
Generalizations of some q-product Identities of Ramanujan
and others

Timothy Huber, James McLaughlin and Dongxi Ye

Abstract. By considering certain limiting cases of a WP-Bailey chain dis-

covered by Andrews, and also limiting cases of certain classical summation

formulae for basic hypergeometric series, we derive new expressions for certain
Lambert series in terms of basic hypergeometric series. In some cases, the

resulting series involve an arbitrary Bailey pair. This allows for the deriva-
tion of new basic hypergeometric expansions for some q-products and series

that Ramanujan expressed in terms of Lambert series. Some of Ramanujan’s

identities are extended to more general relations containing one or more free
parameters.

1. Introduction

In the present paper certain limiting cases of known identities with one or more
free parameters are considered. These limiting cases lead to several different repre-
sentations for the same function in each case, one of these representation involving
Lambert series (see Theorem 3.1, Corollaries 3.4 and 4.1, and Theorems 5.1, 6.1
and 7.1). While the derivation of these limiting cases themselves is elementary, our
reason for doing so is that they permit new representations (in terms of basic hy-
pergeometric series) for various functions which also have representations in terms
of Lambert series. In some cases, the new representation may involve an arbitrary
Bailey- or WP-Bailey pair, thus leading to a separate identity for each such pair.

As an example of this we consider the following identity of Ramanujan, [4,
Entry 4, Ch. 21], which states that

(1.1) 1 + 6

∞∑
n=1

nqn

1− qn
− 30

∞∑
n=1

nq5n

1− q5n

=

(
(q; q)12∞ + 22q(q; q)6∞(q5; q5)6∞ + 125q2(q5; q5)12∞

)1/2
(q; q)∞(q5; q5)∞

.

As an implication of one of the results in the present paper, we show that
Equation (1.1) can be extended as follows: if (αn(1, q), βn(1, q)) is any Bailey pair
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with respect to 1 (see below for the definition of a Bailey pair), then

(1.2) 1 + 6

∞∑
n=1

(q, q; q)n−1q
nβn(1, q)− 6

∞∑
n=1

qnαn(1, q)

(1− qn)2

− 30

∞∑
n=1

(q5, q5; q5)n−1q
5nβn(1, q

5) + 30

∞∑
n=1

q5nαn(1, q
5)

(1− q5n)2

=

(
(q; q)12∞ + 22q(q; q)6∞(q5; q5)6∞ + 125q2(q5; q5)12∞

)1/2
(q; q)∞(q5; q5)∞

.

Ramanujan’s original result may then be seen as the special case deriving from
the “trivial” Bailey pair (α0(1, q) = β0(1, q) = 1, and for n > 0, αn(1, q) = 0 and
βn(1, q) = 1/(q, q; q)n), after employing the identity

∞∑
n=1

qn

(1− qn)2
=

∞∑
n=1

nqn

1− qn
.

Any Bailey pair (αn(1, q), βn(1, q)), including some with free parameters, may
be substituted in (1.2) to produce specific identities, and we give some examples
later.

Other results in the paper are even more general, extending identities of Ra-
manujan to identities involving an arbitrary WP-Bailey pair (as opposed to an
arbitrary Bailey pair) - see, for example, Eq. (3.4) below.

Some of the new identities lack the flexibility of containing an arbitrary Bai-
ley pair or arbitrary WP-Bailey pair, but are still quite interesting. As an ex-
ample, we have that if b and λ be non-zero complex numbers such that |q| <
max{1, |b/λ|, |λ/b|} and we define

g(b, λ, q) :=

∞∑
n=1

(1− λq2n)(q; q)n−1

(
b, b

λ ; q
)
n

(
λ2q
b ; q2

)
n
(−qλ

b )n

(1− λqn)
(

qλ
b ,

λ2q
b , q; q

)
n
(qb; q2)n

,

then

g(b, λ, q)− g

(
1

b
,
1

λ
, q

)
=

(1− b)λ
(
b2 − λ3

)
(1− λ) (b− λ2) (b2 − λ2)

− λ

b

(
b, qb ,−

λ2

b ,−
qb
λ2 ; q

)
∞
(q2, q2; q2)∞(

λ2, q2

λ2 ,
λ2

b2 ,
q2b2

λ2 ; q2
)
∞

+
b

λ2

(
b, q

2

b ,
λ2q
b , qb

λ2 ,
λ2

q ,
q3

λ2 , q
2, q2; q2

)
∞(

b
λ2 ,

λ2q2

b , q, q, bq ,
q3

b , λ
2, q2

λ2 ; q2
)
∞

.

