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Abstract: The matched interface and boundary method (MIB) and ghost fluid method (GFM) are
two well-known methods for solving elliptic interface problems. Moreover, they can be coupled
with efficient time advancing methods, such as the alternating direction implicit (ADI) methods, for
solving time-dependent partial differential equations (PDEs) with interfaces. However, to our best
knowledge, all existing interface ADI methods for solving parabolic interface problems concern only
constant coefficient PDEs, and no efficient and accurate ADI method has been developed for variable
coefficient PDEs. In this work, we propose to incorporate the MIB and GFM in the framework of the
ADI methods for generalized methods to solve two-dimensional parabolic interface problems with
variable coefficients. Various numerical tests are conducted to investigate the accuracy, efficiency,
and stability of the proposed methods. Both the semi-implicit MIB-ADI and fully-implicit GFM-ADI
methods can recover the accuracy reduction near interfaces while maintaining the ADI efficiency. In
summary, the GFM-ADI is found to be more stable as a fully-implicit time integration method, while
the MIB-ADI is found to be more accurate with higher spatial and temporal convergence rates.

Keywords: parabolic interface problem; variable coefficient with discontinuity; alternating direction
implicit (ADI); ghost fluid method (GFM); matched interface and boundary (MIB)

1. Introduction

This work aims to develop alternating direction implicit (ADI) finite difference meth-
ods for solving a two-dimensional (2D) parabolic equation

∂u
∂t

= ∇ · (β∇u) + f =
∂

∂x

(
β

∂

∂x

)
u +

∂

∂y

(
β

∂

∂y

)
u + f , (1)

over a rectangular domain Ω ⊂ R2 with a Dirichlet boundary condition imposed on
the boundary ∂Ω and an initial condition defined at an initial time, i.e., t = 0. Domain
Ω is split into two subdomains, an outer subdomain Ω+ and an inner subdomain Ω−,
by a closed smooth curve, called an interface, such that Γ = Ω− ∩Ω+. In Equation (1),
the diffusion coefficient β(x, y) ≥ β0 > 0 is assumed to be smooth in each subdomain, Ω−

and Ω+, but could be discontinuous across the interface Γ, i.e., it is defined as a piecewise
smooth function

β(x, y) =
{

β+(x, y), if (x, y) ∈ Ω+,
β−(x, y), if (x, y) ∈ Ω−.

(2)
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Similarly, the source term f (x, y) is assumed to be a piecewise smooth function. Due to the
discontinuities of β(x, y) and f (x, y) on the interface, one can expect that the solution to
Equation (1) is also a piecewise smooth function

u(t, x, y) =
{

u+(t, x, y), if (x, y) ∈ Ω+,
u−(t, x, y), if (x, y) ∈ Ω−.

(3)

Of course, u− and u+ are not independent and should be related to each other on Γ by
certain physical jump conditions. In this work, we assume the following general jump
conditions

[u] := u+ − u− = φ(t, x, y), [βun] := β+u+
n − β−u−n = ψ(t, x, y), for (x, y) ∈ Γ, (4)

in which the limiting value from each side of the interface has been taken for both β and u.
Here φ and ψ are known functions and n denotes the outer normal direction. A cartoon
demonstration is provided in Figure 1. In addition, at an interface point, the tangential
direction is denoted by τ and the angle formed by the normal direction n and the positive
x-direction is denoted by θ in Figure 1.

Figure 1. A cartoon demonstration of the 2D interface problem.

Equations (1) and (4) yield a mathematical model known as the parabolic interface
problem, which plays an important role in the fields of biophysics, engineering, material
sciences, and so on, for studying physical quantities propagating across material interfaces
between two media [1–3]. Exact solutions to parabolic interface problems are known
only for a few simplified cases, while numerical approximations are usually demanded
for most real-world applications. Because the physical solution could be non-smooth or
even discontinuous across the interface, standard numerical algorithms are not capable of
delivering accurate approximations. In the worst scenario, numerical computation could
even fail to converge.

In the past few decades, a lot of efforts have been devoted towards developing
accurate and efficient numerical methods to solve parabolic interface problems, based
on both fitted and unfitted meshes, such as [4–10]. This study focuses on an unfitted
mesh where a simple Cartesian grid is used and does not need to conform with the
material interface. Consequently, carefully designed numerical procedures are required to
account for jump conditions (4) in the numerical formulations so that numerical accuracy
near the interface can be recovered. Such Cartesian grid interface algorithms have been
successfully developed in many finite difference methods [4,6,8,10–17] and finite element
methods [18–20].

Based on Cartesian grids, the alternating direction implicit (ADI) method [21,22] is
known to be one of the most efficient algorithms for time integration of parabolic par-
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tial differential equations (PDEs). Such a high efficiency comes from two factors. First,
for parabolic problems without material interfaces, the ADI method is usually uncondi-
tionally stable so that a large time step size can be used for saving the total number of
time integration steps. Second, in each time step, a multidimensional system will be re-
duced to sets of independent one-dimensional (1D) subsystems, and the resulting matrices
with tridiagonal structures can be efficiently inverted by using, for instance, the Thomas
algorithm [23]. For a total spatial degree of freedom N, the complexity of ADI methods is
of the order N, i.e., O(N). This is much faster than other implicit step stepping schemes,
in which the multidimensional system has to be solved by iterative algorithms. Indeed,
due to its efficiency, the ADI method can also be applied as an algebraic solver, instead of a
time stepper, for solving various PDEs [14,24,25]. For parabolic equations with variable
coefficients, high accuracy ADI methods have been developed in [26].

