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Abstract. For |q| < 1, define fi =
∏∞

n=1(1− qin), and let (A(q), B(q)) be any of the pairs{(
f4
1 ,

f8
1

f2
2

)
,

(
f4
1 ,

f10
1

f2
3

)
,

(
f6
1 ,

f4
2

f2
1

)
,

(
f6
1 ,

f14
1

f4
2

)
,

(
f10
1 ,

f6
2

f2
1

)
,

(
f14
1 ,

f5
3

f1

)
,

(
f14
1 ,

f8
2

f2
1

)}
.

For any such pair (A(q), B(q)), define the sequences {a(n)} and {b(n)} by

A(q) =:

∞∑
n=0

a(n)qn, B(q) =:

∞∑
n=0

b(n)qn.

Then for each pair it is shown that a(n) vanishes if and only if b(n) vanishes. In each case, a
criterion is given which states precisely when a(n) = b(n) = 0. Moreover, for the pairs{(

f26
1 ,

f9
3

f1

)
,

(
f26
1 ,

f16
2

f6
1

)}
it is shown that a(n) = b(n) = 0 if 12n+ 13 satisfies a criteria of Serre for a(n) = 0.

1. Introduction

The work in the present paper was motivated by a result of Han and Ono [4] about vanishing
coefficients in the series expansion of a specific pair of eta quotients. To state their result, define
the sequences {a(n)} and {b(n)} by

f81 =:

∞∑
n=0

a(n)qn,
f33
f1

=:

∞∑
n=0

b(n)qn, fi :=

∞∏
n=1

(1− qin), i ∈ Z+.(1.1)

Han and Ono proved the following result.

Theorem 1.1. (Han and Ono, [4, Theorem 1.4, page 307]) Assuming the notation above, we have
that

(1.2) a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(3n+ 1)
is odd for some prime p ≡ 2 (mod 3).

If A(q) and B(q) are two functions for which the coefficients in the series expansions satisfy
the condition (1.2) in the theorem, then for ease of discussion, we say that the coefficients vanish
identically, or that A(q) and B(q) have identically vanishing coefficients.
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Theorem 1.1 motivated the second author to investigate experimentally if similar results held for
other pairs of eta quotients. What was discovered as a result of these computer algebra experiments
is summarized as follows.

Let (A(q), B(q)) be any of the pairs

(1.3)

{(
f41 ,

f81
f22

)
,

(
f41 ,

f101
f23

)
,

(
f61 ,

f42
f21

)
,

(
f61 ,

f141
f42

)
,

(
f101 ,

f62
f21

)
,

(
f141 ,

f53
f1

)
,

(
f141 ,

f82
f21

)}
.

For any such pair (A(q), B(q)), define the sequences {a(n)} and {b(n)} by

(1.4) A(q) =:
∞∑
n=0

a(n)qn, B(q) =:
∞∑
n=0

b(n)qn.

Then, for each pair, experiment suggested a(n) vanishes if and only if b(n) vanishes. For the pairs{(
f261 ,

f93
f1

)
,

(
f261 ,

f162
f61

)}
experiment suggested that a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0
([8] or see Lemma 2.1). By determining conditions for when the coefficients vanish, Serre proved
that all of the first components of each pair in (1.3) and (1.4) are lacunary, with series expansions∑∞

n=0 c(n)q
n satisfying

lim
x→∞

|{0 ≤ n ≤ x | c(n) = 0}|
x

= 1.

In this paper we extend Serre’s work [8] to prove all of the statements suggested above by
experimental evidence are indeed true and that the vanishing of coefficients in the second component
of each pair aligns with Serre’s criterion for the vanishing of the coefficients of the first components.

We next describe some of the theory of modular forms needed for the proofs of these conjectures.
Let fi be as defined at (1.1). In [8], Serre proved that for even positive integers s, fs1 is lacunary
if and only if s ∈ {2, 4, 6, 8, 10, 14, 26}. In each of these cases, Serre provided a characterization
of the vanishing coefficients c(n) in terms of the factorization of coefficients in a dilation of the
appropriate power of the Dedekind eta function

η(z) = q1/24
∞∏
n=1

(1− qn), q = e2πiz with Im(z) > 0.

Serre’s criteria and more general characterizations for lacunary holomorphic modular forms my be
used to identify quotients of eta functions that vanish according to the conditions Serre derived for
fs1 . In particular, our work makes use of the result of Ribet [6, c.f. Theorems (4.4) and (4.5)] that
a newform has complex multiplication (CM) by an imaginary quadratic field K if and only if it is
representable as a theta series corresponding to Hecke characters associated to the field K.

A critical first step in proving the lacunarity and common vanishing of the eta quotients involves
demonstrating the second components of each pair are CM newforms by some imaginary quadratic
extension of Q. This is done by representing the eta quotients in terms of CM newforms from
the L-functions and Modular Forms Database (LMFDB). The LMFDB does not give us explicit
expressions for the CM newforms involved, but it does help us make guesses to compute these CM
newforms. Based on the speculation that the coefficients of the eta quotients vanish simultaneously
with the even eta powers, the LMFDB was used to collect CM newforms of appropriate weight and
level. In each case, the Fourier coefficients of the eta quotients are shown to agree up to the Sturm
bound with linear combinations of the CM newforms. Ribet’s result allows for expansion of the eta
quotients as linear combinations of Hecke theta series. The theta representations serve as bridges
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between the eta-quotients and CM newforms, so that the multiplicativity properties and recursive
formulas satisfied by the coefficients can be applied to prove conditions for vanishing.

For the cases considered here, these theta series have the form
∑

m,n(m + n
√
−D)kqm

2+Dn2
,

where D is a positive integer and the m and n run over all the integers or certain arithmetic
progressions. Since the equation p = m2+Dn2, where p is a prime, has just finitely many solutions,
the coefficient of qp in each of the theta series can be determined explicitly in terms of the integers
m and n in the representation p = m2 +Dn2. Since newforms are Hecke eigenforms, the vanishing
of the coefficients follows from the recursion formulas for the coefficients at powers of primes. The
multiplicative property of the coefficients of the newform is then used to derive information about
the coefficient of qjn+t in the series expansion of these forms from the prime factorization of jn+ t,
and hence about the coefficient of qjn+t in the series expansion of ηu(sjz)/ηv(rjz). This provides
information about when this coefficient vanishes, A proof that the coefficients of the products in
each pair vanish simultaneously is realized by showing the conditions for vanishing are precisely
the criteria found by Serre for coefficients of the even powers of the eta function.

Acknowledgements. The authors thank the anonymous referee for his/her useful comments,
suggestions and corrections.

2. Preliminary results

2.1. Review of CM newforms. Let F (z) =
∑∞

n=1 a(n)q
n with q = e2πiz be a newform of weight

k > 1 for some Γ0(N) with some Nebentypus ε, and let ϕ denote some Dirichlet character modulo d.
Then F (z) is said to have CM by ϕ if ϕ(p)a(p) = a(p) for all but finitely many primes p. By a result
of Deligne and Serre [2, (6.3)], it is known that ϕ must be a quadratic character associated with
some quadratic field K. In particular, when K is imaginary, it is unique, in which case we call F (z)
a CM newform by K. One of the incredible applications of CM newforms is the characterization
of the lacunarity of a cusp form proved by Serre [7, Theorem 17] stating that a cusp form of
weight k > 1 is lacunary if and only if it is a linear combination of CM newforms, and this leads
Serre to obtain the following explicit characterization of the vanishing of the Fourier coefficients of
the even powers of the Dedekind eta function that are lacunary.

Lemma 2.1. [8, Section 2] Let fi = fi(q) be defined as in Section 1.

(1) If

qf46 =
∞∑
n=0

a(n)q6n+1,

then we have that a(n) = 0 if and only if 6n + 1 has a prime factor p ≡ −1 (mod 3) with
odd exponent.

(2) If

qf64 =

∞∑
n=0

a(n)q4n+1,

then we have that a(n) = 0 if and only if 4n + 1 has a prime factor p ≡ −1 (mod 4) with
odd exponent.

(3) If

q5f1012 =
∞∑
n=0

a(n)q12n+5,

then we have that a(n) = 0 if and only if 12n+ 5 has a prime factor p ≡ −1 (mod 4) with
odd exponent.
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(4) If

q7f1412 =
∞∑
n=0

a(n)q12n+7,

then we have that a(n) = 0 if and only if 12n+ 7 has a prime factor p ≡ −1 (mod 3) with
odd exponent.

(5) If

q13f2612 =
∞∑
n=0

a(n)q12n+13,

then we have that a(n) = 0 if either of the following holds:
(a) 12n+13 has a prime factor p1 ≡ −1 (mod 3) with odd exponent and a prime p2 ≡ −1

(mod 4) with odd exponent (it may be that p1 = p2),
(b) 12n+ 13 is a square and all prime factors p satisfy p ≡ −1 (mod 12).

