4)(f2/f?) and using @D
(with g replaced with ¢?) and , one gets the 3-dissection of f3/(f2f4). From these one easily
gets the 3-dissections

_ f3fafrafis

J1I313 f36
_ <f92f122fir)8 74q3 lefir)g) +q< 2f122f188 . f6fg§f12> +q2< 4f122f11§ o 2f5f12f128>

I3 fef3 f3fefo f3f3fof3s  fifs fafS 1313 /3 ’
J3 13 fr2

Clg) = 273712

D=7
_( fEhaf§ 4 3f62f3?6f5’> 5 <f6f12f128f§’ 4 3f6f128f326> 2 <4f12f153 B 2f§’f§f§6>
B (f35f18f36 1 f3f18 i f4 f36 1 f3 a 13 f36 f3fs )

As expected, the corresponding components in the two 3-dissections appear (experimentally) to
have identically vanishing coefficients, and indeed it appears (again experimentally) that the two
dissections are similar (in the sense defined at and the remark immediately following) but
it is not immediately obvious why that should be the case.

We leave it as a challenge to the reader to prove that B(q) and C(gq) have identically vanishing
coefficients, and similar 3-dissections.

B(q) C(q)

B(q)
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