Here and throughout, we use the standard q-hypergeometric notation

(a; q)k :=

k∏
n=1

(1− aqn−1) and (a1, . . . , am; q)k := (a1; q)k . . . (am; q)k,

valid for k ∈ N ∪ {∞}.

2. Background

The work in the present paper continues the work initiated in two previous
papers, [8] and [9], but left aside for several years. We begin by recalling some def-
initions. A WP-Bailey pair was defined by Andrews [1] to be a pair of sequences
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(αn(a, k, q), βn(a, k, q)) (if the context is clear, we occasionally suppress the depen-
dence on some or all of a, k and q) satisfying α0(a, k, q) = β0(a, k, q) = 1 and, for
n > 0,

βn(a, k, q) =

n∑
j=0

(k/a; q)n−j(k; q)n+j

(q; q)n−j(aq; q)n+j
αj(a, k, q).(2.1)

If k = 0, then the pair of sequences (αn(a, q), βn(a, q)) is called a Bailey pair
with respect to a. In the same paper Andrews [1] described two constructions
whereby new WP-Bailey pairs could be derived from existing pairs. For more on
WP-Bailey pairs and chains, see [2, 7, 12, 13].

In [8] and [9], the second author examined certain limiting cases of Andrews’
two constructions to derive some general transformation and summation formulae
for WP-Bailey pairs and standard Bailey pairs. These identities were applied to
derive new expressions for certain functions that can be represented as certain types
of Lambert series. We continue these investigations in the present paper. Firstly, we
consider two other special cases of Andrews’ initial construction that we overlooked
in [8]. Secondly, we also consider limiting cases of Jackson’s 6ϕ5 summation formula
and q-analogues of Watson’s 3F2- and Whipple’s 3F2 summation formulae. In both
cases we derive new general transformations relating certain basic hypergeometric
series to various Lambert series. We then use these new transformations to derive
new summation formulae for a number of q-products that have known expressions
in terms of certain Lambert series, as was done in the previous papers [8] and [9].

3. A second limiting case of Andrews first WP-Bailey chain

One of Andrews’ [1] WP-Bailey chains imply (see Corollary 1 in [11], for exam-
ple) that if (αn, βn) satisfy (2.1), then subject to suitable convergence conditions,

(3.1)

∞∑
n=0

(q
√
k,−q

√
k, y, z; q)n

(
√
k,−

√
k, qk/y, qk/z; q)n

(
qa

yz

)n

βn =

(qk, qk/yz, qa/y, qa/z; q)∞
(qk/y, qk/z, qa, qa/yz; q)∞

∞∑
n=0

(y, z; q)n
(qa/y, qa/z; q)n

(
qa

yz

)n

αn.

In an earlier paper [8] the second author investigated the implications of letting
y → 1 in (3.1), namely, that if (αn, βn) is a WP-Bailey pair, then subject to suitable
convergence conditions,

(3.2)

∞∑
n=1

(1− kq2n)(z; q)n(q; q)n−1

(1− k)(qk, qk/z; q)n

(qa
z

)n
βn

−
∞∑

n=1

(z; q)n(q; q)n−1

(qa, qa/z; q)n

(qa
z

)n
αn = f(a, k, z, q)

where

f(a,k, z, q) =

∞∑
n=1

(1− kq2n)(z, k/a; q)n
(1− kqn)(qk/z, qa; q)n(1− qn)

(qa
z

)n
(3.3)

= −
∞∑

n=1

(1− aq2n)(z, a/k; q)n
(1− aqn)(qa/z, qk; q)n(1− qn)

(
qk

z

)n
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=

∞∑
n=1

kqn

1− kqn
+

∞∑
n=1

qna/z

1− qna/z
−

∞∑
n=1

aqn

1− aqn
−

∞∑
n=1

qnk/z

1− qnk/z
.