Moreover, in [6], Ribet uses the theory of Galois representations to show that such a newform
arises in the form of a theta function associated with a so-called Hecke character associated with
K which is defined as follows. Let K = Q[

√
−d] be an imaginary quadratic field of discriminant

−d < 0. Denote by OK the ring of integers of K. Take a nonzero integral ideal m of OK . Let
IK(m) be the group of fractional ideals generated by all integral ideals coprime to m. For k > 1, a

Hecke character ψm modulo m of infinite type
(

α
|α|

)k−1
is a character on IK(m) such that

ψm(αOK) =

(
α

|α|

)k−1

for any α ∈ K× with α ≡ 1 (mod m), i.e., vp((α − 1)OK) ≥ vp(m) whenever p|m. Clearly, if we
write ψf,m(αOK) = ψm(αOK)|α|k−1/αk−1, this defines a character on (OK/m)×, and therefore on
(Z/N(m)Z)× called the finite part of ψm. Now extend ψm to IK by setting ψm(a) = 0 for a with
vp(a) ̸= 0 for some p|m. Then Ribet [6, Theorems (4.4) and (4.5)] showed that a CM newform F (z)
by K satisfies

F (z) =
∑
a∈IK

integral

ψm(a)N(a)
k−1
2 qN(a)

for some nonzero integral ideal m, which is of level Γ0(dN(m)) with character χdψf,m. By such a con-

struction, it is clear that a(mn) = a(m)a(n) for (m,n) = 1, a(pℓ) = a(p)a(pℓ−1)−(χdψf,m)(p)p
k−1a(pℓ−2),

and F (z) :=
∑∞

n=1 a(n)q
n is also a CM newform provided that F (z) =

∑∞
n=1 a(n)q

n is a CM new-
form.

In fact, one may rewrite this series as a theta type series over elements of OK as follows. First
suppose the ideal class group ClK = IK/PK = {[b]} with b’s all integral. Then the set of integral
ideals a ∈ [b] with N(a) = n is in bijection with α ∈ b/O×

K with norm N(α) = nN(b), since if
a = xb then ab = xN(b) ⊂ b, and one can take α = xN(b), and on the other hand, for an α ∈ b

with N(α)
N(b) = n, take a = α

N(b)b which is integral since b|αOK by assumption. Therefore, the series

above can be rewritten as∑
a∈IK

integral

ψm(a)N(a)
k−1
2 qN(a)

=
∑

[b]∈ClK

∞∑
n=1

∑
a∈[b]

N(a)=n

ψm(a)N(a)
k−1
2 qN(a)
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=
∑

[b]∈ClK

∞∑
n=1

∑
α∈b/O×

K
N(α)=nN(b)

ψm(αN(b)−1b)
N(α)

k−1
2

N(b)
k−1
2

q
N(α)
N(b)

=
∑

[b]∈ClK

ψm(N(b)−1b)

N(b)
k−1
2

∞∑
n=1

∑
α∈b/O×

K
N(α)=nN(b)

ψm(αOK)N(α)
k−1
2 q

N(α)
N(b)

=
1

|O×
K |

∑
[b]∈ClK

ψm(N(b)−1b)

N(b)
k−1
2

∞∑
n=1

∑
α∈b

N(α)=nN(b)

ψf,m(α)α
k−1q

N(α)
N(b) .

In particular, when K is of class number 1, this can be reduced to the following formulation.

Corollary 2.2. Let K = Q[
√
−d] be an imaginary quadratic field of discriminant −d < 0 and class

number 1. Then for any nonzero integral ideal m and a Hecke character ψm modulo m,∑
a∈IK

integral

ψm(a)N(a)
k−1
2 qN(a) =

1

|O×
K |

∑
[β]∈(OK/m)×

ψf,m(β)
∑

α∈β+m

αk−1qN(α).

Therefore, when F (z) is a CM newform by an imaginary quadratic field K of class number 1, it is

a linear combination of the spherical theta series
∑

α∈β+m α
k−1qN(α) as β runs over (OK/m)× for

some nonzero integral ideal m.

The spherical theta series
∑

α∈β+m α
k−1qN(α) are known to be holomorphic modular forms. The

reader is referred to [1, Corollary 14.3.16] for more details.
In the following lemma, theta representations for certain CM newforms given in the LMFDB are

specified. The newforms in the lemma are those that linearly interpolate the eta quotients. The
newforms were identified from the LMFDB through a comprehensive search of CM newforms of
appropriate weight and level that interpolate the eta-quotients. The theta function expansions for
the newforms will later help with analyzing the vanishingness of the coefficients of the eta-quotients.

Lemma 2.3. Let q = e2πiz with Im(z) > 0. Then as functions in z,

(1) the functions

S(q) = H1 −H2 −H3 +H4

and

S(q) = H1 −H2 +H3 −H4

are CM newforms of weight 3 for Γ0(144) with Nebentypus
(−4

·
)
by K = Q[

√
−3] labelled

144.3.g.c in the LMFDB, where

H1 =
∑
m,n

(−6n+ 1 + (4m− 2n)
√
−3)2q(−6n+1)2+3(4m−2n)2 ,

H2 =
∑
m,n

(−6n+ 5 + (4m− 2n)
√
−3)2q(−6n+5)2+3(4m−2n)2 ,

H3 =
∑
m,n

(−6n− 2 + (4m− 2n+ 3)
√
−3)2q(−6n−2)2+3(4m−2n+3)2 ,

H4 =
∑
m,n

(−6n+ 2 + (4m− 2n+ 3)
√
−3)2q(−6n+2)2+3(4m−2n+3)2 ,
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(2) the functions

S1(q) =
1

2

(
1 +

√
−3
)
H1 +

1

2

(
−1 +

√
−3
)
H2 −H3

and

S2(q) =
1

2

(
1−

√
−3
)
H1 +

1

2

(
−1− i

√
3
)
H2 −H3

are CM newforms of weight 4 for Γ0(108) with trivial Nebentypus by K = Q[
√
−3] labelled

108.4.a.b and 108.4.a.c, respectively, in LMFDB, where

H1 =
∑
m,n

(
(6m− 3n− 1) +

√
−3(3n− 2)

)3
q(6m−3n−1)2+3(3n−2)2 ,

H2 =
∑
m,n

(
(6m− 3n+ 1) +

√
−3(3n− 2)

)3
q(6m−3n+1)2+3(3n−2)2 ,

H3 =
∑
m,n

(
(6m− 3n− 1) +

√
−3(3n)

)3
q(6m−3n−1)2+3(3n)2 ,

(3) the functions

S1(q) = iH1 − iH2 − iH3 + iH4 +H5 +H6 −H7 −H8

and

S2(q) = −iH1 + iH2 + iH3 − iH4 +H5 +H6 −H7 −H8,

are CM newforms of weight 2 for Γ0(288) with trivial Nebentypus by K = Q[i] labelled
288.2.a.a and 288.2.a.e, respectively, in LMFDB, where

H1 =
∑
m,n

(6m− 6n+ 1 + i(6m+ 6n+ 4))q(6m−6n+1)2+(6m+6n+4)2 ,

H2 =
∑
m,n

(6m− 6n+ 1 + i(6m+ 6n− 4))q(6m−6n+1)2+(6m+6n−4)2 ,

H3 =
∑
m,n

(6m− 6n+ 5 + i(6m+ 6n+ 4))q(6m−6n+5)2+(6m+6n+4)2 ,

H4 =
∑
m,n

(6m− 6n+ 5 + i(6m+ 6n− 4))q(6m−6n+5)2+(6m+6n−4)2 ,

H5 =
∑
m,n

(6m− 6n+ 1 + i(6m+ 6n))q(6m−6n+1)2+(6m+6n)2 ,

H6 =
∑
m,n

(6m− 6n+ 5 + i(6m+ 6n))q(6m−6n+5)2+(6m+6n)2 ,

H7 =
∑
m,n

(6m− 6n− 3 + i(6m+ 6n+ 4))q(6m−6n−3)2+(6m+6n+4)2 ,

H8 =
∑
m,n

(6m− 6n− 3 + i(6m+ 6n− 4))q(6m−6n−3)2+(6m+6n−4)2 ,

(4) the functions

S(q) = −H1 −H2 +

(
1

2
+

√
−3

2

)
H3 +

(
1

2
+

√
−3

2

)
H4

6
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+

(
1

2
−

√
−3

2

)
H5 +

(
−1

2
+

√
−3

2

)
H6

+H7 +H8 +

(
−1

2
+

√
−3

2

)
H9

−H10 −H11 +

(
1

2
+

√
−3

2

)
H12

and

S(q) = H1 +H2 −
(
1

2
+

√
−3

2

)
H3 −

(
1

2
+

√
−3

2

)
H4

−
(
1

2
−

√
−3

2

)
H5 −

(
−1

2
+

√
−3

2

)
H6

+H7 +H8 +

(
−1

2
+

√
−3

2

)
H9

−H10 −H11 +

(
1

2
+

√
−3

2

)
H12

are CM newforms of weight 2 for Γ0(432) with
(
3
·
)
by K = Q[

√
−3] labelled 432.2.c.a in

LMFDB, where

H1 =
∑
m,n

(
12m− 6n− 1

2
+

(
6n+

3

2

)√
−3

)
q(12m−6n−1/2)2+3(6n+3/2)2 ,

H2 =
∑
m,n

(
12m− 6n+

7

2
+

(
6n+

3

2

)√
−3

)
q(12m−6n+7/2)2+3(6n+3/2)2 ,

H3 =
∑
m,n

(
12m− 6n− 1

2
+

(
6n− 5

2

)√
−3

)
q(12m−6n−1/2)2+3(6n−5/2)2 ,

H4 =
∑
m,n

(
12m− 6n− 5

2
+

(
6n− 1

2

)√
−3

)
q(12m−6n−5/2)2+3(6n−1/2)2 ,

H5 =
∑
m,n

(
12m− 6n+

7

2
+

(
6n− 5

2

)√
−3

)
q(12m−6n+7/2)2+3(6n−5/2)2 ,

H6 =
∑
m,n

(
12m− 6n− 11

2
+

(
6n+

1

2

)√
−3

)
q(12m−6n−11/2)2+3(6n+1/2)2 ,

H7 =
∑
m,n

(
12m− 6n+ 1 + (6n)