The development of fast ADI methods for solving parabolic PDEs with material
interfaces has attracted much research interest. The first study of this kind was carried
out by Li and Mayo in 1993 [4], which combines the ADI with the immersed interface
method (IIM) [27], yielding an IIM-ADI scheme. In solving a simplified parabolic interface
problem with the material coefficient β being a constant throughout the domain, the IIM-
ADI scheme introduces some correction terms in the ADI formulation so that the accuracy
near interfaces can be recovered back to second order. Later, this IIM-ADI scheme was
applied to other parabolic PDEs [28,29]. For general jump conditions (4), the first ADI
method that can not only maintain O(N) efficiency but also produce second order spatial
accuracy is the matched ADI (mADI) introduced by Zhao in 2015 [10]. Based on the
matched interface and boundary (MIB) method [30,31] for general interface problems,
a tensor product decomposition is conducted in the mADI to reduce jump conditions into
1D ones. Then these 1D conditions along Cartesian directions are enforced to secure a
second order of convergence. A perturbed tridiagonal matrix is frequently encountered in
the MIB-ADI computation, in which a few non-zero entries appear outside three diagonals
due to interface treatments. An improved Thomas algorithm has been introduced in [10]
for solving such systems with O(N) complexity. The MIB-ADI method has been further
formulated in the Peaceman-Rachford form [12] and for solving three-dimensional (3D)
parabolic interface problems [13]. In [15], a popular interface algorithm-the ghost-fluid
method (GFM) [32], is combined with the ADI for solving parabolic PDEs with constant
coefficients. Comparing with the MIB-ADI scheme, the GFM-ADI is found to be more stable
while being less accurate. Recently, another advance in this direction was presented in [14],
in which a new IIM-ADI scheme is constructed for handling general jump conditions (4).
This is achieved in an augmented IIM (AIIM) formulation by introducing auxiliary variables
on the interface so that one can still solve an interface problem without material parameter
β. The resulting AIIM-ADI scheme yields second order accuracy in both space and time.

Comparing with general interface algorithms for parabolic PDEs [6,8,11,16–20], the in-
terface treatment in the ADI framework is more subtle. This is because the jump con-
ditions (4) are prescribed in the normal direction so that the usual interface treatments
naturally couple spatial derivatives in all Cartesian directions. However, in the ADI formu-
lation, the jump conditions have to be enforced in a 1D manner, and such enforcement in
different Cartesian directions shall be independent from each other. This is realized through
two types of strategies in the existing studies. In the IIM-ADI methods [4,14], an argument
formulation is employed, and simplified jump conditions can be satisfied multidimen-
sionally through introducing corrections to standard central difference discretization of
Laplacian operator. Then, the usual ADI splitting can be utilized to decompose the discrete
Laplacian into 1D ones. In the MIB-ADI or mADI methods [10,12,13], the original jump
conditions are decomposed in a tensor product manner to 1D, and the resulting 1D jump
conditions are enforced in each alternating direction. The decomposition requires jump
data in tangential directions at the future time step, say tn+1. In order to avoid unwanted
coupling, the tangential jumps are extrapolated by using function values at the current
time step tn in the mADI methods. Thus, the MIB-ADI methods are semi-implicit in nature
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and are conditionally stable in general. We note that the AIIM-ADI scheme [14] is also con-
ditionally stable. Fortunately, the stability constraints of MIB-ADI and IIM-ADI methods
are still much less severe than those of the explicit time integration methods.

To the best of the authors’ acknowledge, all existing interface ADI methods concern
only constant coefficient parabolic PDEs, and no efficient and accurate ADI method has
been developed for variable coefficient parabolic interface problems. By using the aug-
mented formulation, it may be possible to generalize the AIIM-ADI scheme [14] to solve
variable coefficient problems. In fact, for elliptic interface problems, the generalization
from constant coefficient to variable coefficient has been realized via the augmented for-
mulation for both IIM [12] and the immersed finite element method [33]. Nevertheless,
the ADI scheme is utilized as an algebraic solver in the AIIM-ADI method [14] and has to
be calculated multiple times within each time step. This is less efficient than applying the
ADI as a time stepper, in which the ADI procedure is executed only once per time step.

In this paper, the mADI method [10,12,13] will be generalized for solving variable
coefficient parabolic interface problems, in which the ADI scheme serves as a time stepper.
Away from the interface, the central difference discretization of Laplacian in divergence
form will be employed, in which β will be evaluated at half grid points. Near the interface,
fictitious values for both u and β will be assumed. Fictitious values of β are obtained
by using the diffusion coefficient definition from the other side, while those of u are
solved from 1D jump conditions that are generated by the mADI procedure. In spatial
discretization, we will examine both the first order GFM and second order MIB schemes
for enforcing jump conditions. In time discretization, both the Douglas and Peaceman-
Rachford ADI schemes will be employed as time steppers. More details about these ADI
methods and their comparison will be provided in the following sections.

The rest of this work is organized as follows. In Section 2, the mADI procedure for
solving variable coefficient parabolic interface problems will be presented. Details on
spatial and temporal discretizations of the proposed MIB-ADI and GFM-ADI schemes
will be offered. Numerical comparisons of four ADI methods are conducted on various
examples in Section 3. Convergence rates and stability will be explored numerically as
well, followed by concluding remarks in Section 4.

2. Theory and Algorithm

Standard finite different notations are adopted throughout this section to describe
the proposed numerical methods for solving the parabolic interface problem governed by
Equations (1) and (4). More specifically, we assume Equation (1) is solved for time t ∈ [0, T]
over a rectangular domain Ω = [a, b]× [c, d]. The temporal domain [0, T] is discretized into
Nt equally spaced subintervals by a uniform time step ∆t = T

Nt
, and the spatial domain is

discretized by a uniform mesh size h in both x- and y- directions, yielding Nx + 1 and Ny + 1
grids in x- and y- directions, respectively, so that h = b−a

Nx
= d−c

Ny
. Numerical approximation

to the exact solution u(tn, xi, yj) at grid (xi, yj) and time instant tn is denoted by un
i,j for all

i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny and n = 0, . . . , Nt.
For the sake of simplicity, the superscript of un

i,j is dropped when semi-discretized
spatial methods are described in Section 2.1, and the subscripts of un

i,j are dropped when
semi-discretized temporal schemes are described in Section 2.2. Both super- and sub-
scripts are then used when fully-discretized methods are demonstrated in Section 2.3.

