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Abstract

Are there really primitive tribes whose system of counting goes:

“One, Two, Many,. . . ”

indicating that from three on it’s more or less a blur?

Maybe we modern humans are such a tribe.

Despite the sophistication we see in ourselves compared with our
less advanced ancestors from times long past, it’s surprising how
little progress we’ve made in addressing some basic problems in 3D
or beyond, or when solving seemingly simple equations in ≥ 3
variables.



While our accomplishments include astonishing mastery of some
ABCs, such as Air (flight, weather prediction), Biology (medical
breakthroughs, DNA) and Communications (phone, video, email),
we often struggle to get past 1, 2, 3, in other domains.

Or sometimes even to get to 3.

We’ll survey a dozen fun topics in shapes and numbers and
patterns whose basics and generalisations can be explored with
little mathematical background, and which speedily lead to “what
if?” questions ranging from easy to tricky to “we just don’t know.”

Fruit, cakes, doughnuts, bagels, coins, boxes, cubes, primes,
squares, and sums involving powers will all make appearances.

Once or twice we will stray into deeper waters and touch on more
sophisticated topics.

(At the end we mention some advanced forays into modern math.)



Columnist Martin Gardner (1914-2010), whose legacy includes
100+ non-fiction books (40 of them on math/puzzles), knew all
too well that playful queries can both excite students about maths
AND lead to real research at the frontiers of the subject.

Today, you will have satisfying Aha! moments, there will be room
for innovative ideas, and million dollar prizes will be discussed.

Some of the results we’ll mention are quite recent.

Recall the wise words of Bob Crease (Physics World, Oct 2014):

“Googling is not the Gardner way. The Gardner way

is to ignite your fascination so that you experience the

pleasure of finding the answer yourself.”

In that spirit, many identifying names have been redacted below!

GOAL: stimulate your curiosity!



0. Close to Home (Familial Territory)

Vertical search:

Most of us know the names and faces of our parents, and have
spent time with them.

What about our grandparents?

Or our great grandparents?

Horizontal search:

Most of us know the names and faces of our siblings, and have
spent time with them.

What about our first cousins? Do you know many you have?

Or our second or third cousins? Do you know many you have?



1. Fruit Fandango

Imagine that you are shopping in a Less Than a Dollar Store,
where every item they sell costs less than $1. Perhaps some cost
10c or 24c, others, 59c or 70c, a few might cost 95c or 99c.

There are two unmarked items you particularly wish to know the
prices of, packages of frozen Apples and tins of Bananas.

You ask for help and are told that you can scan any item or
combination of items you wish and the giant scanner will give the
total cost.

For instance, scanning 3 packages of frozen Apples and 2 tins of
Bananas yields the total cost, let’s say it’s $1.32.

Alas, that’s not enough information to work out the individual
prices.



Scanning just one package of Apples, and then scanning a single
tin of Bananas would do the trick of course.

However, the machine is on the blink, and after a single use it will
shut down for hours. Using it twice simply isn’t an option.

Q1. With a single scan, can you deduce the cost of both
the apples and the bananas?

Now imagine that you are interested in the unpriced jars of pickled
Clementines as well.

With a single scan, can you deduce the cost of all 3 types of fruit:
Apples, Bananas and Clementines?



2. Doughnut Division

Continuing with a food theme for now, a doughnut can be sliced in
various ways with straight knife cuts. Clearly the largest number of
pieces that be generated with a single planar cut is 2. The case of
2 planar cuts is not hard.

Q2. (Gardner) What is the largest number of pieces that
be generated with 3 planar cuts of a doughnut?

These questions can be asked anew if one is allowed to re-arrange
the pieces after each cut, and the answers change quite a bit.

Let’s not sugarcoat things: doughnuts tend to crumble when cut.



3. Bagel Bedazzler

Bagels are made of tougher stuff, and to a mathematician they are
the same as doughnuts.

There is an exotic form of bagel cutting with a knife that yields the
surprising result shown, namely 2 interlocking bagel halves. (See
Georga Hart’s “Mathematically Correct Breakfast” video online.)