One special case of (3.2) that we omitted in [8] was the result of letting z → 1,
and we consider that case now.

Theorem 3.1. If (αn(a, k, q), βn(a, k, q)) is a WP-Bailey pair, then subject to
suitable convergence conditions,

∞∑
n=1

(1− kq2n)(q, q; q)n−1

(1− k)(qk, qk; q)n
(qa)

n
βn(a, k, q)

−
∞∑

n=1

(q, q; q)n−1

(qa, qa; q)n
(qa)

n
αn(a, k, q) = f1(a, k, q),

where

f1(a, k, q) =

∞∑
n=1

(1− kq2n)(k/a; q)n(q; q)n−1

(1− kqn)(qk, qa; q)n(1− qn)
(qa)

n

= −
∞∑

n=1

(1− aq2n)(a/k; q)n(q; q)n−1

(1− aqn)(qa, qk; q)n(1− qn)
(qk)

n

=

∞∑
n=1

qna

(1− qna)2
−

∞∑
n=1

qnk

(1− qnk)2
.

Proof. Divide the identity at (3.2) through by 1− z and then let z → 1. The
next-to-last equality involving Lambert series follows from the fact that if we define

G(z) :=

∞∑
n=1

kqn

1− kqn
+

∞∑
n=1

qna/z

1− qna/z
−

∞∑
n=1

aqn

1− aqn
−

∞∑
n=1

qnk/z

1− qnk/z
,

then G(1) = 0 and

lim
z→1

1

1− z

( ∞∑
n=1

kqn

1− kqn
+

∞∑
n=1

qna/z

1− qna/z
−

∞∑
n=1

aqn

1− aqn
−

∞∑
n=1

qnk/z

1− qnk/z

)

= lim
z→1

G(z)−G(1)

1− z
= −G′(1) =

∞∑
n=1

qna

(1− qna)2
−

∞∑
n=1

qnk

(1− qnk)2
.

□

One reason we consider this special case is that certain q-products may be
expressed in terms of Lambert series of the type exhibited above, and the corollary
now permits new representations of such products in terms of basic hypergeometric
series to be given – in fact, one such representation for each WP-Bailey pair. We
give one example, which leads to a large number of new representations for the
product q(q5; q5)5∞/(q; q)∞.
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Corollary 3.2. Let (αn(a, k, q), βn(a, k, q)) be a WP-Bailey pair. Then, sub-
ject to suitable convergence conditions,

(3.4) q
(q5; q5)5∞
(q; q)∞

=

∞∑
n=1

(1− q10n−2)(q5, q5; q5)n−1q
n

(1− 1/q2)(q3, q3; q5)n
βn

(
1

q4
,
1

q2
, q5
)

+

∞∑
n=1

(1− q10n−3)(q5, q5; q5)n−1q
4n

(1− 1/q3)(q2, q2; q5)n
βn

(
1

q
,
1

q3
, q5
)

−
∞∑

n=1

(q5, q5; q5)n−1q
n

(q, q; q5)n
αn

(
1

q4
,
1

q2
, q5
)

−
∞∑

n=1

(q5, q5; q5)n−1q
4n

(q4, q4; q5)n
αn

(
1

q
,
1

q3
, q5
)
.

(3.5) q
(q5; q5)5∞
(q; q)∞

=

∞∑
n=1

(1− q10n−2)(q5; q5)n−1

(
1
q ; q

5
)
n
qn

(1− 1/q2)(1− q5n) (q3, q3; q5)n

+

∞∑
n=1

(1− q10n−3)(q5; q5)n−1

(
1
q9 ; q

5
)
n
q4n

(1− 1/q3)(1− q5n) (q2, q2; q5)n

−
∞∑

n=1

(1− q10n−4)(q5; q5)n−1

(
1
q3 ; q

5
)
n

(
1
q ; q

5
)
2n
q3n

(1− q5n−4)(1− q5n) (q, q4; q5)n

(
1
q2 ; q

5
)
2n

−
∞∑

n=1

(1− q10n−1)(q5; q5)n−1

(
1
q7 ; q

5
)
n

(
q6; q5

)
2n
q2n

(1− q5n−1)(1− q5n) (q4, q11; q5)n

(
1
q3 ; q

5
)
2n

.