2.1. Spatial Discretization

It is important to take jump conditions (4) into account when constructing finite
difference formulas to approximate the two spatial derivatives, ∂

∂x

(
β ∂

∂x

)
u and ∂

∂y

(
β ∂

∂y

)
u,

in Equation (1). To this end, we denote corresponding finite difference operators as
δxx ≈ ∂

∂x

(
β ∂

∂x

)
and δyy ≈ ∂

∂y

(
β ∂

∂y

)
and demonstrate their constructions by showing

δxxui,j

(
≈ ∂

∂x

(
β ∂

∂x

)
u(xi, yj)

)
at a grid (xi, yj) for 0 < i < Nx on one grid line y = yj. In a
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similar manner, δyyui,j

(
≈ ∂

∂y

(
β ∂

∂y

)
u(xi, yj)

)
at a grid (xi, yj) on a grid line x = xi for

0 < j < Ny can be obtained.

2.1.1. A Matched Interface and Boundary (MIB) Method

At a grid (xi, yj) away from the interface Γ, a second order approximation of δxxui,j
can be constructed as

δxxui,j =
(βux)i+ 1

2 ,j − (βux)i− 1
2 ,j

h
+ O(h2)

=
βi+ 1

2 ,j(ux)i+ 1
2 ,j − βi− 1

2 ,j(ux)i− 1
2 ,j

h
+ O(h2)

=
βi+ 1

2 ,j

(
ui+1,j − ui,j

)
/h− βi− 1

2 ,j

(
ui,j − ui−1,j

)
/h

h
+ O(h2)

=
βi+ 1

2 ,jui+1,j −
(

βi+ 1
2 ,j + βi− 1

2 ,j

)
ui,j + βi− 1

2 ,jui−1,j

h2 + O(h2). (5)

However, Equation (5) must be adjusted to incorporate jump conditions (4) at grids
near the interface Γ, where jumps take place and the solution u is piecewise defined as in
Equation (3). To this end, all grids on the grid line y = yj are classified into three categories.
A grid (xI , yj) is called a regular grid if three grids in the stencil {(xI−1, yj), (xI , yj), (xI+1, yj)}
are all on the same side, either the Ω+- or Ω−- side, of the interface Γ. For instance, (xi−1, yj)
and (xi+2, yj) are two regular grids in Figure 2a. A grid (xI , yj) is called an irregular grid if
one of its two adjacent grids, (xI−1, yj) or (xI+1, yj), is on the opposite side of the interface Γ.
In this case, the interface Γ cuts the grid line y = yj at a point (xΓ, yj) where xΓ ∈ (xi−1, xi)
or xΓ ∈ (xi, xi+1). Without loss of generality, we assume (xΓ, yj) is off-grid and call it an
irregular interface point. For instance, (xi, yj) and (xi+1, yj) in Figure 2a are a pair of irregular
grids. A grid (xI , yj) is called a corner grid if both adjacent grids are on the opposite side of
the interface Γ and the two associated interface points, denoted by (xΓ1 , yj) and (xΓ2 , yj),
are called corner interface points. In this case, the left and right grids, (xI−1, yj) and (xI+1, yj),
are also called corner grids. For instance, {(xi−1, yj), (xi, yj), (xi+1, yj)} in Figure 2b are
three corner grids.

(a) An irregular interface point (b) A pair of corner interface points

Figure 2. An illustration of irregular and corner interface points in the MIB scheme.

After all grids on the grid line y = yj are properly classified, we propose to correct
Equation (5) as

δxxui,j =
β̄i+ 1

2 ,jūi+1,j −
(

β̄i+ 1
2 ,j + β̄i− 1

2 ,j

)
ui,j + β̄i− 1

2 ,jūi−1,j

h2 + O(h2), (6)
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where

β̄i± 1
2 ,j =

 β+
i± 1

2 ,j
, if (xi, yj) ∈ Ω+

β−
i± 1

2 ,j
, if (xi, yj) ∈ Ω−,

(7)

and

ūi±1,j =

{
ui±1,j, if (xi±1, yj) and (xi, yj) are on the same side of Γ
ũi±1,j, if (xi±1, yj) and (xi, yj) are on the opposite side of Γ.

(8)

The essential idea of Equation (6) is that when the involved function values of β and u
are from the opposite side of the interface, fictitious values, instead of the actual values, shall
be employed, while at regular grids, Equation (6) is identical to Equation (5). The fictitious
values of β can be simply generated by applying the piecewise definition of the current
side via Equation (2), but at a node on the other side. This is why in Equation (7), β̄i± 1

2 ,j is
always calculated according to the domain sign of the node (xi, yj). In Equation (8), ũi±1,j
denotes a fictitious value imposed at either irregular or corner grids. Such fictitious values
are unknown and need to be approximated by using the jump conditions via the matched
interface and boundary (MIB) method proposed in [10] and further discussed in [12,15].
One can view the fictitious values as approximations to the values of Equation (3) extended
from the opposite side of the interface Γ. For instance, if (xi, yj) ∈ Ω− is an irregular
grid, ũi,j ≈ u+(xi, yj) where u+(xi, yj) is obtained by extending u+ from subdomain Ω+

to subdomain Ω− and evaluated at (xi, yj). Fictitious values play an important role and
have significant impact on the accuracy and stability of the proposed method. A brief
description is provided below to demonstrate how fictitious values are constructed via the
MIB method, while one can find more detailed description in [10,15].