√
−3
)
q(12m−6n+1)2+3(6n)2 ,

H8 =
∑
m,n

(
12m− 6n+ 5 + (6n)

√
−3
)
q(12m−6n+5)2+3(6n)2 ,

H9 =
∑
m,n

(
12m− 6n+

7

2
+

(
6n+

1

2

)√
−3

)
q(12m−6n+7/2)2+3(6n+1/2)2 ,

H10 =
∑
m,n

(
12m− 6n− 11

2
+

(
6n+

3

2

)√
−3

)
q(12m−6n−11/2)2+3(6n+3/2)2 ,

7
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H11 =
∑
m,n

(
12m− 6n+

13

2
+

(
6n− 3

2

)√
−3

)
q(12m−6n+13/2)2+3(6n−3/2)2 ,

H12 =
∑
m,n

(
12m− 6n− 7

2
+

(
6n+

1

2

)√
−3

)
q(12m−6n−7/2)2+3(6n+1/2)2 ,

(5) the functions

S1(q) =
∑
m,n

(−1)n
(
3m+ 1 + (2n− 3m)

√
−3
)3
q(3m+1)2+3(2n−3m)2 ,

S1(q) =
∑
m,n

(−1)3m−n
(
3m+ 1 + (2n− 3m)

√
−3
)3
q(3m+1)2+3(2n−3m)2

are CM newforms of weight 4 for Γ0(144) with Nebentypus
(
3
·
)
by K = Q[

√
−3], which are

respectively twists of 48.4.c.a and its conjugate by
(−3

·
)
, and

S2(q) = H3 − iH4 +
(1 + i)H7√

2
+

(1− i)H8√
2

− (1 + i)H9√
2

− (1− i)H10√
2

and

S2(q) = H3 − iH4 −
(1 + i)H7√

2
− (1− i)H8√

2
+

(1 + i)H9√
2

+
(1− i)H10√

2

are CM newforms of weight 4 for Γ0(144) with Nebentypus
(
3
·
)
by K = Q[i] labelled 144.4.c.a

in LMFDB, where

H3 =
∑
m,n

(6m+ 1 + 6ni)3q(6m+1)2+(6n)2 ,

H4 =
∑
m,n

(6m+ 3 + (6n− 2)i)3q(6m+3)2+(6n−2)2 ,

H7 =
∑
m,n

((6m+ 1)i+ (6(m+ 2n)− 2))3q(6m+1)2+(6(m+2n)−2)2 ,

H8 =
∑
m,n

((6m+ 1)i+ (6(m+ 2n) + 2))3q(6m+1)2+(6(m+2n)+2)2 ,

H9 =
∑
m,n

((6m+ 5)i+ (6(m+ 2n) + 2))3q(6m+5)2+(6(m+2n)+2)2 ,

H10 =
∑
m,n

((6m+ 5)i+ (6(m+ 2n)− 2))3q(6m+5)2+(6(m+2n)−2)2 ,

(6) the functions

S1(q) = H3 −H4 + iH7 − iH8

and

S2(q) = H3 −H4 − iH7 + iH8

are CM newforms of weight 5 for Γ0(144) with Nebentypus
(−4

·
)
by K = Q[i] labelled

144.5.g.a and 144.5.g.b, respectively, in LMFDB, and

S3(q) = H1 −H2 −H5 +H6

8
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and

S3(q) = H1 −H2 +H5 −H6

are CM newforms of weight 5 for Γ0(144) with Nebentypus
(−4

·
)
by K = Q[

√
−3] labelled

144.5.g.e in LMFDB, where

H1 =
∑
m,n

(−6n+ 1 + (4m− 2n)
√
−3)4q((−6n+1)2+3(4m−2n)2),

H2 =
∑
m,n

(−6n+ 5 + (4m− 2n)
√
−3)4q((−6n+5)2+3(4m−2n)2),

H3 =
∑
m,n

(6m+ 1 + 6ni)4q(6m+1)2+(6n)2 ,

H4 =
∑
m,n

(6m+ 3 + (6n− 2)i)4q(6m+3)2+(6n−2)2 ,

H5 =
∑
m,n

(−6n− 2 + (4m− 2n+ 3)
√
−3)4q((−6n−2)2+3(4m−2n+3)2),

H6 =
∑
m,n

(−6n+ 2 + (4m− 2n+ 3)
√
−3)4q((−6n+2)2+3(4m−2n+3)2),

H7 =
∑
m,n

(6m+ 1 + (6n− 2)i)4q(6m+1)2+(6n−2)2 ,

H8 =
∑
m,n

(6m+ 1 + (6n+ 2)i)4q(6m+1)2+(6n+2)2 .

2.2. Theta representations for eta-quotients. The series in Lemma 2.1 are called eta quotients
and are modular forms with character. In order to use the theory of modular forms to study these
and other relevant quotients of fi, we write them in terms of eta quotients.

Theorem 2.4 ([1, Proposition 5.9.2]). Let f =
∏

m|N ηrm(mz), rm ∈ Z and m ∈ Z+, with

k =
∑

m|N rm/2 ∈ Z. Define M as the least common multiple of N and the denominator of∑
m|N rm/(24m). Then f ∈Mk (Γ0(M), χ), where

χ(d) =

(
(−1)k

∏
m|N mrm

d

)
if and only if ∑

m|N

mrm ≡
∑
m|N

(N/m)rm ≡ 0 (mod 24).

In what follows, using Theorem 2.4 and Sturm’s bound we find alternative representations in
terms of CM newforms or theta functions for the eta-quotients considered in this work. Together
with Lemma 2.3 and basic properties of newforms, these yield explicit formulations for the coeffi-
cients of those eta-quotients and show that the coefficients enjoy some multiplicativity and recursion
relations, which serve as key ingredients in the verification of our observations.

Lemma 2.5. Let fi = fi(q) be defined as in Section 1. Then one has that

(1)

q
f81
f22

(q6) = q
f86
f212

=
1

2

[(
1 +

1√
−3

)
S(q) +

(
1− 1√

−3

)
S(q)

]
9
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and

q7
f82
f21

(q12) = q7
f824
f212

= − 1

16
√
−3

S(q) +
1

16
√
−3

S(q),

where S(q) and S(q) are given as in Lemma 2.3 (1),
(2)

q
f101
f23

(q6) = q
f106
f218

=
1

2
S1(q) +

1

2
S2(q),

where S1(q) and S2(q) are given as in Lemma 2.3 (2),
(3)

f42
f21

=

∞∑
m,n=0

qm(m+1)/2+n(n+1)/2,

(4)

q
f141
f42

(q4) = q
f144
f48

=
∑

m≡1 (mod 4)
n≡0 (mod 2)

(m+ in)4qm
2+n2

is the twist of the CM newform labelled 64.5.c.a in LMFDB by the quadratic character
(
8
·
)
,

(5)

q5
f62
f21

(q12) = q5
f624
f212

= −1

8
S1(q) +

1

8
S2(q),

where S1(q) and S2(q) are given as in Lemma 2.3 (3),
(6)

q7
f53
f1

(q12) = q7
f536
f12

= − 1

6
√
−3

S(q) +
1

6
√
−3

S(q),

where S(q) and S(q) are given as in Lemma 2.3 (4),
(7)

q7
f82
f21

(q12) = q7
f524
f212

=
i

8
√
3

(
S(q)− S(q)

2

)
,

where S(q) and S(q) are given as in Lemma 2.3 (1),
(8)

q13
f93
f1

(q12) = q13
f936
f12

=
S1(q) + S1(q)

324
− S2(q) + S2(q)

324
,

where S1(q), S1(q), S2(q) and S2(q) are given as in Lemma 2.3 (5),
(9)

q13
f162
f61

(q12) = q13
f1624
f612

=
1

384

(
S1(q) + S2(q)

2
− S3(q) + S3(q)

2

)
,

where S1(q), S2(q), S3(q) and S3(q) are given as in Lemma 2.3 (6).