Q3. Can this be modified to yield 3 (or more) parts?

The interlocking bagel halves trick is based on a familiar puzzle
involving cutting loops of paper whose ends are taped together.



4. Cake Cutting

Imagine an ideal rectangular cake with chocolate icing uniformly
spread on the top and sides. It’s easy to cut it with a knife and
distribute the results to 2 people who at least theoretically get
equal amounts of cake and equal amounts of icing.

Q4. How can this be achieved for 3 (or more) people,
using only straight knife cuts?

Assume we can cut 1
3 of the way (or likewise) along any side,

parallel to the perpendicular sides.



A much harder version concerns cakes which are not regular in
shape or uniform in composition, either inside or in their icing, and
where the preferences of the participants (for cake, fruit, cream,
icing, etc) may vary. The solution here for 2 people has been
known since biblical times (chapter 13, Book of Genesis).

In the 1940s it was figured out (Hugo Steinhaus) how to guarantee
that each of n people gets a piece that they value as worth at least
1/n, but that doesn’t guarantee that they don’t value someone
else’s piece more highly.

“Envy-free” cake cutting was introduced in the 1950s (George
Gamow and Marvin Stern), and a solution for 3 people was
developed around 1960 (Selfridge-Conway). That version was
extended (with difficulty) to 4 or 5 people.

In 2016, a big breakthrough occurred for general n (Hariz Aziz and
Simon Mackenzie): they showed that envy-free cake-cutting can be
done in bounded time for 4 or more people.



5. Kerry Coin Conundrum

Imagine a country with only two types of coins, say, 7 and 5 dingle
coins. You can’t pay exactly for something that costs 1, 2, 3, 4, 6,
8, 9 or 11 dingles.

The same applies to something that costs 23 dingles, as well as
some other values we skipped over.

From a certain point on, however, all is well.

Certainly, for anything costing 40 dingles or more, there is some
combination of 5 and 7 dingle coins that will do the trick (why?).

It’s key that 5 and 7 share no common factors. Hence every whole
number is “an integer linear combination” of 5 and 7. The trick is
to only use non-negative multiples of each value.



It’s natural to ask what the crossover point is, in other words, the
first whole number n so that everything costing n or more dingles
can be paid for exactly?

From what we have claimed, it’s between 24 and 40 inclusive. Its
exact value is found with a little experimentation.

There is a simple formula (known since 1882) for the crossover
value in general, regardless of the specific relatively prime values x
and y of the coins in use.

We encourage you to discover this for yourself. It’s one of many
fascinating interactions between addition and multiplication.

However, if there are 3 (or more) coin values, sharing no common
factors, suddenly things get much harder.

(Sometimes this is posed in terms of postage stamps.)



Q5. (Frobenius Problem) What is the formula that gives
the crossover value if 3 coin types are in use, namely the
first whole number n to that everything costing n or more
can be paid for exactly with the 3 available coin types?

Amazingly, there is no known general formula in terms of the
values of the available coins.

This “simple” question concerns representations of positive whole
numbers as non-negative whole number combinations of positive
coordinates (x , y , z) in a 3D integer lattice.

How hard can it be?



It’s “really hard” in a specific technical sense.

Of course, for any specific 3 (or more) coin denominations, the
crossover value can be found by routine trial and error.

Wikipedia:

For any fixed number of coin denominations, there is an
algorithm computing the Frobenius number in polynomial
time (in the logarithms of the coin denominations forming
an input). No known algorithm is polynomial time in the
number of coin denominations, and the general problem,
where the number of coin denominations may be as large
as desired, is NP-hard.



6. Baffling Box

Bisecting a rectangle into identically shaped triangles can be done
with a simple diagonal cut.

Q6. What is the corresponding fact for a 3D box?

Here’s a half-hearted effort in the case of a cube:

We can do much better, as several ancient cultures figured out.