Let (xi, yj) and (xi+1, yj) be a pair of irregular grids shown in Figure 2a, and we con-
sider applying Equation (6) for calculating δxxui,j and δxxui+1,j. Without loss of generality, it
is assumed that (xi−1, yj) and (xi, yj) are on the Ω+-side while (xi+1, yj) is on the opposite
Ω−-side of the interface Γ. A pair of fictitious values, ũi,j and ũi+1,j, can be solved by
considering jump conditions imposed at the interface (xΓ, yj), where fictitious value ũi+1,j
is used for calculating δxxui,j and fictitious value ũi,j is used for calculating δxxui+1,j by
Equation (6). However, the jump condition ψ = [βun] cannot be used immediately because
it is on the normal direction n, which usually does not coincide with the x-direction. It
must be converted to a jump condition in the x-direction, i.e., ψ̄: = [βux], before it can be
used in numerical formations. As indicated in Zhao’s work [10], ψ̄ can be expressed as

ψ̄ = ψ cos(θ)− sin(θ)
(

β+ − β−
)
u+

τ − sin(θ)β−φτ (9)

= ψ cos(θ)− sin(θ)
(

β+ − β−
)
u−τ − sin(θ)β+φτ , (10)

where φτ is the derivative of φ along the tangential direction, and u+
τ and u−τ are the

tangential derivatives of u from the Ω+- and Ω−- sides of the interface, respectively.
Equations (9) and (10) allow ψ̄ to be calculated from either side of the interface Γ. Moreover,
one can see that all quantities involved on the right-hand sides of Equations (9) and (10)
can be analytically obtained except that the two derivatives along the tangential direction
τ, i.e., u+

τ and u−τ , must be estimated via certain numerical procedures.
A new numerical procedure to approximate u+

τ and u−τ will be proposed in the next
subsection. At this moment, assuming either u+

τ or u−τ has been numerically generated,
the two jump conditions

φΓ,j = [u]Γ,j =
(
u+
)

Γ,j −
(
u−
)

Γ,j , ψ̄Γ,j = [βux]Γ,j = β+
Γ,j
(
u+

x
)

Γ,j − β−Γ,j
(
u−x
)

Γ,j , (11)

at the interface point (xΓ, yj) shown in Figure 2a are ready to be used. Denoting the values
of β at (xΓ, yj) as β+

Γ,j and β−Γ,j, a system of equations.
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≈ (u+)Γ,j︷ ︸︸ ︷
w0,+

i−1ui−1,j + w0,+
i ui,j + w0,+

i+1ũi+1,j

= w0,−
i ũi,j + w0,−

i+1ui+1,j + w0,−
i+2ui+2,j︸ ︷︷ ︸

≈ (u−)Γ,j

+φΓ,j + O(h2), (12)

β+
Γ,j

≈ (u+
x )Γ,j︷ ︸︸ ︷(

w1,+
i−1ui−1,j + w1,+

i ui,j + w1,+
i+1ũi+1,j

)
= β−Γ,j

(
w1,−

i ũi,j + w1,−
i+1ui+1,j + w1,−

i+2ui+2,j

)
︸ ︷︷ ︸

≈ (u−x )Γ,j

+ψ̄Γ,j + O(h2),

is constructed to be solved for ũi,j and ũi+1,j as linear combinations of {ui−1,j, ui,j, ui+1,j,
ui+2,j, φΓ,j, ψ̄Γ}. Weights (w0,+

i−1, w1,+
i−1 and so on) involved in (12) are pre-calculated by the

Fornberg’s method [34] to maintain second order in all approximations. The representations
of ũi,j and ũi+1,j are then used in Equation (6) for calculating δxxui,j and δxxui+1,j.

In Figure 2b, jump conditions at the left and right corner interface points, (xΓ1 , yj) and
(xΓ2 , yj), are taken into consideration at the same time so that a system of four equations
can be obtained from jumps

φΓ1,j = [u]Γ1,j, ψ̄Γ1,j = [βux]Γ1,j, at the left corner (xΓ1 , yj)
φΓ2,j = [u]Γ2,j, ψ̄Γ2,j = [βux]Γ2,j, at the right corner (xΓ2 , yj),

in a similar manner. In order to accommodate the resulting system of equations, the MIB
method suggests four fictitious values, ũi−2,j, ũi−1,j, ũi,j, and ũi+1,j, to be imposed and
solved from(

wΓ1

)0,+
i−2ui−2,j +

(
wΓ1

)0,+
i−1ui−1,j +

(
wΓ1

)0,+
i ũi,j +

(
wΓ1

)0,+
i+1ui+1,j + O(h2)

=
(
wΓ1

)0,−
i−2ũi−2,j +

(
wΓ1

)0,−
i−1ũi−1,j +

(
wΓ1

)0,−
i ui,j +

(
wΓ1

)0,−
i+1ũi+1,j + φΓ1,j,

β+
Γ1,j

((
wΓ1

)1,+
i−2ui−2,j +

(
wΓ1

)1,+
i−1ui−1,j +

(
wΓ1

)1,+
i ũi,j +

(
wΓ1

)1,+
i+1ui+1,j

)
+ O(h2)

= β−Γ1,j

((
wΓ1

)1,−
i−2ũi−2,j +

(
wΓ1

)1,−
i−1ũi−1,j +

(
wΓ1

)1,−
i ui,j +

(
wΓ1

)1,−
i+1ũi+1,j

)
+ ψ̄Γ1,j,(

wΓ2

)0,+
i−1ui−1,j +

(
wΓ2

)0,+
i ũi,j +

(
wΓ2

)0,+
i+1ui+1,j +

(
wΓ2

)0,+
i+2ui+2,j + O(h2) (13)

=
(
wΓ2

)0,−
i−2ũi−2,j +

(
wΓ2

)0,−
i−1ũi−1,j +

(
wΓ2

)0,−
i ui,j +

(
wΓ2

)0,−
i+1ũi+1,j + φΓ2,j,

β+
Γ2,j

((
wΓ2

)1,+
i−1ui−1,j +

(
wΓ2

)1,+
i ũi,j +

(
wΓ2

)1,+
i+1ui+1,j +

(
wΓ2

)1,+
i+2ui+2,j

)
+ O(h2)