3. Proof of the conjecture for the pair
(
f41 ,

f8
1

f2
2

)
The proof of this case of the conjecture provides a good illustration of the method of proof

outlined in the introduction.
10
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Theorem 3.1. Define the sequences {a(n)} and {b(n)} by

f41 =:

∞∑
n=0

a(n)qn,
f81
f22

=:

∞∑
n=0

b(n)qn.

Then
a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(6n+ 1)
is odd for some prime p ≡ −1 (mod 3).

Proof. From Serre’s criterion at Lemma 2.1, item (1), it can be seen that all that is required to prove
the theorem is to show that b(n) = 0 only under the conditions stated in the lemma. Moreover, by
Lemma 2.5, item (1),

∞∑
n=0

b(n)q6n+1 =
1

2

[(
1 +

1√
−3

) ∞∑
m=0

s(m)qm +

(
1− 1√

−3

) ∞∑
m=0

s(m)qm

]
,

where
∑∞

m=0 s(m)qm = S(q) and
∑∞

m=0 s(m)qm = S(q) are the CM newforms defined as in
Lemma 2.3, item (1). Observe by Lemma 2.3, item (1), the theta series representations for S(q)
and S(q), that

b(2n) = s(12n+ 1) = s(12n+ 1), b(2n+ 1) =
s(12n+ 7)√

−3
= −s(12n+ 7)√

−3
.(3.1)

Note that s(2) = s(3) = 0, and if p is a prime, p ≡ −1 (mod 3), then s(p) = 0. Define the sequences
{hi(n)}, i = 1, . . . , 4 by

Hi =
∞∑
n=0

hi(n)q
n, i = 1, . . . , 4,

where Hi are defined as in Lemma 2.3, item (1).
If p ≡ 1 (mod 12), then p = x2 + 3y2, for unique positive integers x and y with x odd and y

even. Thus h3(p) = h4(p) = 0. It will be shown that only one of H1 and H2 contributes to s(p)qp,
and whichever contributes, it contributes exactly two terms.

If 4|y, then it can be seen from the exponent of q in the formulae for both H1 and H2, that n
must be even, since 4m−2n = y or 4m−2n = −y. If H1 contributes to s(p)qp, then −6n+1 = ±x
for some even n so x ≡ ±1 (mod 12). If H2 contributes to s(p)qp, then −6n + 5 = ±x for some
even n so x ≡ ±5 (mod 12). Since these are incompatible, only one of H1 or H2 contributes to
s(p)qp.

If H2 contributes, then there are exactly two pairs of integers (m1, n), (m2, n) that contribute to
s(p)qp, where n is even and either −6n+ 5 = x or −6n+ 5 = −x (only one of the two equations is
solvable for n even) and 4m1 − 2n = y and 4m2 − 2n = −y (so m2 = n−m1).

Thus, after simplifying,

h2(p) =
(
−6n+ 5 + (4m1 − 2n)

√
−3
)
2 +

(
−6n+ 5 + (4 (n−m1)− 2n)

√
−3
)
2

= 2
(
(−6n+ 5)2 − 3 (4m1 − 2n) 2

)
= 2(x2 − 3y2).

Again, by Lemma 2.3, item (1), one finds that

s(p) = 2(x2 − 3y2).

A similar analysis of the case where H1 contributes to s(p)qp when 4|y, and also of the situation
where 4 ̸ |y (whichever of H1 or H2 contribute), gives that if p ≡ 1 (mod 12) is prime, then

s(p) = 2(x2 − 3y2) or s(p) = −2(x2 − 3y2).
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For our calculations, the key implication in this case (p ≡ 1 (mod 12)) is that,

s(p) = ±2(x2 − 3y2) = ±2(x2 − (p− x2)) ≡ ±4x2 (mod p)

=⇒ s(p) ̸≡ 0 (mod p).

Similarly, if p ≡ 7 (mod 12), then p = x2 + 3y2, for unique positive integers x and y with x even
and y odd. This time H1 and H2 contribute nothing to s(p)qp, but H3 and H4 contribute exactly
one term each to s(p)xp. An analysis similar to that carried out in the case p ≡ 1 (mod 12) gives
in this case, p ≡ 7 (mod 12), that

s(p) = ±4xy
√
−3 =⇒ s(p)k ̸≡ 0 (mod p),∀k ∈ N.

The recurrence formula for s(n) at prime powers is

(3.2) s(pk) = s(p)s(pk−1)− χ(p)p2s(pk−2),

where χ(p) = (−1)(p−1)/2. This gives that if p ≡ −1 (mod 3) is prime, then |s(p2k)| = p2k ̸= 0 and
s(p2k+1) = 0 for all integers k ≥ 0.

If p ≡ 1 (mod 3) (equivalently, p ≡ 1 (mod 12) or p ≡ 7 (mod 12)), then from (3.2),

s(pk) ≡ s(p)k (mod p) ̸≡ 0 (mod p),

by the remarks above. Thus if p ≡ 1 (mod 3), s(pk) ̸= 0 for any non-negative integer k.
The multiplicative property thus gives that s(6n+ 1) = 0 if and only if there exists a prime

number p ≡ −1 (mod 3) whose exponent in 1 + 6n is odd. The relation at (3.1) between b(n) and
s(6n + 1) then give that b(n) = 0 if and only if there exists a prime number p ≡ −1 (mod 3)
whose exponent in 1 + 6n is odd, giving the result.

□

4. Proof of the conjecture for the pair
(
f41 ,

f10
1

f2
3

)
Theorem 4.1. Define the sequences {a(n)} and {b(n)} by

f41 =:

∞∑
n=0

a(n)qn,
f101
f23

=:

∞∑
n=0

b(n)qn.

Then

a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(6n+ 1)
is odd for some prime p ≡ −1 (mod 3).

Proof. Similar to the proof of Theorem 3.1, by Lemma 2.1, item (1), it suffices to prove that
b(n) = 0 if and only if there is a prime p ≡ −1 (mod 3) such that ordp(6n+ 1) is odd.

Recall by Lemma 2.3, item (2) that

∞∑
n=0

b(n)q6n+1 =
1

2

( ∞∑
m=0

s1(m)qm +

∞∑
m=0

s2(m)qm

)
,

where
∑∞

m=0 si(m)qm = Si(q) for i = 1, 2 are the CM newforms given as in Lemma 2.5, item (2).
Then note by Lemma 2.5, item (2) that s1(2) = s1(3) = s2(2) = s2(3) = 0, and for p prime, p ≡ −1
(mod 3), then s1(p) = s2(p) = 0, since primes p > 3, p ≡ −1 (mod 3) are not representable by the
quadratic form x2 + 3y2. For the case p ≡ 1 (mod 3), it is convenient to consider the case p ≡ 1
(mod 6).
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If p ≡ 1 (mod 6), with p = x2 + 3y2, and 3 | y, then H1 and H2 contribute 0 to the coefficients
of qp in S1 and S2, and H3 contributes(

x+
√
−3y

)3
+
(
x−

√
−3y

)3
= 2

(
x3 − 9xy2

)
,

where the rightmost expression in the equation above has the same absolute value independent of
the signs of x and y. Therefore, in this case

s1(p) = s2(p) = −2
(
x3 − 9xy2

)
= b((p− 1)/6) ≡ −8x3 ̸≡ 0 (mod p).(4.1)

If p ≡ 1 (mod 6), with p = x2 + 3y2, and 3 ∤ y, then the coefficient of qp in H3 is 0, and the
coefficients of qp in H1 and H2 are respectively,(

x+
√
−3y

)3
,
(
−x+

√
−3y

)3
.

Thus, in this case,

s1(p) = −x3 − 9x2y + 9xy2 + 9y3, s2(p) = −x3 + 9x2y + 9xy2 − 9y3,

and changing signs of x and y maps the expressions above to ±{s1(p), s2(p)}. Hence,

s1(p) ≡ 12y2(x+ 3y) ̸≡ 0 (mod p),(4.2)

s2(p) ≡ 12y2(x− 3y) ̸≡ 0 (mod p),(4.3)

and

b((p− 1)/6) =
s1(p) + s2(p)

2
= −x3 + 9xy2.

The recurrence formula for s1(n) and s2(n) at prime powers takes the form

(4.4) s1(p
k) = s1(p)s1(p

k−1)− p3s1(p
k−2),

Thus, for each integer k ≥ 0, if p ≡ −1 (mod 3), s1(p
2k+1) = s2(p

2k+1) = 0, and s1(p
2k) ̸=

0, s2(p
2k) ̸= 0. Moreover, from (4.1) and (4.2)-(4.3), we conclude s1(p

2k), s2(p
2k) ̸= 0 for all

nonnegative integers k. By reasoning as in the last section, we obtain a proof of the conjecture for
the pair under consideration.

□

5. Proof of the conjecture for the pair
(
f61 ,

f4
2

f2
1

)
Before getting to the proof, recall the following criterion of Ewell ([3, Corollary 8, page 755]).

Proposition 5.1. A positive integer n can be written as a sum of two triangular numbers if and
only if when 4n + 1 is expressed as a product of prime-powers, every prime factor p ≡ 3 (mod 4)
occurs with even exponent.

Here we use a different method of proof from that used to prove other cases, in that we do not
proceed by attempting to write η4(8z)/η2(4z) in terms of CM forms and theta series.