Proof. By [3, Entry 18.2.23, Ch. 18]

(3.6) q
(q5; q5)5∞
(q; q)∞

=

∞∑
n=1

(n
5

) qn

(1− qn)2
,

where (n/5) is the Legendre symbol. In Theorem 3.1, replace q with q5 and set
(a, k) = (1/q4, 1/q2) and (a, k) = (1/q, 1/q3) respectively. Add the resulting iden-
tities and it can be seen from the last representation of f1(a, k, q) that

q
(q5; q5)5∞
(q; q)∞

= f1(1/q
4, 1/q2, q5) + f1(1/q, 1/q

3, q5)

and (3.4) now follows. Inserting the WP-Bailey pair (see, for example, [2, Eqs.
(3.3) and (3.4)])

α′
n(a, k) =

1− aq2n

1− a

(a, k/aq; q)n(qa
2/k; q)2n

(q2a2/k, q; q)n(k; q)2n

(
k

a

)n

,

β′
n(a, k) =

(k2/qa2; q)n
(q; q)n

.

into (3.4) gives (3.5). □

The substitution a = 1 and k = e±iθ in Theorem 3.1 results in a WP-Bailey
pair iteration for a fundamental building block of elliptic modular functions.
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Corollary 3.3. Let ℘(θ) denote the Weierstrass ℘-function, normalized so
that [14, Ex. 35, p. 460]

℘(θ) =
1

4
csc2

θ

2
− 1

12
+ 2

∞∑
n=1

nqn

1− qn
− 2

∞∑
n=1

nqn cos(nθ)

1− qn
.

Suppose (αn(a, k, q), βn(a, k, q)) is a WP-Bailey pair. Then, subject to suitable
convergence conditions,

℘(θ) =
1

4
csc2

θ

2
− 1

12
+

∞∑
n=1

(1− q2neiθ)(q; q)2n−1

(1− eiθ)(qeiθ; q)2n
qnβn(1, e

iθ, q)

+

∞∑
n=1

(1− q2ne−iθ)(q; q)2n−1

(1− e−iθ)(qe−iθ; q)2n
qnβn(1, e

−iθ, q)

−
∞∑

n=1

qnαn(1, e
iθ, q)

(1− qn)2
−

∞∑
n=1

qnαn(1, e
−iθ, q)

(1− qn)2
.

We next consider another special case of (3.2), which follows from setting k =
−a. This special case also has some interesting applications. We also consider
this special case (k = −a) of Theorem 3.1. The proofs are straightforward, so are
omitted.

Corollary 3.4. If (αn(a, k), βn(a, k)) = (αn(a, k, q), βn(a, k, q)) is a WP-
Bailey pair, then subject to suitable convergence conditions,

(3.7)

∞∑
n=1

(1 + aq2n)(z; q)n(q; q)n−1

(1 + a)(−qa,−qa/z; q)n

(qa
z

)n
βn(a,−a)

−
∞∑

n=1

(z; q)n(q; q)n−1

(qa, qa/z; q)n

(qa
z

)n
αn(a,−a) = f2(a, z, q)

where

f2(a,z, q) =

∞∑
n=1

(1 + aq2n)(z,−1; q)n
(1 + aqn)(−qa/z, qa; q)n(1− qn)

(qa
z

)n
= −

∞∑
n=1

(1− aq2n)(z,−1; q)n
(1− aqn)(qa/z,−qa; q)n(1− qn)

(
−qa
z

)n

= 2

∞∑
n=1

qna/z

1− q2na2/z2
− 2

∞∑
n=1

aqn

1− a2q2n
,

and

∞∑
n=1

(1 + aq2n)(q, q; q)n−1

(1 + a)(−qa,−qa; q)n
(qa)

n
βn(a,−a)

−
∞∑

n=1

(q, q; q)n−1

(qa, qa; q)n
(qa)

n
αn(a,−a) = f3(a, q)

where

f3(a,q) =

∞∑
n=1

(1 + aq2n)(−1; q)n(q; q)n−1 (qa)
n

(1 + aqn)(−qa, qa; q)n(1− qn)
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= −
∞∑

n=1

(1− aq2n)(−1; q)n(q; q)n−1 (−qa)n

(1− aqn)(qa,−qa; q)n(1− qn)

= 2

∞∑
n=1

qna(1 + a2q2n)

(1− q2na2)2
.