= β−Γ2,j

((
wΓ2

)1,−
i−2ũi−2,j +

(
wΓ2

)1,−
i−1ũi−1,j +

(
wΓ2

)1,−
i ui,j +

(
wΓ2

)1,−
i+1ũi+1,j

)
+ ψ̄Γ2,j.

for the case shown in Figure 2b where wΓ1 ’s and wΓ2 ’s are pre-calculated weights ob-
tained at the left and right corner interface points, respectively. Solving the system of
Equation (13) for ũi−2,j, ũi−1,j, ũi,j, and ũi+1,j results in their representations in terms of
{ui−2,j, ui−1,j, ui,j, ui+1,j, ui+2,j, φΓ1,j, ψ̄Γ1,j, φΓ2,j, ψ̄Γ2,j}. Representations of three fictitious val-
ues, ũi−1,j, ũi,j, and ũi+1,j, are then used in Equation (6) for calculating δxxui−1,j, δxxui,j and
δxxui+1,j.

The above discussions provide a second order accurate procedure to construct the
finite difference approximation δxxu ≈ ∂

∂x

(
β ∂

∂x

)
u at all internal grids on grid line y = yj for

j = 1, . . . , Ny − 1. A similar produce can be carried out for constructing δyy ≈ ∂
∂y

(
β ∂

∂y

)
u

at all internal grids on grid line x = xi for i = 1, . . . , Nx − 1. More specifically, a formula
analogous to Equation (6) is given by
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δyyui,j =
β̂i,j+ 1

2
ûi,j+1 −

(
β̂i,j+ 1

2
+ β̂i,j− 1

2

)
ui,j + β̂i,j− 1

2
ûi,j−1

h2 + O(h2), (14)

and applied to all grids on grid line x = xi for i = 1, . . . , Nx − 1. Here

β̂i,j+ 1
2
=

 β+
i,j+ 1

2
, if (xi, yj) ∈ Ω+

β−
i,j+ 1

2
, if (xi, yj) ∈ Ω−

, β̂i,j− 1
2
=

 β+
i,j− 1

2
, if (xi, yj) ∈ Ω+

β−
i,j− 1

2
, if (xi, yj) ∈ Ω−

, (15)

and

ûi,j±1 =

{
ui,j±1, if (xi, yj±1) and (xi, yj) are on the same side of Γ
ũi,j±1, if (xi, yj±1) and (xi, yj) are on the opposite side of Γ

. (16)

The fictitious values ũi,j±1 are obtained by enforcing either jump conditions

φi,Γ = [u]i,Γ =
(
u+
)

i,Γ −
(
u−
)

i,Γ, ψ̂i,Γ = [βuy]i,Γ = β+
i,Γ

(
u+

y

)
i,Γ
− β−i,Γ

(
u−y
)

i,Γ

at one nearby irregular interface point (xi, yΓ) or similar jump conditions

φi,Γ1 = [u]i,Γ1 , ψ̂i,Γ1 = [βuy]i,Γ1 , at the lower corner (xi, yΓ1)
φi,Γ2 = [u]i,Γ2 , ψ̂i,Γ2 = [βuy]i,Γ2 , at the upper corner (xi.yΓ2)

at two nearby corner interface points together. In addition, ψ̂ is obtained by

ψ̂ = ψ sin(θ) + cos(θ)
(

β+ − β−
)
u+

τ + cos(θ)β−φτ (17)

= ψ sin(θ) + cos(θ)
(

β+ − β−
)
u−τ + cos(θ)β+φτ , (18)

with u+
τ and u−τ being approximated via the same numerical procedure discussed in the

next subsection.

2.1.2. Approximating u+
τ and u−τ in the MIB Method

It is clear now how the MIB method enforces jump conditions (4) in its finite difference
formulation. In this process, it is assumed that u+

τ and u−τ are known in Equations (9) and (10)
to generate ψ̄ from the given jump condition ψ. In practice, these tangential derivatives
need to be calculated numerically. A couple of numerical treatments have been proposed in
our previous work [10,12] for estimating u+

τ and u−τ in either one direction or in alternating
directions. For usual curved interfaces, these treatments maintain the overall second order
of spatial accuracy. However, it was also noticed that they all have limitations when the
shape of interface Γ becomes highly irregular. An improved treatment is introduced in this
work to deliver accurate estimations of u+

τ and u−τ for complex interfaces. Work in this
direction is demonstrated below using Figure 3.

In Figure 3, the interface Γ (green curve) cuts grid line y = yj at an interface point
(xΓ, yj) where either u+

τ or u−τ is desired. To this end, the tangent line, with its positive
direction assumed to point from y = yj−1 to y = yj+1, through the interface point is drawn
(red dashed line) and cuts the lower grid line y = yj−1 at a point (xAL, yj−1) and the upper
grid line y = yj+1 at a point (xAR, yj+1). These two points are named auxiliary points (red
open triangles). The interface point is the midpoint of the two auxiliary points because all
grid lines are uniformly spaced. Denoting the distance between the interface point and one
auxiliary point as D, u+

τ and u−τ at interface point (xΓ, yj), denoted by (u+
τ )Γ,j and (u−τ )Γ,j,

can be approximated by the central difference method

(
u+

τ

)
Γ,j ≈

u+
AR,j+1 − u+

AL,j−1

D
+ O(h2),

(
u−τ
)

Γ,j ≈
u−AR,j+1 − u−AL,j−1

D
+ O(h2) (19)
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where u±AR,j+1 and u±AL,j−1 are the values of u± at the auxiliary points and D = O(h).
However, u±AR,j+1 and u±AL,j−1 are not ready to be used in Equation (19) because the two
auxiliary points are in general off-grid so that they must be interpolated or extrapolated
using the values of u± at nearby grids, which are named supporting grids. In our previous
studies [10,12], one simple choice of supporting grids is to select nearby grids from the
Ω+-side of interface Γ on both grid lines, y = yj−1 and y = yj+1, for approximating (u+

τ )Γ,j,
or select nearby grids from the Ω−-side of interface Γ on both grid lines for approximating
(u−τ )Γ,j. However, this choice can fail when the curvature of the interface changes rapidly
near the given interface point (xΓ, yj) such that no sufficient supporting grids can be found
from one side of the interface Γ on both grid lines. We need a more carefully-designed
systematic method that allows supporting grids to be chosen for accurate approxima-
tions of (u+

τ )Γ,j or (u−τ )Γ,j at the interface point even when the interface is complex and
irregularly shaped.