Theorem 5.2. Define the sequences {a(n)} and {b(n)} as follows:

f61 =:
∞∑
n=0

a(n)qn,
f42
f21

=:
∞∑
n=0

b(n)qn.

Then

a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(4n+ 1)
is odd for some prime p ≡ 3 (mod 4).
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Proof. As usual, let

t(n) =
n(n+ 1)

2
, n = 0, 1, 2, 3, . . . ,

denote the n-th triangular number. Let

T2 = {t(m) + t(n)|m,n ≥ 0},
the set of non-negative integers representable as a sum of two triangular numbers.

Recall (see, for example, [5, Corollary 6.1, Corollary 6.3]) that

(q; q)3∞ =
∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2,

ψ(q) =
(q2; q2)∞
(q; q2)∞

=
∞∑
n=0

qn(n+1)/2.

Then writing (q; q)∞ = (q, q2; q2)∞, one gets that

f42
f21

=
(q2; q2)2∞
(q; q2)2∞

= ψ(q)2 =

∞∑
m,n=0

qm(m+1)/2+n(n+1)/2.

Thus b(n) = 0 if and only if n ̸∈ T2. Likewise

f61 = [(q; q)3∞]2 =

∞∑
m,n=0

(−1)m+n(2m+ 1)(2n+ 1)qm(m+1)/2+n(n+1)/2

Apply the dilation q → q4 to f61 and multiply by q to get

qf64 =

∞∑
n=0

a(n)q4n+1.

Next, we recall the criterion of Serre from Lemma 2.1, item (2):

if qf64 =
∑∞

n=0 a(n)q
4n+1, one has that a(n) = 0 if and only if 4n + 1 has a prime

factor p ≡ −1 (mod 4) with odd exponent.

The statement in the theorem now follows upon combining Ewell’s criterion in Proposition 5.1
with Serre’s statement above. □

Remark: Note that a(n) = 0 if and only if b(n) = 0 would also follow if it could be shown
directly that for any N ∈ T2, ∑

m,n≥0

m(m+1)/2+n(n+1)/2=N

(−1)m+n(2m+ 1)(2n+ 1) ̸= 0.

6. Proof of the conjecture for the pair
(
f61 ,

f14
1

f4
2

)
In this section, we deal with the case of

(
f61 ,

f14
1

f4
2

)
and prove the following theorem.

Theorem 6.1. Define the sequences {a(n)} and {b(n)} by

f61 =:

∞∑
n=0

a(n)qn,
f141
f42

=:
∞∑
n=0

b(n)qn.

Then
a(n) = 0 if and only if b(n) = 0.
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Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(4n+ 1)
is odd for some prime p ≡ −1 (mod 4).

Proof. By Lemma 2.1, item (2), it suffices to prove that b(n) = 0 if and only if 4n+ 1 has a prime
factor p ≡ −1 (mod 4) with odd exponent. Now by Lemma 2.5, item (4), one first has that

b(n) =
∑

x≡1 (mod 4)
y≡0 (mod 2)
x2+y2=4n+1

(x+ iy)4.

Then it is clear that

b(n) =
∏

p|(4n+1)

b̃(pep)

given that 4n+ 1 =
∏

p|(4n+1) p
ep is the prime factorization of 4n+ 1, where

b̃(pep) =
∑

x≡1 (mod 4)
y≡0 (mod 2)
x2+y2=pep

(x+ iy)4.

Suppose that p|(4n + 1) with p ≡ −1 (mod 4) and ep odd. Then x2 + y2 = pep insolvable over Z,
since pep ≡ 3 (mod 4). Therefore, under the assumption, one must have b̃(pep) = 0, which implies
that b(n) = 0.

On the other hand, suppose that b(n) =
∏

p|(4n+1) b̃(p
ep) = 0. We claim that b̃(pep) ̸= 0 for

p ≡ 1 (mod 4), or p ≡ −1 (mod 4) with ep even. For the former case, one first notes that there is
a unique α = a+ ib with a ≡ 1 (mod 4) and b ≡ 0 (mod 2) up to complex conjugate such that the
norm N(α) = p. Then the solutions to N(x+ iy) = pep are exactly

x+ iy = α× · · · × α︸ ︷︷ ︸
k times

× α× · · · × α︸ ︷︷ ︸
ep−k times

as k runs from 0 to ep. Clearly, for 1 ≤ k ≤ ep − 1, x + iy ∈ pZ[i] since αα = p by assumption.
Then

b̃(pep)−
(
(αep)4 + (αep)4

)
∈ p4Z[i].

If b̃(pep) = 0, writing αep = X + iY with X ≡ 1 (mod 4) and Y ≡ 0 (mod 2), one can tell by the
above that

p|(2X4 + 2Y 4 − 12X2Y 2) and p|(X2 + Y 2).

These imply that p|X2Y 2, that is to say, p|X or p|Y . Either one together with p|(X2+Y 2) implies
that p|X and p|Y , and consequently, p|αep , which is impossible since p = αα and the ideals (α)

and (α) are coprime prime ideals. Therefore, b̃(pep) ̸= 0 for p ≡ 1 (mod 4).
For the latter case that p ≡ −1 (mod 4) with ep even, since p is inert in Z[i], it is clear that

b̃(pep) ̸= 0 since the solutions to N(x+ iy) = pep are exactly

x+ iy = (−p)ep/2,

and thus, b̃(pep) = p2ep ̸= 0.
These altogether indicate that b(n) = 0 if and only if 4n+ 1 has a prime factor p ≡ −1 (mod 4)

with odd exponent.
□
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7. Proof of the conjecture for the pair
(
f101 ,

f6
2

f2
1

)
In this section, we deal with the case of

(
f101 ,

f6
2

f2
1

)
and prove the following theorem.

Theorem 7.1. Define the sequences {a(n)} and {b(n)} by

f101 =:

∞∑
n=0

a(n)qn,
f62
f21

=:

∞∑
n=0

b(n)qn.

Then

a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(12n+5)
is odd for some prime p ≡ −1 (mod 4).

Proof. By Lemma 2.1, item (3), it suffices to prove that b(n) = 0 if and only if 12n+5 has a prime
factor p ≡ −1 (mod 4) with odd exponent. Recall by Lemma 2.5, item (5) that

q5
∞∑
n=0

b(n)q12n+5 =
1

8

∞∑
m=1

(s2(m)− s1(m))qm,

where
∑∞

m=1 si(m)qm = Si(q) given as in Lemma 2.3, item (3) for i = 1, 2, and thus, b(n) =
1
8(s2(12n + 5) − s1(12n + 5)). We aim to prove that s2(12n+ 5) − s1(12n+ 5) = 0 if and only if
12n+ 5 has a prime factor p ≡ −1 (mod 4) with odd exponent.

By Lemma 2.3, item (3), we note that Hi for i = 1, . . . , 4 only makes contribution to the
coefficient of the term qm with m ≡ 5 (mod 12), and Hj for j = 5, . . . , 8 only makes contribution
to the coefficient of the term qm with m ≡ 1 (mod 12). Now since both S1(q) and S2(q) with
q = e2πiz are CM newforms, for

m = 12n+ 5 =
∏

ℓ≡1 (mod 12)

ℓeℓ
∏

q≡5 (mod 12)

q2eq
∏

q′≡5 (mod 12)

q′2eq′+1
∏

p≡3 (mod 4)

pep ,

where the number of prime factors q′ ≡ 5 (mod 12) with odd exponent is odd, one has that

s1(12n+ 5) =
∏

ℓ≡1 (mod 12)

s1(ℓ
eℓ)

∏
q≡5 (mod 12)

s1(q
2eq)

∏
q′≡5 (mod 12)

s1(q
′2eq′+1)

∏
p≡3 (mod 4)

s1(p
ep)

and

s2(12n+ 5) =
∏

ℓ≡1 (mod 12)

s2(ℓ
eℓ)

∏
q≡5 (mod 12)

s2(q
2eq)

∏
q′≡5 (mod 12)

s2(q
′2eq′+1)

∏
p≡3 (mod 4)

s2(p
ep).

It is clear by Lemma 2.3, item (3) and the observation above that s1(ℓ
epℓ) = s2(ℓ

eℓ), s1(q
2eq) =

s2(q
2eq), s1(q

′2eq′+1) = −s2(q′2eq′+1), and s1(p
ep) = s2(p

ep), and thus,

s2(12n+ 5)− s1(12n+ 5)

= 2
∏

ℓ≡1 (mod 12)

s2(ℓ
eℓ)

∏
q≡5 (mod 12)

s2(q
2eq)

∏
q′≡5 (mod 12)

s2(q
′2eq′+1)

∏
p≡3 (mod 4)

s2(p
ep).

