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The Action Potential
Above: Numerical approximation of 
an action potential in the Hodgkin-
Huxley model

Below: Numerical solution as 
reported by Hodgkin and Huxley in 
1952

Source: A Quantitative Description of Membrane Current and its Application to Conduction
and Excitation in Nerve, Hodgkin & Huxley, 1952



The Cell Membrane

Source: Action Potential in the Neuron, Harvard Extension School. https://www.youtube.com/watch?v=oa6rvUJlg7o

Cell Exterior
Higher steady-state concentration of Na+

Cell Interior
Higher steady-state concentration of K+

= Na+

= K+



The Cell Membrane

Source: Action Potential in the Neuron, Harvard Extension School. https://www.youtube.com/watch?v=oa6rvUJlg7o



The Hodgkin-Huxley Model
Ohm’s Law – current equals voltage times conductance

Total current is the sum of all component currents:

𝐼 = 𝐼1 + 𝐼2 +⋯+ 𝐼𝑛

For each ionic current, Iion = conductance (gion) times distance from voltage equilibrium:

𝐼 = 𝑔𝐾 𝑉 − 𝑉𝑘 + 𝑔𝑁𝑎 𝑉 − 𝑉𝑁𝑎 + 𝑔𝑙 𝑉 − 𝑉𝑙 + 𝐶𝑚
𝑑𝑣

𝑑𝑡

where 𝐶𝑚
𝑑𝑣

𝑑𝑡
is the current from the membrane’s function as a capacitor



The Hodgkin-Huxley Model
Conductance for Na+ and K+ (gNa and gK) are gated by voltage

n, m, and h are proportions (0 ≤ n, m, h ≤ 1) that vary with voltage and define gate activation or 
inactivation

 𝑔𝑁𝑎 and  𝑔𝐾are the maximum possible conductances for a given set of parameters

𝑔𝐾 =  𝑔𝑁𝑎𝑛
4

𝑔𝑁𝑎 =  𝑔𝐾𝑚
3ℎ

gl does not meaningfully vary with voltage, and is treated as constant



The Hodgkin-Huxley Model
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Numerical Methods
Forward Euler Method
• Fastest numerical method

• Relatively inaccurate: 1st-order accuracy

4th-Order Runge-Kutta Method
• Increased accuracy given same parameters

• Computationally more expensive

For both methods, V, n, m, and h are solved for simultaneously within each step.



Experimental Results
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Parareal
•A unique parallel-in-time algorithm, developed by 
Lions, Meday, and Turinici in 2001

•Utilizes two temporal discretizations – one coarse, 
one fine – and solves them numerically

•Predicts reasonable starting values, then 
calculates fine mesh values in parallel

•Converges to a solution over multiple iterations

•Does not increase accuracy over sequential 
method, but can offer significant time savings
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Parareal
Preliminary estimations for parallelization in a 48-CPU system 
suggest a significant possible decrease in computational time

At 47 iterations time savings is negative compared to sequential 
calculations, but the Parareal algorithm finishes well before 
then, even for tolerances within 1/100,000,000th of a millivolt

At increased CPU counts (100, 200, etc.), iteration count seems 
to fall around ~5% of maximum at this tolerance level

While computational overhead limits maximum possible time 
savings, preliminary results suggest that for most real-world 
scenarios increasing the CPU count will increase efficiency

Tolerance (mV) Iterations (47 max)

10^-5 3

10^-6 4

10^-7 4

10^-8 5
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Questions?