7. Perfect Package

Consider traditional “Pythagorean” triples of whole numbers such
as (3,4,5) or (5,12,13). The smaller numbers can be viewed as the
lengths of the sides a rectangle whose (equal) diagonals—the
largest numbers—are also whole numbers.

We can try to go up a dimension and ask:

Q7. Is there a 3D rectangular box whose sides, surface
diagonals AND space diagonals are whole numbers?



A 44 × 117 × 240 box is superficially good. The same applies to a
240 × 252 × 275 box, and the other “small” examples shown here:

These are called Euler bricks. The bottom left box here is the most
cubelike. No such (Euler) cube can exist. (Why not?)

The question remains of whether a perfect Euler brick exists, i.e.,
one with whole number space diagonals too?



8. Series Subtlety

In 1734, Leonhard Euler solved a problem posed in 1650, gaining
immediate fame as a corollary:
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The obvious question to ask is,

Q8. What is the value of
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M
for some nice number M? We doubt it.

It wasn’t until 1978 that this sum was even proved to be irrational
(by Roger Apéry; and it’s noted as such on his tombstone).

Presumably it’s transcendental–i.e., doesn’t satisfy any polynomial
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These are not idle curiosities, such numbers turn up in physics and
elsewhere.

Moreover, the associated Riemann zeta function
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has received considerable attention since the 1800s. A key question
about it (The Riemann Hypothesis, 1859) has a $1 million prize
associated with it (via the Clay Mathematics Institute).

In addition, ζ(s) =
∏

p prime
ps

ps
−1 provides another surprising

connection between addition and multiplication.

The probability that s randomly chosen positive whole numbers are
relatively prime is 1

ζ(s) .



9. 4D Duck

Many mathematical observations say something like:

If it’s a duck, then it walks and talks like a duck.

Sometimes, the converse is also true, though harder to prove:

If it walks and talks like a duck, then it’s a duck.



Spheres exist in all dimensions, and just to keep us on our toes an
ordinary 3D sphere’s surface is called a 2-sphere. The boundary of
a 2D sphere is a 1-sphere, i.e., a circle’s circumference.

We can extend this to higher dimensions, e.g., a 4D sphere is called
a 3-sphere, namely the set {(x , y , z , w)| x2 + y2 + z2 + w2 = r2}.

Q9. If it walks and talks like a 4D sphere, is it one?

Conjectured by Poincaré in 1904, and finally proved by Grigori
Perelman (2002–2003). More formally, “Every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere.”

(Of course, 4D mathematics is a vast and fascinating universe unto
itself, but we discuss this no more today.)



Perelman was offered a Fields medal, and in turn, $1 million (Clay
Mathematics Institute’s Millennium Prize).

He turned both down.

Wikipedia says:

“he believed his contribution in proving the Poincaré con-
jecture was no greater than Hamilton’s.”

Richard Hamilton’s crucial work (on Ricci curvature) was done in
the early 1980s. This was while he was on the faculty at Cornell, a
fact seemingly overlooked today. (Likewise, Walter Feit was at
Cornell in the early 1960s when he made his contributions to the
landmark Feit-Thompson Theorem in group theory.)



10. Primes

(Peter Dirichlet, 1837) If a and b share no factors, then there are
infinitely many primes of the form f (n) = a + bn.

So there are infinitely many primes of the form 1 + 2n, 2 + 15n,
9 + 35n, and even 2022 + 2021n or 2021 + 2022n.

A natural generalisation to wonder about is:

Q10. If a, b and c share no factors, are there infinitely
many primes of the form f (n) = a + bn + cn2?

For this 1857 question (Viktor Bunyakovsky) to have a positive
answer we need f (x) irreducible and f (1), f (2), f (3), . . . sharing no
factors.

We haven’t proved this in a single special case, not even 1 + n2.

A further generalisation implies the Twin Prime conjecture.



11. SOS (and other causes for panic)

The classical Pythagorean equation x2 + y2 = z2 suggests
generalisations which also involve squares, such as

Does x2 + y2 + z2 = w2 have interesting solutions?

This relates to rectangular boxes: w is the space diagonal of the
box with dimensions x , y , z .