By some elementary analysis, one can tell that for a prime congruent to 1, 5 modulo 12, up to
complex conjugate there is a unique α of the form 6X ± 1 + i(6Y ± 1) with X ≡ Y (mod 2) such
that N(α) = p. Using the same reasoning as that used in the proof of Theorem 6.1, one can show
that s2(ℓ

eℓ), s2(q
2eq), s2(q

′2eq′+1) are all nonzero, and for p ≡ 3 (mod 4), s2(p
ep) ̸= 0 if and only

if ep is even. Therefore, b(n) = 0 if and only if 12n + 5 is divisible by some odd power of a prime
p ≡ 3 (mod 4). □
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8. Proof of the conjecture for the pair
(
f141 ,

f5
3
f1

)
Theorem 8.1. Define the sequences {a(n)} and {b(n)} by

f141 =:
∞∑
n=0

a(n)qn,
f53
f1

=:

∞∑
n=0

b(n)qn.

Then

a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(12n+7)
is odd for some prime p1 ≡ −1 (mod 3).

Proof. Similarly, by Lemma 2.1, item (4), it is sufficient to prove that b(n) = 0 if and only if there
is a prime p ≡ −1 (mod 3) such that ordp(12n+ 7) is odd. Recall by Lemma 2.3, item (6) that

∞∑
n=0

b(n)q12n+7 =
1

6
√
−3

(
−

∞∑
m=0

s(m)qm +
∞∑

m=0

s(m)qm

)
,

where
∑∞

m=0 s(m)qm = S(q) and
∑∞

m=0 s(m)qm = S(q) are the CM newforms defined as in
Lemma 2.5, item (4). Write

−H1 −H2 +

(
1

2
+

√
−3

2

)
H3 +

(
1

2
+

√
−3

2

)
H4

+

(
1

2
−

√
−3

2

)
H5 +

(
−1

2
+

√
−3

2

)
H6 =

∞∑
n=0

k(n)qn

and

H7 +H8 +

(
−1

2
+

√
−3

2

)
H9 −H10 −H11 +

(
1

2
+

√
−3

2

)
H12 =

∞∑
n=0

t(n)qn,

where Hi are defined as in Lemma 2.5, item (4), and recall that

S(q) =
∞∑
n=0

k(n)qn +
∞∑
n=0

t(n)qn.

Then by the definitions of Hi, when p = x2 +3y2 ≡ 7 (mod 12), the total contribution from the
the t(p) is 0, while the total contribution to s(p) from k(p) up to sign is

2y
√
−3, if 3|y,

(y + x)
√
−3, if 3|y + x,

(y − x)
√
−3, if 3|y − x.

Each claim above follows by rewriting the Hi so the exponents are of the form x2 + 3y2, where
x, y are Z-linear combinations of m,n. For instance, exponents of the theta series H1 and H4 may
be written, respectively, as(

12m− 6n− 1

2

)2

+ 3

(
6n+

3

2

)2

= (6m+ 6n+ 2)2 + 3(−6m+ 6n+ 1)2,(
12m− 6n− 5

2

)2

+ 3

(
6n− 1

2

)2

= (−6m− 6n+ 2)2 + 3(−6m+ 6n+ 1)2.
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Corresponding expansions may be obtained for the exponents in the other theta series Hi. From
these expansions, we may deduce that, in the case 3 | x+ y, the only nonzero contributions to s(p)
come from the pair H1, H4 and that, up to sign,

−H1 +

(
1

2
+

√
−3

2

)
H4 = (x+ y)

√
−3.

Likewise, in the case 3 | x − y, the only nonzero contributions to s(p) come from the pair H2, H3,
and

−H2 +

(
1

2
+

√
−3

2

)
H3 = (x+ y)

√
−3.

When 3 | y, the only contributions to s(p) come from H5, H6, and(
1

2
−

√
−3

2

)
H5 +

(
−1

2
+

√
−3

2

)
H6 = 2y

√
−3.

A similar argument based on the theta expansions shows that for the case if p = x2 + 3y2 ≡ 1
(mod 12), the total contribution to s(p) from t(p) is, up to sign, ±x + 3y, while the contribution
from k(p) is trivial.

By reasoning as in the prior cases, we conclude that the coefficients s(12n+ 7) vanish if and only
if there is a prime p ≡ −1 (mod 3) such that ordp(12n + 7) is odd. The claimed vanishing of the
coefficients b(n) follows.

□

9. Proof of the conjecture for the pair
(
f141 ,

f8
2

f2
1

)
Somewhat curiously, the modular form arising from this case of the conjecture is a linear combi-

nation of the same two CM forms encountered in the proof of Theorem 3.1 (but of course a different
linear combination).

Theorem 9.1. Define the sequences {a(n)} and {b(n)} by

f141 =:

∞∑
n=0

a(n)qn,
f82
f21

=:

∞∑
n=0

b(n)qn.

Then
a(n) = 0 if and only if b(n) = 0.

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which ordp(12n+7)
is odd for some prime p1 ≡ −1 (mod 3).

Proof. Similar to the proofs of the previous cases, this time from Serre’s criterion in Lemma 2.1,
item (4), we see that it is sufficient to prove that b(n) = 0 under the conditions stated in the
theorem. By Lemma 2.5, item (7),

∞∑
n=0

b(n)q12n+7 = − 1

8
√
−3

[
1

2

( ∞∑
m=0

s(m)qm −
∞∑

m=0

s(m)qm

)]
,

where
∑∞

m=0 s(m)qm = S(q) and
∑∞

m=0 s(m)qm = S(q) are the CM newforms defined as in
Lemma 2.3, item (1). Then it is clear that b(n) = 0 if and only if s(12n+ 7) = 0.

We summarize the properties of the coefficients s(p) derived in Section 3, where p is a prime. It
is clear that s(2) = s(3) = 0, and if p is a prime, p ≡ −1 (mod 3), then s(p) = 0.

Using the recursive formula and explicit values computed for the s(p) it was further shown in
Section 3 that if p ≡ −1 (mod 3) is prime, then |s(p2k)| = p2k ̸= 0 and s(p2k+1) = 0 for all integers
k ≥ 0.
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Likewise, it was shown that if p ≡ 1 (mod 3), s(pk) ̸= 0 for any non-negative integer k.
Thus it follows that s(12n+ 7) = 0 if and only if ordp(12n+7) is odd for some prime p ≡ −1

(mod 3). This fact together with the remark that b(n) = 0 if and only if s(12n+ 7) = 0 gives the
desired result. □

10. Proof of the conjecture for the pair
(
f261 ,

f9
3
f1

)
In [8, page 213], Serre gave just a sufficient condition for a(n) = 0, where the sequence {a(n)}

is as defined in Theorem 10.1. Thus his statement for vanishing coefficients in the expansion
of η26(z) is in contrast to what he proved for ηr(z), when r = 2, 4, 6, 8, 10, 14, where he gave
necessary and sufficient conditions for the coefficients to vanish (see Lemma 2.1 for details). This
difference is reflected in the following theorem, and the theorem in the next section.

Theorem 10.1. Define the sequences {a(n)} and {b(n)} by

f261 =:
∞∑
n=0

a(n)qn,
f93
f1

=:
∞∑
n=0

b(n)qn.

Then a(n) = b(n) = 0 for those non-negative n for which either
(a) ordp1(12n+ 13) is odd for some prime p1 ≡ −1 (mod 3) and ordp2(12n+ 13) is odd for some
prime p2 ≡ −1 (mod 4) (it may be that p1 = p2)

or

(b) 12n+ 13 is a square and all prime factors p satisfy p ≡ −1 (mod 12).

Proof. From Lemma 2.1, item (5), it may be seen it is sufficient to show that b(n) = 0 under the
conditions stated in the theorem. Recall by Lemma 2.5, item (8) that

∞∑
n=0

b(n)q12n+13 =
1

324

( ∞∑
m=0

s1(m)qm +
∞∑

m=0

s1(m)qm

)
− 1

324

( ∞∑
m=0

s2(m)qm +
∞∑

m=0

s2(m)qm

)
,

where
∑∞

m=0 si(m)qm = Si(q) and
∑∞

m=0 si(m)qm = Si(q) are the CM newforms defined as in
Lemma 2.3, item (5). Observe that

(10.1)
S1 + S1

2
=

∞∑
n=0

s1(12n+ 1)q12n+1,

and

(10.2)
S2 + S2

2
=

∞∑
n=0

s2(12n+ 1)q12n+1.

Thus, from above,

b(n) = 0 if and only if s1(12n+ 13)− s2(12n+ 13) = 0.

We next use the theta series decompositions for S1 and S2 from Lemma 2.3, item (5), to determine
information about s1(n) and s2(n) when n is a prime.

The coefficients of S1. Recall that the sequence {s(n)} is defined by (10.1). If p ≡ 1 (mod 12)
is a prime, then the equation

(10.3) p = (3m+ 1)2 + 3(2n− 3m)2

is solvable with m even. If (m,n) is one solution, then a second solution is (m,−n+3m), and since
m is even, (−1)−n+3m = (−1)n. Hence
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(10.4) s1(p) = (−1)n
(
3m+ 1 + (2n− 3m)i

√
3
)3

+ (−1)n
(
3m+ 1− (2n− 3m)

√
−3
)3

= 2(−1)n(1 + 3m)
(
4(3m+ 1)2 − 3p

)
=: sp≡1 (mod 12).