Figure 3. A grid setting for approximating the tangential derivatives u+
τ and u−τ in the present MIB

method. Here the interface Γ is shown as a green curve, and the tangent line at the interface point
(xΓ, yj) is displayed as a red dashed line. For illustration purposes, the grid interval containing
(xΓ, yj) is artificially enlarged.

A more thoroughgoing procedure is proposed in this work as follows. Assuming
that the two auxiliary points are off-grid in general, three supporting grids on grid line
y = yj−1 and three supporting grids on grid line y = yj+1 are needed for quadratic
interpolation/extrapolation of the values at the lower and upper auxiliary points. To this
end, at most, five closest nearby grids are taken into consideration on each of the grid lines
y = yj−1 and y = yj+1. By the Pigeonhole principle, the three closest grids, denoted by
{(xi′1

, yj−1), (xi′2
, yj−1), (xi′3

, yj−1)}, on grid line y = yj−1 are on one side of the interface Γ,
and three closest grids, denoted by {(xi′′1

, yj+1), (xi′′2
, yj+1), (xi′′3

, yj+1)}, on grid line y = yj+1

are on one side of the interface Γ. They are the six supporting grids to be chosen. When all
six supporting grids are on the same side of the interface Γ, it is obvious that either the pair
of values {u+

AR,j+1, u+
AL,j−1} or the pair of values {u−AR,j+1, u−AL,j−1} can be interpolated or

extrapolated using values at these six supporting grids, and then Equation (19) is utilized
to estimate (u+

τ )Γ,j or (u−τ )Γ,j. When the two sets of supporting grids are on the opposite
sides of the interface Γ, the procedure is demonstrated using Figure 3.

In Figure 3, the three supporting grids, {(xi′−2, yj−1), (xi′−1, yj−1), (xi′ , yj−1)}, on grid
line y = yj−1 are on the Ω+-side of the interface so that u+

AL,j−1 is extrapolated, while the
three supporting grids, {(xi′′ , yj+1), (xi′′+1, yj+1), (xi′′+2, yj+1)}, on grid line y = yj+1 are
on the Ω−-side of the interface so that u−AR,j+1 is extrapolated. Using two jump conditions

φΓ,j =
(
u+
)

Γ,j −
(
u−
)

Γ,j, (φτ)Γ,j =
(
u+

τ

)
Γ,j −

(
u−τ
)

Γ,j,
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and obtained u+
AL,j−1 and u−AR,j+1, second order finite difference approximations lead to a

system of two equations


(

u+
AL,j−1 + u+

AR,j+1

)
/2 −

(
u−AL,j−1 + u−AR,j+1

)
/2 = φΓ,j + O(h2)(

u+
AR,j+1 − u+

AL,j−1

)
/2D−

(
u+

AR,j+1 − u+
AL,j−1

)
/2D = (φτ)Γ,j + O(h2),

(20)

to solve for u−AL,j−1 and u+
AR,j+1. After Equation (20) is solved, both positive and negative

values at the two auxiliary points are obtained and ready to be used for approximating
either (u+

τ )Γ,j or (u−τ )Γ,j in Equation (19).
The proposed procedure can be used to estimate u+

τ and u−τ for complex interfaces.
It is implemented and coupled with linked lists for dynamically storing interface points
on grid lines in a scientific program called the finite difference interface problem solver
(FDIPS) for solving interface problems with various examples in multidimensional spaces.
Numerical experiments are demonstrated in Section 3 after temporal and full discretization
methods are discussed in the next two subsections.

The MIB method proposed in Section 2.1 coupled with the technique presented in this
subsection results in a spatial discretization scheme, which will still be called the MIB in
this paper.

2.1.3. The Ghost Fluid Method (GFM)

The ghost fluid method (GFM) is another popular method utilized to solve the interface
problems. It was discussed and compared with the MIB methods in the work of [15]. In the
GFM, it is assumed that jump conditions in the x- and y- directions can be obtained from
the jump condition in the normal direction. That is, for instance, ψ̄ ≈ ψ cos(θ), where θ is
the angle formed by the normal direction and the positive x-direction. When compared
this assumption with Equations (9) and (10), one can see that the GFM’s treatment is merely
a numerical simplification by completely dropping tangential jumps. This assumption
allows the coefficient matrix of the linear system resulting in each time advancing step
be symmetric and diagonally dominant when the diffusion coefficient β is defined as
piecewise constants inside and outside the interface Γ. In this case, it follows that the GFM,
when coupled with implicit time advancing schemes demonstrated in the next subsection,
yields stable yet less accurate fully discretized methods for solving the parabolic interface
problems. More detailed discussions can be found in [15].

Unfortunately, when the diffusion coefficient β is variable, the resulting coefficient
matrix is still diagonally dominant, as shown in Equations (6) and (14), but there is no
guarantee that the resulting coefficient matrix is symmetric. It is our interest to see how
the GFM performs and whether it is still able to produce satisfying numerical solutions in
this case. To this end, the GFM is also implemented in this work and compared with the
proposed MIB method.