To give an application of (3.7), we recall another identity of Ramanujan (see
[4, Entry 3, Ch. 19]):

qψ(q2)ψ(q6) =

∞∑
n=1

q6n−5

1− q12n−10
−

∞∑
n=1

q6n−1

1− q12n−2
,

where ψ(q) :=
∑∞

n=0 q
n(n+1)/2 = (q2; q2)∞(−q; q)∞ (this function also appears in

other identities below). Now in (3.7), replace q with q6, set a = 1/q and z = q4, and
divide through by 2. Next insert the unit WP-Bailey pair (see [10, Eq. (12.15)],
for example),

αn(a, k) =
(1− aq2n)(a, ak ; q)n

(1− a)(q, kq; q)n

(
k

a

)n

, βn(a, k) = δn,0,

in the form (αn(1/q,−1/q, q6), βn(1/q,−1/q, q6) and the following new identity
results.

Corollary 3.5. If |q| < 1, then

qψ(q2)ψ(q6) = −1

2

∞∑
n=1

(1− q12n−1)
(
q4,−1; q6

)
n
(−q)n

(1− q6n−1)(1− q6n) (−q5, q; q6)n
.

4. Identities deriving from standard Bailey pairs

Upon letting k → 0 in Theorem 3.1, we get the following corollary, which
implies several interesting representations for the Lambert series

∞∑
n=1

aqn

(1− aqn)2
.

Corollary 4.1. If (αn(a, q), βn(a, q)) is a Bailey pair, then subject to suitable
convergence conditions,

(4.1)

∞∑
n=1

(q, q; q)n−1 (qa)
n
βn(a, q)−

∞∑
n=1

(q, q; q)n−1

(qa, qa; q)n
(qa)nαn(a, q) = f4(a, q),

where

f4(a, q) =

∞∑
n=1

(q; q)n−1

(qa; q)n(1− qn)
(qa)

n
(4.2)

= −
∞∑

n=1

(1− aq2n)(q; q)n−1

(1− aqn)(qa; q)n(1− qn)
(−a)n qn(n+1)/2

=

∞∑
n=1

qna

(1− qna)2
.

Replacing q with q5 in (4.1), setting a = q−j , for 1 ≤ j ≤ 4, and employing
(3.6) in combination with (4.2) gives the following identities.
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Corollary 4.2. If |q| < 1, then

q
(q5; q5)5∞
(q; q)∞

=

4∑
j=1

(
j

5

) ∞∑
n=1

(q5; q5)n−1q
(5−j)n

(q5−j ; q5)n(1− q5n)

= −
4∑

j=1

(
j

5

) ∞∑
n=1

(1− q10n−j)(q5; q5)n−1(−1)nq(5n
2+5n)/2−jn

(1− q5n−j)(1− q5n)(q5−j ; q5)n
.

Remark 4.3. The identity (1.2) is a direct consequence of using (1.1) in con-
junction with Corollary 4.1.

5. A limiting case of Jackson’s 6ϕ5 summation formula

We now consider limiting cases of a number of other summation formulae from
the literature. The applications will not be so general, as the resulting identities
do not contain WP-Bailey pairs or standard Bailey pairs, but we will exhibit some
interesting consequences.

We first recall Jackson’s summation formula for a very-well-poised 6ϕ5 series [6,
p. 356, Eq. (II. 20)]:

(5.1)

∞∑
n=0

(1− aq2n)(a, b, c, d; q)n

(1− a)
(
aq
b ,

aq
c ,

aq
d , q; q

)
n

( aq
bcd

)n
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

.

