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Parabolic Interface PDES

* Defined on a which is split by an { e ]
Interface. R R

* Solutions may be discontinuous
over the interface.
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Why Computational Methods?

Difficultly/impossibility of finding Handle a varying array problems These methods have proven
closed form analytical solutions without added complexity error bounds and convergence



Finite Element Methods

(FEMSs)

x Can use non-uniform meshes

* Piecewise polynomials over the elements using

basis functions y v
* Projection theorems ensure that FEM finds the best m
approximation in the function space




Discontinuous Galerkin

(DG) FEMs

*  Allows for discontinuity over element boundaries
* Broken piecewise polynomials over the elements

* A natural means to apply the jump conditions in the
parabolic interface problems




Creating a Conforming , ge
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* Triangulation which conforms to the interface

% Triangulation can be refined, which gives X
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First Test Problem (Starfish)

x Zero if not in the star
x Plecewise source term

* Initial Condition (Right)




Issues with the Test Problem

* Sinking behavior

x Trouble with the center




Changing the Test Problem

* Less complex geometry

% Initial Condition (Right)
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Stability and Over-Penalizing the Interface

Penalty: 800 Penalty: 8000 Penalty: 80000

Penalty: 800000 Penalty: 8000000 Penalty: 8x1013



Penalty Dependence on Mesh

Density: 300

* Penalty: 800000

* Optimally, no dependence on mesh

Density: 600




Elliptic Problem Over

Mesh Refinement

* Keeps shape of exact
solution

x Error around interface does
not diminish

* Not optimal with Over-
penalizing




Solving the Interfaced
Heat Equation

* Sufficiently small time step

* Oscilllation for larger time
steps

x Stable in time without over-
penalizing

Approximation and Error Plots




Discussion

* Method works for interface conditions equal to zero
* No success with non-zero interface conditions
* Over-penalizing required due to triangulation orientation

* Non-zero interface conditions (WG FEM, DDG FEM)
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Questions?