2.2. Temporal Discretization

Implicit time evolution schemes are of great interest to be employed to solve Equa-
tion (1) due to the fact that many applications of interface problems require long-term
simulations until solutions in steady state are achieved. In our previous work [10,12,15],
a couple of alternating direction implicit (ADI) methods have been studied and utilized to
solve parabolic interface problems with piecewise constant diffusion coefficients. When
comparing the ADI methods to other implicit methods, such as the implicit Euler method
and Crank–Nicolson method, the ADI methods are of similar accuracy but much more
efficient [15]. It is our interest to explore how well these ADI methods perform when
solving the interface problems with variable coefficients.
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The first ADI method to be considered is the Douglas ADI method, denoted by ADID1,
which is given by (

1
β
− ∆t

β
δxx

)
u∗ =

(
1
β
+

∆t
β

δyy

)
un +

∆t
β

f n+1 (21)(
1
β
− ∆t

β
δyy

)
un+1 =

1
β

u∗ − ∆t
β

δyyun, (22)

where δxx ≈ ∂
∂x

(
β ∂

∂x

)
and δyy ≈ ∂

∂y

(
β ∂

∂y

)
are two finite difference operators approximat-

ing the second derivatives with respect to x and y at time step tn, respectively. The diffu-
sion coefficient β is divided throughout Equations (21) and (22) so that one can compare
Equations (21) and (22) to a similar formula proposed in [10] for solving the parabolic
interface problems with piecewise constant coefficients. The convergence rate of the ADID1
method is found to be one, i.e., O(∆t), when solving the parabolic interface problems with
piecewise constant coefficients [10,15].

The second ADI method is the Peaceman–Rachford ADI method, denoted by ADIPR,
which is given by(

1
β
− ∆t

2β
δxx

)
u∗ =

(
1
β
+

∆t
2β

δyy

)
un +

∆t
2β

f n+ 1
2 (23)(

1
β
− ∆t

2β
δyy

)
un+1 =

(
1
β
+

∆t
2β

δxx

)
u∗ +

∆t
2β

f n+ 1
2 . (24)

The results of solving the parabolic interface problems with piecewise constant coefficients
by the ADIPR method were reported in [12]. The convergence rate of the ADIPR method is
found to be close to two, i.e., O(∆t2), when solving the parabolic interface problems with
piecewise constant coefficients [12].

2.3. Fully Discretized Methods and Stability Discussion

Coupling the two spatial numerical methods, MIB and GFM, with the two temporal
advancing methods, ADID1 and ADIPR, yields four fully discretized methods for solving
the parabolic interface problems.

In particular, the ADID1 method (21) and (22) are rewritten as(
1
β
− ∆t

β
δxx

)
u∗i,j =

(
1
β
+

∆t
β

δyy

)
un

i,j +
∆t
β

f n+1
i,j (25)(

1
β
− ∆t

β
δyy

)
un+1

i,j =
1
β

u∗i,j −
∆t
β

δyyun
i,j. (26)

The first fully discretized method is denoted by MIB-ADID1 when the finite difference
operators δxx and δyy are obtained by the MIB method, while the second method is denoted
by GFM-ADID1 when δxx and δyy are obtained by the GFM. Similarly, the next two methods,
MIB-ADIPR and GFM-ADIPR, are obtained by utilizing MIB and GFM in the framework
of the ADIPR method (23) and (24), yielding(

1
β
− ∆t

2β
δxx

)
u∗i,j =

(
1
β
+

∆t
2β

δyy

)
un

i,j +
∆t
2β

f n+ 1
2

i,j (27)(
1
β
− ∆t

2β
δyy

)
un+1

i,j =

(
1
β
+

∆t
2β

δxx

)
u∗i,j +

∆t
2β

f n+ 1
2

i,j . (28)

Stability is discussed using Equation (25) as an example. When the MIB method is
utilized at time step tn, the finite difference operator δyy appearing on the right-hand side
of Equation (25) can be further decomposed as

δyyun
i,j = Dyyun

i,j + B̂un
i,j + φ̂n. (29)
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The first term Dyyun
i,j on the right-hand side of Equation (29) involves the values

of u at the stencil {(xi, yj−1), (xi, yj), (xi, yj+1)} at a regular node on the grid line x = xi.
The matrix representation of difference operator Dyy has a band-width of three if (xi, yj)
is a regular grid, a band-width of four if (xi, yj) is an irregular grid, and a band-width of
five if (xi, yj) is a corner grid. Moreover, Dyy is unchanged at all time steps so that it only
needs to be computed once. The second term B̂un

i,j is due to the values of u at supporting
nodes on the left and right grid lines, x = xi−1 and x = xi+1, used to estimate u+

τ or u−τ at
nearby irregular or corner interface points. The matrix representation of difference operator
B̂ consists of pre-calculated weights at corresponding grids and thus stays unchanged.
The last term φ̂n is a collective term containing all non-homogeneous contributions from
jump conditions φn, ψn, and φn

τ and naturally needs to be updated at each time step.
In contrast, δxx appears on the left-hand side of Equation (25) so that δxxun+1

i,j is
decomposed and approximated by

δxxun+1
i,j = Dxxun+1

i,j + B̄un+1
i,j + φ̄n+1 ≈ Dxxun+1

i,j + B̄un
i,j + φ̄n. (30)

This means that the tangential derivatives calculated at time tn will be used to approx-
imate those at time tn+1 such that 1D finite difference operators δxx become decoupled
for different y = yj lines [10,12,15]. This has two numerical consequences as reported
in the previous mADI methods [10,12,15]. First, this limits the temporal order to be one,
i.e., O(∆t). Second, the mADI scheme becomes semi-implicit in nature so that the MIB-
ADID1 becomes a conditionally stable scheme instead of an unconditionally stable method.
However, the stability condition of the MIB-ADID1 is not severe, so that reasonable large
time step sizes can still be used for efficient time integration. Numerical verification will be
provided in the next section.