Theorem 5.1. Let a be a complex number such that aqn ̸= 1 for n ≥ 1. Then

(5.2)

∞∑
n=1

(1− aq2n)(q, q; q)n−1(qa)
n

(1− aqn)(1− qn)(qa, qa; q)n
=

∞∑
n=1

aqn(1 + aqn)

(1− aqn)3
=

∞∑
n=1

n2anqn

1− qn
.

Proof. Rewrite (5.1) as

∞∑
n=1

(1− aq2n)(a; q)n(bq, cq, dq; q)n−1

(1− a)
(
aq
b ,

aq
c ,

aq
d , q; q

)
n

( aq
bcd

)n
=

1

(1− b)(1− c)(1− d)

(
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

− 1

)
.

Let b, c, d → 1 and compute the limits on the right side as derivatives. The last
equality follows from expanding the 1/(1 − qn) terms in the last expression as
geometric series, changing the order of summation, and employing a standard sum-
mation identity. □

We give one example of an application of (5.2). First, we recall two cubic theta
functions from [5]:

a(q) :=

∞∑
m,n=−∞

qm
2+mn+n2

, b(q) :=

∞∑
m,n=−∞

ωm−nqm
2+mn+n2

,

where ω = exp(2πi/3).
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Corollary 5.2. If |q| < 1, then

a(q)3 − b(q)3 = 27

( ∞∑
n=1

(1− q6n−2)(q3, q3; q3)n−1q
n

(1− q3n−2)(1− q3n)(q, q; q3)n

−
∞∑

n=1

(1− q6n−1)(q3, q3; q3)n−1q
2n

(1− q3n−1)(1− q3n)(q2, q2; q3)n

)
.

Proof. By (18.2.10) and (18.2.12) in Chapter 18 of [3],

a(q)3 − b(q)3 = 27

( ∞∑
n=1

n2qn

1− q3n
−

∞∑
n=1

n2q2n

1− q3n

)
.

Now use (5.2), with q replaced with q3 and a = 1/q2 and a = 1/q, respectively. □

6. A limiting case of a q-analogue of Whipple’s 3F2 summation formula

We next recall Bailey’s q-analogue of Whipple’s 3F2 sum (see [6, Formula II.18,
page 355], with C replaced with −C and d replaced with −d):

8ϕ7

[
C, q

√
C, −q

√
C, a, q/a, −C, d, q/d√

C, −
√
C, Cq/a, aC, −q, Cq/d, Cd; q,−C

]
=

(C,Cq; q)∞(aCd, aCq/d,Cdq/a,Cq2/ad; q2)∞
(Cd,Cq/d, aC,Cq/a; q)∞

.

If this identity is rewritten as

∞∑
n=1

(1− Cq2n)(aq, dq; q)n−1(C,−C, q/a, q/d; q)n(−C)n

(1− C)(Cq/a, aC,Cq/d, Cd,−q, q; q)n

=
1

(1− a)(1− d)

(
(C,Cq; q)∞(aCd, aCq/d,Cdq/a,Cq2/ad; q2)∞

(Cd,Cq/d, aC,Cq/a; q)∞
− 1

)
and we let, in turn, a→ 1 and d→ 1 the identities in the next theorem result. We
omit the proofs, as they are similar to earlier proofs.

Theorem 6.1. For |C| < 1 and non-zero d ̸= qn for n ≥ 1,

(6.1)

∞∑
n=1

(1− Cq2n)(q; q)n−1(−C, d, q/d; q)n(−C)n

(1− C)(Cq,Cq/d, Cd,−q; q)n

=
Cd

1− Cd
− C

1− C
+

∞∑
n=1

(
(−1)nqnCd

1− qnCd
− (−1)nqnC/d

1− qnC/d

)
,

and
∞∑

n=1

(1− Cq2n)(q, q; q)n−1(−C, q; q)n(−C)n

(1− C)(Cq,Cq, C,−q; q)n

= − C

(1− C)2
− 2

∞∑
n=1

(−1)nqnC

(1− qnC)2
.