Splicing two familiar Pythagorean triples together we get:

32 + 42 + 122 = 132



There are other geometric intepretations of x2 + y2 + z2 = w2:

The area of the biggest square on a “staggered right angle”
quadrilateral equals the sum of the areas of the smaller squares.



Then there are representation issues for positive integers:

Which numbers are sums of squares?

Actually, n = x2 + y2 + z2 + w2 has solutions for all n ≥ 0,
suspected at least as early at the 3rd century CE (Diophantus),
and finally proved in 1770 (Joseph-Louis Lagrange).

Since 1789 (Aiden-Marie Legendre) we’ve known exactly when
n = x2 + y2 + z2 has solutions, and since 1625 (Albert Girard)
when n = x2 + y2 does.

We also know how many representations there are for given n.

Since we know that every positive number is a sum of 4 squares,
it’s natural to wonder how many cubes, fourth powers, fifth
powers, etc, are needed to represent all positive numbers.



For cubes we know that 9 are needed (1912, Arthur Wieferich and
Aubrey Kempner).

For fourth powers it’s 19 (1986, Ramachandran Balasubramanian
et al).

For fifth powers it’s 37 (1964, Chen Jungrun).

For sixth powers it’s 73 (1940, Subbayya Sivasankaranarayana
Pillai).

In general?

Q11. How many k-th powers are needed to represent all
positive whole numbers as sums of such powers?

It’s conjectured to be 2k +
⌊

(3
2 )k

⌋

− 2.

There is some circumstantial evidence: this formula holds for all
k ≤ 471600000 (1990, Kubina and Wunderlich).



12. Powerplay (from XYZ to ABC)

The equation x2 + y2 = z2 suggests a plethora of also lovely
generalisations involving higher powers, such as

Does xn + yn = zn have interesting solutions if n > 2?

This was one of the most famous open problems in mathematics
until it was finally nailed in the mid 1990s (Andrew Wiles and
Richard Taylor). The answer is no! (Fermat’s Last Theorem)

The cases n = 3, 4, 5, 7 are older: 1770 (Euler), 1670 (Fermat),
circa 1825 (Legendre, Dirichlet), and 1839 (Gabriel Lamé).

Once n = 4 was done it was of course only necessary to establish it
for all odd primes n = p. However, these (and other) early proofs
of special cases seem ungeneralisable.

Sophie Germain developed an approach which might (but didn’t)
work for all n. It did work for an infinite number of exponents.



We could seek solutions of longer equations, starting with cubes:

x3 + y3 + z3 = w3.

“Plato’s number” 33 + 43 + 53 = 63 is a noteworthy example.
Ramanujan gave a formula that generates an infinite number of
solutions (but does it give them all?). How about higher powers?

In 1911 (R. Norrie) uncovered this, the smallest such example:

304 + 1204 + 2724 + 3154 = 3534.

And this came to light in 1934 (Sastry):

75 + 435 + 575 + 805 + 1005 = 1075.

The smallest such example (1967, Lander, Parkin, Selfridge) is:

195 + 435 + 465 + 475 + 675 = 725.



Can such an equation hold where the number of variables on the
LHS is less than the common exponent?

Euler thought not (1769)—cubes being a special case of FLT—and
nobody doubted his instincts for a long time.

But the great master was wrong. In 1966 the first of three known
counterexamples for fifth powers was discovered (Leon Lander and
Thomas Parkin):

275 + 845 + 1105 + 1335 = 1445.
In

1986 Noam Elkies found a counterexample for fourth powers:

26824404 + 153656394 + 187967604 = 206156734 .

Using elliptic curves Elkies also found a formula giving infinitely
many like it. In 1988 Roger Frye found the smallest example:

958004 + 2175194 + 4145604 = 4224814.



An example for seventh powers (1999, Mark Dodrill) is:

1277 + 2587 + 2667 + 4137 + 4307 + 4397 + 5257 = 5687.

