Solving Parabolic Interface Problems with a Finite Element Method

Henry Brown

WCU Research & Creative Activity Day 4-29-2021

Parabolic Interface PDEs

- * Defined on a which is split by an interface.
- * Solutions may be discontinuous over the interface.

 $\begin{aligned} \frac{\partial u}{\partial t} &= \nabla \cdot (\alpha \nabla u) + f, \ x \in \Omega \\ u &= g_D, x \in \partial \Omega_D \\ \alpha \frac{\partial u}{\partial n} &= g_N, \ x \in \partial \Omega_N \\ [u] &= u^+ - u^- = \phi, \ x \in \Gamma \\ [\alpha \frac{\partial u}{\partial n}] &= \alpha^+ \frac{\partial u^+}{\partial n} - \alpha^- \frac{\partial u^-}{\partial n} = \psi, \ x \in \Gamma \end{aligned}$

Why Computational Methods?

Difficultly/impossibility of finding closed form analytical solutions

Handle a varying array problems without added complexity

These methods have proven error bounds and convergence

Finite Element Methods (FEMs)

- * Can use non-uniform meshes
- * Piecewise polynomials over the elements using basis functions
- * Projection theorems ensure that FEM finds the best approximation in the function space

Discontinuous Galerkin (DG) FEMs

- * Allows for discontinuity over element boundaries
- * Broken piecewise polynomials over the elements
- * A natural means to apply the jump conditions in the parabolic interface problems

Creating a Conforming Triangulation

- * Triangulation which conforms to the interface
- * Triangulation can be refined, which gives room more accurate solution

First Test Problem (Starfish)

- * Zero if not in the star
- * Piecewise source term
- * Initial Condition (Right)

Issues with the Test Problem

- * Sinking behavior
- * Trouble with the center

Changing the Test Problem

- * Less complex geometry
- * Initial Condition (Right)

Stability and Over-Penalizing the Interface

Penalty: 800

Penalty: 800000

Penalty: 8000

Penalty: 8000000

Penalty: 80000

Penalty: 8x10¹³

Penalty Dependence on Mesh

- * Penalty: 800000
- * Optimally, no dependence on mesh

Elliptic Problem Over Mesh Refinement

- Keeps shape of exact solution
- * Error around interface does not diminish
- * Not optimal with Overpenalizing

Solving the Interfaced Heat Equation

- * Sufficiently small time step
- * Oscillation for larger time steps
- * Stable in time without overpenalizing

0.6

0.0

0.4

0.4

Discussion

- * Method works for interface conditions equal to zero
- * No success with non-zero interface conditions
- * Over-penalizing required due to triangulation orientation
- * Non-zero interface conditions (WG FEM, DDG FEM)

Acknowledgements

- * Dr. Andreas Aristotelous
- * Dr. Chuan Li

Questions?