If p ≡ 7 (mod 12) is a prime, then (10.3) is solvable with m odd. Once again, if (m,n) is one
solution, then (m,−n + 3m) gives a second solution, but this time, since m is odd, (−1)−n+3m =
−(−1)n, and

(10.5) s1(p) = (−1)n
(
3m+ 1 + (2n− 3m)i

√
3
)3

− (−1)n
(
3m+ 1− (2n− 3m)

√
−3
)3

= 2i(−1)n
(
4(3m+ 1)2 − p

)√
p− (3m+ 1)2 =: sp≡7 (mod 12).

If p ≡ 5 or 11 (mod 12) is a prime, then s1(p) = 0.

The coefficients of S2. Recall that the sequence {s2(n)} is defined by (10.2) and that

S2 =
∞∑
n=0

s2(n)q
n = H1 − iH2 +

(1 + i)H3√
2

+
(1− i)H4√

2
− (1 + i)H5√

2
− (1− i)H6√

2
.

From the fact that that each prime p ≡ 1 (mod 4) has a unique representation of the form
p = x2 + y2 (x and y positive integers), it can be seen that each prime p ≡ 1 (mod 12) has a
representation by exactly one of the forms (6m+ 1)2 + (6n)2 (by H1) or (6m+ 3)2 + (6n− 2)2 (by
H2).

If p is represented by H1 =:
∑∞

n=0 h1(n)q
n, so that p = (6m+ 1)2 + (6n)2 for integers m and n,

then there are exactly two representations (replace n with −n) and then

s2(p) = h1(p) = (6m+ 1 + 6ni)3 + (6m+ 1− 6ni)3 = 2(6m+ 1)(4(6m+ 1)2 − 3p).

On the other hand, if p is represented by H2 =:
∑∞

n=0 h2(n)q
n, so that p = (6m+3)2+(6n− 2)2

for integers m and n, then here also there are exactly two representations (replace m with −m− 1)
and then

s2(p) = −ih2(p) = −i
[
(6m+ 3 + (6n− 2)i)3 + (−6m− 3 + (6n− 2)i)3

]
= 2(6n− 2)

(
3p− 4(6n− 2)2

)
.

Similarly, it can be seen that the quadratic forms in the exponent of q in H3, . . . ,H6 all represent
primes p ≡ 5 (mod 12). Further, each such prime is either a) represented exactly once by each of
H3 and H4 or b) exactly once by each of H5 and H6, with no overlap between cases a) and b).

For ease of notation in what follows, we define the sequences {hi(n)}∞n=0, i = 3, . . . , 6 by

Hi =:
∞∑
n=0

hi(n)q
n, i = 3, . . . , 6.

If p is represented by H3 and H4, so that p = (6x+ 1)2 + (6(x+ 2y)− 2)2 = (6x+ 1)2 + (6(x+
2(−x− y)) + 2)2 for some integers x and y, and then

(10.6) s2(p) = h3,4(p) :=
(1 + i)h3(p)√

2
+

(1− i)h4(p)√
2

=
(1 + i)√

2
[(6x+ 1)i+ (6(x+ 2y)− 2)]3 +

(1− i)√
2

[(6x+ 1)i+ (−6(x+ 2y) + 2)]3

= i
√
2
[(
3p− 4(6x+ 1)2

)
(6x+ 1)±

(
p− 4(6x+ 1)2

)√
p− (6x+ 1)2

]
,

where the ± sign depends on whether 6(x+ 2y)− 2 is positive or negative.
20



Alternatively, if p is represented by H5 and H6, so that p = (6x + 5)2 + (6(x + 2y) + 2)2 =
(6x+ 5)2 + (6(x+ 2(−x− y))− 2)2 for some integers x and y, and then

(10.7) s2(p) = h5,6(p) := −(1 + i)h5(p)√
2

− (1− i)h6(p)√
2

= −(1 + i)√
2

[(6x+ 5)i+ (6(x+ 2y) + 2)]3 − (1− i)√
2

[(6x+ 5)i+ (−6(x+ 2y)− 2)]3

= −i
√
2
[(
3p− 4(6x+ 5)2

)
(6x+ 5)±

(
p− 4(6x+ 5)2

)√
p− (6x+ 5)2

]
,

where the ± sign depends on whether 6(x+ 2y) + 2 is positive or negative.
If p is prime, p ≡ 7 or 11 (mod 12), then s2(p) = 0.
Before using the recurrence formulae to examine s1(p

k) and s2(p
k), where k is a positive integer,

we summarize the information derived so far.

s1(p) s2(p)
p ≡ 1 (mod 12) sp≡1 (mod 12)(10.4) h1(p) or −ih2(p)
p ≡ 5 (mod 12) 0 h3,4(p) (10.6) or h5,6(p) (10.7)
p ≡ 7 (mod 12) sp≡7 (mod 12)(10.5) 0
p ≡ 11 (mod 12) 0 0

Table 1. The values of s1(p) and s2(p) for p a prime

Next, recall that the sequences {s1(n)} and {s2(n)} satisfy the recurrence relations

s1(p
k) = s1(p

k−1)s1(p)− χ(p)p3s1(p
k−2),(10.8)

s2(p
k) = s2(p

k−1)s2(p)− χ(p)p3s2(p
k−2),

where

χ(p) =

{
1, p ≡ 1, 11 (mod 12),

−1, p ≡ 5, 7 (mod 12).

We are now ready to prove the claims in the theorem. As remarked previously, b(n) = 0
if and only if s1(12n+ 13)− s2(12n+ 13) = 0.

(a) Observe that if p ≡ 11 (mod 12), then the recurrence formulae (10.8) together with the
values s1(p) = s2(p) = 0 from Table 1 give that, for all integers k ≥ 0,

s1(p
2k) = s2(p

2k) = (−1)kp3k,

so that, by the multiplicative property, if 12n + 13 is a square with all prime factors ≡ −1 ≡ 11
(mod 12), then

s1(12n+ 13) = s2(12n+ 13) =⇒ s1(12n+ 13)− s2(12n+ 13) = 0 =⇒ b(n) = 0.

(b) By similar reasoning, if p ≡ −1 (mod 4) (so p ≡ 7 or 11 (mod 12)), then the values s2(p) = 0
from Table 1 and the second recurrence formula at (10.8) gives that s2(p

2k+1) = 0, for all integers
k ≥ 0. Likewise, if p ≡ −1 (mod 3) (so p ≡ 5 or 11 (mod 12)), then the values s1(p) = 0 from
Table 1 and the first recurrence formula at (10.8) gives that s1(p

2k+1) = 0, for all integers k ≥ 0.
The multiplicative property now gives that if 12n+ 13 has a prime factor p1 ≡ −1 (mod 4) and a
prime factor p2 ≡ −1 (mod 3) (it could happen the p1 = p2), both occurring to odd powers, then

s1(12n+ 13) = s2(12n+ 13) = 0 =⇒ s1(12n+ 13)− s2(12n+ 13) = 0 =⇒ b(n) = 0.

□
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11. Proof of the conjecture for the pair
(
f261 ,

f16
2

f6
1

)
As in the previous section, the proof in this sections gives just a sufficient condition for the

simultaneous vanishing of the coefficients.

Theorem 11.1. Define the sequences {a(n)} and {b(n)} by

f261 =:
∞∑
n=0

a(n)qn,
f162
f61

=:
∞∑
n=0

b(n)qn.

Then a(n) = b(n) = 0 for those non-negative n for which either
(a) ordp1(12n+ 13) is odd for some prime p1 ≡ −1 (mod 3) and ordp2(12n+ 13) is odd for some
prime p2 ≡ −1 (mod 4) (it may be that p1 = p2)

or

(b) 12n+ 13 is a square and all prime factors p satisfy p ≡ −1 (mod 12).

Proof. The proof is quite similar to that of Theorem 10.1; by Lemma 2.1, item (5), it is sufficient
to show that b(n) = 0 under the conditions stated in the theorem. Recall that from Lemma 2.5,
item (9), one has that
(11.1)
∞∑
n=0

b(n)q12n+13 =
1

384

[
1

2

( ∞∑
m=0

s1(m)qm +

∞∑
m=0

s2(m)qm

)
− 1

2

( ∞∑
m=0

s3(m)qm +

∞∑
m=0

s3(m)qm

)]
,

where
∑∞

m=0 s1(m)qm = S1(q),
∑∞

m=0 s2(m)qm = S2(q),
∑∞

m=0 s3(m)qm = S3(q), and∑∞
m=0 s3(m)qm = S3(q) are the CM newforms given as in Lemma 2.3, item (6). Recall also that

from Lemma 2.3, item (6) (see there for the definitions of the theta series H1,. . . ,H8), one has that

S1 = H3 −H4 + iH7 − iH8,(11.2)

S2 = H3 −H4 − iH7 + iH8,

S3 = H1 −H2 −H5 +H6,

S3 = H1 −H2 +H5 −H6,

Define the sequences {hi(n)}, i = 1, . . . , 8 by

Hi =:
∞∑
n=0

hi(n)q
n, i = 1, . . . , 8 .

