WCU WEST CHESTER
UNIVERSITY

Predation Risk Impact on Snail Reproduction
Jeremiah Budgeon ${ }^{1}$, Allison Kolpas ${ }^{1}$, Josh Auld ${ }^{2}$
${ }^{1}$ Department of Mathematics, West Chester University,
${ }^{2}$ Department of Biology, West Chester University,
West Chester, PA

Abstract

In this research experiment, snails were exposed to different levels of predation, and data was collected on the reproductive output of the snails. Snails detect chemical cues from their predators and alter their behavior based on these cues. Thus, levels of predation were simulated by varying he amounts of predator chemical that was put into the snails' tanks. For this experiment, there were three different levels of predation: no predation, 0% exposure, and 100% exposure. For each level of predation, data was collected on the frequency of snail reproduction, clutch size, and the eproductive lifespan of the snails. Using this data, a statistical analysis comparing different reproductive variables was conducted. In the analysis, he reproductive intervals of the snails were compared with the ages, predation levels, and clutch sizes of the snails. Based on these findings, w were able to predict and simulate the final reproductive interval of the reproduction before the snails die. Thus, we were interested in trying to predict the post reproductive lifespan based on the data collected on reproductive intervals and the other factors that contributed to the reproductive intervals.

\section*{Objectives}

Prove the snails experience a period of no reproduction before dying. how the effects that different levels of predation have on reproduction, survivability, and post reproductive lifespans. Predict the age at which the snails should begin the period of no reproduction and the length of the post reproductive lifespan.

Materials and Methods

xperimental

The population of snails was divided up into three groups based on predation level: no predation risk, 50% predation risk, and 100% predatio roup's tanks was treated with predator chemical. To simulate the presence of a predator, water was taken from a tank filled with crawfish and was cycled into the snails' tanks. The no predation risk group received no redator treatments, the 50% predation risk group received predator treatments every other day, and the 100% predation risk group received edator treatments every day. Each individual snail was labeled and data the snails reproduced, their clutch sizes umerical
Using the data collected on ages of final reproduction and death survivability and fecundity plots were generated. The survivability and ecundity plots were created by plotting the ratios of total alive to starting population and total reproducing to starting population for each day.

$$
\begin{aligned}
& \text { Survivability: } \frac{\text { Totala Alive }}{\text { Starting Population }} \\
& \text { Fecundity: Total Reproducing } \\
& \text { Starting Population }
\end{aligned}
$$

The average rate of reproduction plots were created by averaging the rates of reproduction for the population of snails over different bins for age and ays since first reproduction.
Hazard Ratios for survivability and fecundity were generated by taking the
ratios of the total number of observed deaths or final reproductions to tios of the total number of observed deaths or final reproductions to the ents is listed below:

$$
E_{j, t}=N_{j, t} *\left(\frac{O_{t}}{N_{t}}\right)
$$

Where $E_{j, t}$ is the expected number of events for predation level j on day t , $\mathrm{N}_{\mathrm{i}, \mathrm{t}}$ is the number of snails still alive or reproducing for predation level j on ay t, O_{t} is the total number of observed events on day t , and N_{t} is the total number od snails still alive or reproducing on day ,
$H R=\left(\frac{\sum o_{a, t}}{\sum E_{a, t}}\right) /\left(\frac{\sum O_{b, t}}{\sum E_{b, t}}\right)$

As shown in the above charts, there is a clear gap between the expected age at which reproduction ceases and the expected age at which death occurs. Approximately 50% of snails exposed to predation risk are expected to die within 175 days of their birth. On the other hand, approximately 50% of snails not exposed to predation risk are expected to die within 210 days of their birth.
The presence of any predation risk (50% or 100%) causes a decrease in the expected ages at which reproduction cease and death occur.

The above charts show the average rate of reproduction, measured in reproductions per day, for the snail populations at different age bins.
These charts provide an estimate to when it would be expected for the snail populations to cease reproduction (Average Rate of Reproduction ≈ 0).

The above charts show the average rate of reproduction, measured in reproductions per day, for the snail populations at different age bins, starting from the first These charts provide another estimate to when it would be expected for the snail populations to cease reproduction (Average Rate of Reproduction ≈ 0).

Results Continued Survival Hazard Ratios

Level of Predation Risk	Comapred With	Hazard Ratio
No Predation	50% Predation	2.20
No Predation	100% Predation	1.77
50% Predation	100% Predation	1.24

Fecundity Hazard Ratios		
Level of Predation Risk	Comapred With	Hazard Ratio
No Predation	50% Predation	1.76
No Predation	100% Predation	1.78
50% Predation	100% Predation	1.05

A Hazard Ratio of approximately 1 indicates that there is no significant difference between the two predation levels being compared The above tables show that any presence of predation produces a predation level from 50% to 100% did not seem to have much of an effect on the snails.

Percentage of Life in Period of No Reproduction			
Level of Predation Risk	AVG	STDEV	AVG $\pm 1 \mathrm{~s}$
No Predation	12.46%	9.87%	$(2.59 \%, 22.33 \%)$
50% Predation	9.50%	7.10%	$(2.40 \%, 16.60 \%)$
100% Predation	11.47%	7.62%	$(3.85 \%, 19.09 \%)$

Conclusion

As shown in the survivability and fecundity plots, the snails clearly
experience a period of no reproduction before they die
Assuming that the data is normally distributed, The Empirical Rule state that approximately 68% of values lie within one standard deviation from the mean. Thus, the Percentage of Life in Period of No Reproduction table shows that approximatery 8 of he snails across all hree levels least 2% of their lifespan.
As shown in the Hazard Ratio tables, the presence of predation causes significant difference in the survivability and fecundity of the snails.
The Survivability and Fecundity plots show that it should be expected that at approximately 50% of the snails exposed to some predation risk will stop reproducing approximately 150 days after birth, whereas approximately 50% of snails not exposed to predation risk will stop reproducing approximately 180 days after birth. Thus, a lack of expos
to predation risk seems to be correlated with an elongated period of reproduction.
The Average Rate of Reproduction plots also support the previously mentioned correlation between the lack of predation risk and an elongated period of reproduction.

References

Auld, J. R., Helker, A. D. and Kolpas, A. (2016), Consequences of mating and predation risk for longevity in a freshwater snai abstinence makes the heart beat longer J. Evol. Biol., 29: 2539-2544
Geac T (2001) Ase-specific feculity of mammaian popultions: test of three mathematical models. Zoo Biology, 20(6), 487-499.

Acknowledgements

not be possible without funding from the Nation Science Foundation Department of Environmental Biology (award number DEB-1406231).