A corresponding example for eighth powers (2000, Scott Chase) is:

908 +2238 +4788 +5248 +7488 +10888 +11908 +13248 =
14098.

What about such an example for sixth powers?

Or ninth or larger powers?

None are known.



Can we mix powers in 3-term equations? Consider x s + y t = zu

with s ≤ t.

The case t = 1 is boring.

The case x0 + y3 = z2 is more interesting—ignoring the fact that
x can be anything—having a solution as easy as (1, 2, 3).

In fact (2002, Mihǎilescu) there are no other nontrivial solutions to
x0 + y t = zu for 1 < t < u (Catalan’s conjecture).

Does x s + y t = zu have solutions for 1 < s < t < u? How about
x3 + y4 = z5 in particular? There are “trivial” solutions as well as
less obvious ones that can be constructed using clever elementary
methods. See Superbrain book (Diarmuid Early & Des MacHale).

Or, adding another term, how about x4 + y5 + z6 = w7?



A Beal Conjecture

The equations 2n + 2n = 2n+1 (any n), 33 + 63 = 35, and
73 + 74 = 143, are seeds for 3 infinite families of “similar” solutions
to the equation Ax + By = C z . What do they have in common?

A, B, C share common factors in each case.

So we can ask:

Q12 Does Ax +By = C z have solutions for A, B, C sharing
no common factors, when x , y , z, all exceed 2?

Texan billionaire Andy Beal conjectures not (1993), and is offering
$1 million for a proof or disproof.

The Beal conjecture trivially implies FLT.



The ABC conjecture

Can anything intelligent be said about the exponent 1 case?!

The equation a + b = c...

Q13 Does a + b = c have solutions for a, b, c sharing no
common factors, where the product d of the distinct prime
factors of abc is not much smaller than c?

We think not: so says the ABC conjecture (1985).

It can be shown that ABC implies Beal which implies FLT.

The fact that ABC implies FLT is almost trivial.



Why ABC implies FLT. (So what implies ABC?!)

Assume that if a+b = c has solutions for a, b, c sharing no
common factors, then the product d of the distinct prime
factors of abc satisfies c < d2

Now suppose xn + yn = zn for some n > 2, where x , y , z share no
common factors. Then taking a = x2, b = y2, c = z2 we have the
product d of the distinct prime factors of abc satisfies both

d ≤ xyz < z3
and zn < d2

Hence zn < z6 and so n < 6. The n = 3, 4, 5 cases of FLT have
long been known.

Can the ABC conjecture be generalized?

But of course! The n Conjecture (1994) . . .



Score card

Problem Easy Tricky Hard Unknown Unknowable

Fruit X

Doughnuts X

Bagels X

Cakes X

Coins X

Box Cutting X

Bricks X

Series X

Ducks X

Primes X

SOS X X X X

Powerplay X X X X

Have we won too many victories? (Say that out loud.)



So many questions! Here are three ‘’divisive” answers:

Q2. 13 doughnut pieces with 3 planar cuts:

Q4. Rectangular cake shared among 5 people

Q6. Rectangular box trisection into pyramids



From A to Ω
Math has an extensive track record of 1, 2, 3, . . . generalisations:

1. The trip from solving linears & quadratics to solving cubics &
quartics and trying (but failing, for good reason) to solve quintics
occupies key chapters in its history. Likewise angle trisection.

2. Extending quadratic reciprocity (“does x2 = a have solutions
mod p?”) to cubic, quartic, etc, led to Artin’s reciprocity law
attack on Hilbert’s Ninth Problem (cf. global class field theory).

3. In 2D, moving from deg 1 lines to deg 2 conic sections, to deg 3
elliptic curves and deg 4 lemniscates and cassini ovals and beyond.
Which in turn (in 2D, 3D, etc) leads to algebraic geometry, real
algebraic geometry and non-so-linear algebra (aka Gröbner bases).

4. Linear programming extends to quadratic programming, etc.

Those One, Two, Many journeys were difficult, technical, and took
hundreds of years for some of the brightest minds to master.

We hope today’s leisurely explorations have been more relaxing.