Observe by hi(n) that

S1(q) + S2(q)

2
=

∞∑
n=0

s1(12n+ 1)q12n+1.

Likewise,

S3(q) + S3(q)

2
=

∞∑
n=0

s3(12n+ 1)q12n+1.

Thus, from (11.1), and similarly to the situation in the previous theorem,

b(n) = 0 if and only if s1(12n+ 13)− s3(12n+ 13) = 0.

We will use (11.2) and the expansions for the theta series to compute s1(p) and s3(p) for p a
prime in each of the congruence classes modulo 12.

We start with s1(p). Note that each prime p ≡ 1 (mod 12) is representable by exactly one of
the forms (6m+ 1)2 + (6n)2, (6m+ 3)2 + (6n− 2)2.
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The coefficients of H3. If p = 12k + 1 is a prime and if there is are solutions p = (6m + 1)2 +
(6n)2 = (6m + 1)2 + (6(−n))2, then these are the only two solutions, and h3(p) (from this pair of
representations) is given by

h3(p) = (6m+ 1 + 6ni)4 + (6m+ 1− 6ni)4 = 2(8(6n)4 − 8(6n)2p+ p2).

If p ≡ 5, 7, or 11 (mod 12) then p = (6m+ 1)2 + (6n)2 has no solutions and h3(p) = 0.

The coefficients of H4. A similar examination of H4 shows that if p ≡ 1 (mod 12) and if there
is a solution p = (6m+ 3)2 + (6n− 2)2 then there is exactly one other solution p = (6(−m− 1) +
3)2 + (6n− 2)2 and h4(p) is given by

h4(p) = (6m+ 3 + (6n− 2)i)4 + (6(−m− 1) + 3 + (6n− 2)i)4

= 2(p2 − 8p(6n− 2)2 + 8(6n− 2)4).

Likewise, if p ≡ 5, 7, or 11 (mod 12) then h4(p) = 0.

The coefficients of H7. If p ≡ 5 (mod 12), then the equation p = (6m + 1)2 + (6n − 2)2 has a
unique solution and

h7(p) = (6m+ 1 + (6n− 2)i)4.

If p ≡ 1, 7 or 11 (mod 12), then h7(p) = 0.

The coefficients of H8. If p ≡ 5 (mod 12), then the equation p = (6m + 1)2 + (6n + 2)2 has a
unique solution and

g4(p) = (6m+ 1 + (6n+ 2)i)4.

As with H7, if p ≡ 1, 7 or 11 (mod 12), then g4(p) = 0.
If p ≡ 5 (mod 12), p = x2 + y2, then we note for later use (in computing s(p)) that

(11.3) i(h7(p)− h8(p)) = ±8xy(x2 − y2).

After using the information above together with formula for S1 at (11.2), we get the following
table of values.

s(p)
p ≡ 1 (mod 12) h3(p) or − h4(p)
p ≡ 5 (mod 12) ±8xy(x2 − y2) (11.3)
p ≡ 7 (mod 12) 0
p ≡ 11 (mod 12) 0

Table 2. The values of s(p) for p a prime

We next derive formulae for s3(p), starting with H1 and H2. We note that each prime p of the
form p = 12k + 1 is represented by exactly one of the forms (−6n + 1)2 + 3(4m − 2n)2 and
(−6n+ 5)2 + 3(4m− 2n)2.

The coefficients of H1. For p ≡ 1 (mod 12), if there is a solution p = (−6n+1)2 +3(4m− 2n)2

then there is exactly one other solution p = (−6n+ 1)2 + 3(4(−m+ n)− 2n)2 and then

h1(p) = (−6n+ 1 + (4m− 2n)
√
−3)4+

(−6n+ 1 + (4(−m+ n)− 2n)
√
−3)4 = 2(p2 − 8p(−6n+ 1)2 + 8(−6n+ 1)4).

If p ≡ 5, 7 or 11 (mod 12) there is no solution to p = (−6n+ 1)2 + 3(4m− 2n)2 and h1(p) = 0.
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The coefficients of H2. The situation is similar to that for H1. For p ≡ 1 (mod 12), if there is
a solution p = (−6n+5)2 +3(4m− 2n)2 then there is exactly one other solution p = (−6n+5)2 +
3(4(−m+ n)− 2n)2 and

h2(p) = (−6n+ 5 + (4m− 2n)
√
−3)4 + (−6n+ 5 + (4(−m+ n)− 2n)

√
−3)4

= 2(p2 − 8p(−6n+ 5)2 + 8(−6n+ 5)4).

If p ≡ 5, 7 or 11 (mod 12) there are no solution to p = (−6n+ 5)2 + 3(4m− 2n)2 and h2(p) = 0.

The coefficients of H5. For p ≡ 7 (mod 12), there is a unique solution to p = (−6n − 2)2 +
3(4m− 2n+ 3)2 and then

h5(p) = (−6n− 2 + (4m− 2n+ 3)
√
−3)4.

If p ≡ 1, 5 or 11 (mod 12) there is no solution to p = (−6n− 2)2 +3(4m− 2n+3)2 and h5(p) = 0.

The coefficients of H6. The situation is similar to that for H5. For p ≡ 7 (mod 12), there is a
unique solution to p = (−6n+ 2)2 + 3(4m− 2n+ 3)2 and then

h6(p) = (−6n+ 2 + (4m− 2n+ 3)
√
−3)4.

If p ≡ 1, 5 or 11 (mod 12) there is no solution to p = (−6n+2)2 +3(4m− 2n+3)2 and h6(p) = 0.
If p ≡ 7 (mod 12), p = x2 + 3y2, then we note for later use (in computing s3(p)) that

(11.4) − h5(p) + h6(p) = ±8
√
−3xy(x2 − 3y2).

As with s1(p) above, the information above together with formula for S3 at (11.2) is used to
compute formulae for s3(p), for p a prime in the various congruence classes modulo 12. The results
are summarized in the following table.

s3(p)
p ≡ 1 (mod 12) h1(p) or − h2(p)
p ≡ 5 (mod 12) 0
p ≡ 7 (mod 12) ±8

√
−3xy(x2 − 3y2) (11.4)

p ≡ 11 (mod 12) 0
Table 3. The values of s3(p) for p a prime

Next, recall the recurrence relations

s1(p
k) = s1(p

k−1)s1(p)− χ(p)p4s1(p
k−2),(11.5)

s3(p
k) = s3(p

k−1)s3(p)− χ(p)p4s3(p
k−2),

where

χ(p) =

{
1, p ≡ 1 (mod 4),

−1, p ≡ −1 (mod 4).

We are now ready to prove the claims in the theorem, the remainder of the proof mirroring the last
stages in the proof of Theorem 10.1. As remarked previously, b(n) = 0 if and only if s1(12n+ 13)
−s3(12n+ 13) = 0.

(a) Observe that if p ≡ −1 ≡ 11 (mod 12), then the recurrence formulae (11.5) together with
the values s1(p) = s3(p) = 0 from the tables give that, for all integers k ≥ 0,

s1(p
2k) = s3(p

2k) = p4k,
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so that, by the multiplicative property, if 12n+13 is a square with all prime factors ≡ −1 (mod 12),
then

s1(12n+ 13) = s3(12n+ 13) =⇒ s1(12n+ 13)− s3(12n+ 13) = 0 =⇒ b(n) = 0.

(b) By similar reasoning, if p1 ≡ −1 (mod 4) (so p1 ≡ 7 or 11 (mod 12)), then s1(p
2k+1
1 ) = 0, for

all integers k ≥ 0. Likewise, if p2 ≡ −1 (mod 3) (so p2 ≡ 5 or 11 (mod 12)), then s3(p
2k+1
2 ) = 0,

for all integers k ≥ 0. The multiplicative property now gives that if 12n + 13 has prime factor
p1 ≡ −1 (mod 4) and a prime factor p2 ≡ −1 (mod 3) (it could happen the p1 = p2), then

s1(12n+ 13) = s3(12n+ 13) = 0 =⇒ s1(12n+ 13)− s3(12n+ 13) = 0 =⇒ b(n) = 0.

□

Remark 11.2. In both Theorem 10.1 and Theorem 11.1, more details were computed than were
strictly necessary for the proofs. In particular explicit values for s1(p) and s3(p) were computed
when these were non-zero. However, we feel they may be of assistance to some reader in extending
the statement of these theorems to the “if and only if” statements, as is the case in the previous
theorems.

12. Concluding Remarks

The replacement q → −q in an infinite q-series has no effect on the location of the vanishing
coefficients. However this replacement can lead to a new infinite product whose coefficients vanish
identically with the original, via the identity

(−q;−q)∞ =
(q2; q2)3∞

(q; q)∞(q4; q4)∞
.

For example, making the replacement q → −q in the pair
(
f61 , f

14
1 /f42

)
examined in Theorem 6.1

leads to the pair of quotients (
f182
f61 f

6
4

,
f382

f141 f144

)
whose coefficients also vanish identically with those of f61 .

This phenomenon of identically vanishing coefficients appears to be even more widespread than
we initially expected, even taking into consideration the remarks in the preceding paragraph. We
intend to explore this phenomenon further in a subsequent paper.
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