Before giving an example, recall once again that ψ(q) =
∑∞

n=0 q
n(n+1)/2.
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Corollary 6.2. If |q| < 1, then

2qψ(q4)2

=
q

1− q
− iq

1− iq
−

∞∑
n=1

(1− iq4n+1)(q2; q2)n−1(i; q
2)n(−iq; q)2n(−iq)n

(q3,−q,−q2; q2)n(iq; q2)n+1
.

Proof. Replace q with q2 in (6.1) and then set C = iq and d = i. The result
follows after some elementary manipulations, upon recalling the following identity
of Ramanujan (see [3, Entry 18.2.4, P. 397]):

ψ2(q4) =

∞∑
n=0

(−1)nq2n

1− q4n+2
.

□

7. A limiting case of a q-analogue of Watson’s 3F2 summation formula

The formula in question is the following identity of Bailey (see [6, Formula
II.16, page 355]):

8ϕ7

[
λ, q

√
λ, −q

√
λ, a, b, λ

√
q/ab, −λ

√
q/ab, ab/λ√

λ, −
√
λ, λq/a, λq/b, λ2q/ab,

√
qab, −

√
qab

; q,−qλ
ab

]
=

(λq, λq/ab; q)∞
(λq/a, λq/b; q)∞

(aq, bq, q2λ2/a2b, q2λ2/ab2; q2)∞
(q, abq, q2λ2/ab, q2λ2/a2b2; q2)∞

.

The same kind of manipulations as in the proof of Theorem 6.1 leads to the
following identities.

Theorem 7.1. If b and λ are non-zero complex numbers such that
|q| < max{1, |b/λ|} and none of the denominators below vanish, then

(7.1)

∞∑
n=1

(1− λq2n)(q; q)n−1(b, b/λ; q)n(λ
2q/b; q2)n(−qλ/b)n

(1− λqn)(qλ/b, λ2q/b, q; q)n(qb; q2)n

=

∞∑
n=1

(
λqn

1− λqn
−

λqn

b

1− λ2q2n

b2

−
λ2q2n

b

1− λ2q2n

b

+
q2n−1

1− q2n−1
− bq2n−1

1− bq2n−1

)
;

If |q| < max{1, 1/|λ|} and none of the denominators below vanish, then

∞∑
n=1

(1− λq2n)(q, q; q)n−1(1/λ; q)n(λ
2q; q2)n(−qλ)n

(1− λqn)(qλ, λ2q, q; q)n(q; q2)n
(7.2)

=

∞∑
n=1

(
− λqn

(1− λqn)2
+

λ2q2n

(1− λ2q2n)2
+

q2n−1

(1− q2n−1)2

)

=

∞∑
n=1

(
−nλ

nqn

1− qn
+
nλ2nq2n

1− q2n
+

nqn

1− q2n

)
.

Proof. Shift the initial “1” from the left side to the right side, divide through
by 1− a and let a → 1 to get (7.1), then divide through by 1− b and let b → 1 to
get (7.2). □
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We give two applications of this theorem. Before coming to the first of these,
we recall a result from [8], namely that if f(a, k, z, q) is as defined at (3.3), then

f(a, k, z, q)− f

(
1

a
,
1

k
,
1

z
, q

)
=

(a− k)(1− 1/z)(1− ak/z)

(1− a)(1− k)(1− a/z)(1− k/z)

+
z

k

(z, q/z, k/a, qa/k, ak/z, qz/ak, q, q; q)∞
(z/k, qk/z, z/a, qa/z, a, q/a, k, q/k; q)∞

.

We note two special cases.

f(λ/b, λ,−1, q)− f (b/λ, 1/λ,−1, q)(7.3)

=
(λ/b− λ)(1 + λ2/b)

(1− λ2/b2)(1− λ2)
− λ

b

(b, q/b,−λ2/b,−qb/λ2; q)∞(q2, q2; q2)∞
(λ2, q2/λ2, λ2/b2, q2b2/λ2; q2)∞

.

f

(
b

q
, λ2, b, q2

)
− f

(
q

b
,
1

λ2
,
1

b
, q2
)

=
(b/q − λ2)(1− 1/b)(1− λ2/q)

(1− b/q)(1− λ2)(1− 1/q)(1− λ2/b)
(7.4)

+
b

λ2
(b, q2/b, λ2q/b, qb/λ2, λ2/q, q3/λ2, q2, q2; q2)∞
(b/λ2, λ2q2/b, q, q, b/q, q3/b, λ2, q2/λ2; q2)∞

.

The first consequence of Theorem 7.1 is a somewhat curious reciprocity-type
result.

Corollary 7.2. Let b and λ be non-zero complex numbers such that |q| <
max{1, |b/λ|, |λ/b|} and define

(7.5) g(b, λ, q) :=

∞∑
n=1

(1− λq2n)(q; q)n−1

(
b, b

λ ; q)n(
λ2q
b ; q2

)
n
(−qλ

b )n

(1− λqn)
(

qλ
b ,

λ2q
b , q; q

)
n
(qb; q2)n

.

If none of the denominators below vanish, then

g(b, λ, q)− g

(
1

b
,
1

λ
, q

)
=

(1− b)λ
(
b2 − λ3

)
(1− λ) (b− λ2) (b2 − λ2)

− λ

b

(
b, qb ,−

λ2

b ,−
qb
λ2 ; q

)
∞

(q2, q2; q2)∞(
λ2, q2

λ2 ,
λ2

b2 ,
q2b2

λ2 ; q2
)
∞

+
b

λ2

(
b, q

2

b ,
λ2q
b , qb

λ2 ,
λ2

q ,
q3

λ2 , q
2, q2; q2

)
∞(

b
λ2 ,

λ2q2

b , q, q, bq ,
q3

b , λ
2, q2

λ2 ; q2
)
∞

.

Proof. It can be seen from (7.5) and (7.1) that

g(b, λ, q) =

∞∑
n=1

(
λqn

1− λ2q2n
−

λ
b q

n

1− λ2

b2 q
2n

)

+

∞∑
n=1

(
λ2q2n

1− λ2q2n
+

1
q q

2n

1− 1
q q

2n
−

b
q q

2n

1− b
q q

2n
−

λ2

b q
2n

1− λ2

b q
2n

)

= f

(
λ

b
, λ,−1, q

)
+ f

(
b

q
, λ2, b, q2

)
,

after setting

λqn

1− λqn
=

λqn

1− λ2q2n
+

λ2q2n

1− λ2q2n
.
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By similar reasoning,

g

(
1

b
,
1

λ
, q

)
= f

(
b

λ
,
1

λ
,−1, q

)
+ f

(
q

b
,
1

λ2
,
1

b
, q2
)
− q

1− q
+

q/b

1− q/b
.

The result now follows upon employing (7.3) and (7.4), after setting

(b/q − λ2)(1− 1/b)(1− λ2/q)

(1− b/q)(1− λ2)(1− 1/q)(1− λ2/b)
+

(λ/b− λ)(1 + λ2/b)

(1− λ2/b2)(1− λ2)

− q

1− q
+

q/b

1− q/b
=

(1− b)λ
(
b2 − λ3

)
(1− λ) (b− λ2) (b2 − λ2)

□

Corollary 7.3. If |q| < 1, then

(7.6)

∞∑
n=0

(1− q4n+3)(q4; q4)n(−q)n

(1− q2n+1)(1− q2n+2)(q2; q4)n+1
= ψ4(q2).

Proof. Replace q with q2 in (7.2) and set λ = 1/q. The left side of (7.6)
follows after re-indexing and dividing through by −q. The right of (7.2) with the
same substitutions and then divided by −q simplifies to

1

q

∞∑
n=1

(2n− 1)q2n−1

1− q4n−2
.

The result now follows from [4, Example (iii), p. 139]:

qψ4(q2) =

∞∑
k=0

(2k + 1)q2k+1

1− q4k+2
.

□

8. Concluding remarks

One side of some of the identities has a combinatorial interpretation in terms
of representations by quadratic forms. For example, the coefficient of q2n on the
right side of (7.6) is equal to the number of representations of n as a sum of four
triangular numbers. A natural question is to ask if the left side of (7.6) also has
an interesting combinatorial interpretation so that (7.6) encodes a combinatorial
identity. Similar questions can be asked about some of the other identities in the
paper. We leave these questions to the ingenuity of the reader.
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