On the other hand, when the GFM is used in Equation (25), the last two terms in
Equations (29) and (30) do not exist so that the fully discretized method GFM-ADID1 stays
fully implicit and, thus, is expected to be unconditionally stable. However, its hypothesis
that jumps in the x- and y-directions purely come from the jump condition in the normal
direction not only lowers the accuracy of approximated solutions but also jeopardizes its
stability. Thus, we still expect it to be conditionally stable rather than unconditionally stable.

In summary, we expect all four proposed methods to be conditionally stable methods
for solving the parabolic interface problems. There are other factors, such as the jump
conditions and the geometry of the interfaces, which could also affect the accuracy and
stability of the proposed methods. A form stability analysis is extremely difficult to be
carried out to account for diverse cases. Numerical verification is the best we can achieve
at this moment. Various numerical examples are constructed and results are reported in
the next section.

3. Numerical Experiments

In order to numerically examine the convergence and stability of the proposed meth-
ods, an exact solution

u(t, x, y) =
{

sin(2x) cos(2y) cos(t) in Ω−

cos(2x) sin(2y) cos(t) in Ω+ (31)

is defined over a finite domain Ω = [−0.99, 0.99]× [−0.99, 0.99] and used in all examples in
this section. In all tests, we will employ a uniform mesh with Nx = Ny in space. The initial
time is fixed, t0 = 0, while the final time T varies depending the types of tests. The initial
condition

u(0, x, y) =
{

sin(2x) cos(2y) in Ω−

cos(2x) sin(2y) in Ω+ (32)
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and boundary conditions

u(t,−0.99, y) = cos(−1.98) sin(2y) cos(t), u(t, 0.99, y) = cos(1.98) sin(2y) cos(t),

u(t, x,−0.99) = cos(2x) sin(−1.98) cos(t), u(t, x, 0.99) = cos(2x) sin(1.98) cos(t). (33)

are obtained using the exact solution (31). The source term f (x, y) can be obtained by
using the governing equation. Consider an interface point with the normal direction being
~n = (cos θ, sin θ), where θ is the angle between the normal direction and the positive x
direction. The jump conditions at this point can be calculated via Equation (31) and (37)

[u] = (cos(2x) sin(2y)− sin(2x) cos(2y)) cos(t), (34)

[αun] = 2(sin(2x) sin(2y)(β− sin(θ)− β+ cos(θ)) (35)

+ cos(2x) cos(2y)(β+ sin(θ)− β− cos(θ))) cos(t).

where β+ and β− are the limiting values of β at this interface point. We note that both
jump conditions are temporally and spatially dependent to represent the most general
jump conditions imposed on the interface Γ.

All numerical experiments were conducted on a high-performance computing (HPC)
cluster equipped with 24 Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz and 128 GB RAM.
Numerical L∞ and L2 errors, which are defined as

L∞ := max
0≤i≤Nx , 0≤j≤Ny

|u(tn, xi, yj)−Un
i,j|,

L2 := ∑
0≤i≤Nx , 0≤j≤Ny

(u(tn, xi, yj)− un
i,j)

2

Nx Ny

(36)

at various final times are reported for all examples in order to quantitatively measure the
accuracy of the proposed methods. The execution time, known as the wall clock time, taken
from the start of the scientific program, FDIPS, to the end was used to demonstrate the
efficiency of the proposed methods.

3.1. Efficiency Demonstration

The efficiency of ADI time stepping schemes is demonstrated first in this subsection.
To this end, a simple “squircle” interface with a parametric form

γ(ρ) = 0.5 + 0.05 sin(4ρ)

for 0 ≤ ρ ≤ 2π is considered. For simplicity, a piecewise constant β, which is defined
as β = 1 in Ω− and β = 10 in Ω+, is adopted, and the analytical solution is given by
Equation (31). The interface and solution are shown in Figure 4a. The ADID1 method is
employed for time advancing and compared to its analog, the implicit Euler (IE) method,
to solve the 2D parabolic interface problem when both time stepping methods are coupled
with the MIB method from an initial time t0 = 0 to a final time T = 1 with a fixed time
step ∆t = 1.0× 10−5.Various numbers of grid sizes with Nx(= Ny) ranging from 41 to
201 are used. The obtained L2 and L∞ errors are shown in Figure 4b. One can see the
both MIB-IE and MIB-ADID1 schemes yield similar errors and have the same convergence
pattern. The ADI errors are consistently smaller and such differences are believed to be
caused by a higher perturbation term β∆t2δxxδyyu as indicated in [10]. The wall clock time
of the two methods is demonstrated in Figure 4c. It is obvious that MIB-ADID1 is more
efficient, for instance, about four times faster than MIB-IE at Nx = 201. This is because
a large linear system has to be solved by an iterative algorithm in each time step for the
MIB-IE scheme. Provided the fact that both ADID1 and IE produce close errors while
ADID1 is more efficient in time advancing, it is natural to choose ADI-type time stepping
schemes in the proposed methods, which are utilized to solve the following 2D examples.
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(a) Interface and solution (b) Errors (c) Wall clock time

Figure 4. An efficiency demonstration.

3.2. Variable Coefficient Examples

In all examples of this subsection, the diffusion coefficient β is defined as a piecewise
smooth function

β(x, y) =

{
e−(x2+y2) in Ω−

ex2+y2
in Ω+

(37)

Example 1. In the first example, the interface Γ is an ellipse constructed by the level set function

ϕ(x, y) = 0.9−
√
(4.0x)2 + (1.5y)2. (38)

Contour plots of the diffusion coefficient (37) and exact solution (31) over the whole domain Ω are
shown in Figure 5. Discontinuity on the interface can be easily observed in both graphs.

(a) Variable β (b) Exact solution
Figure 5. Diffusion coefficient β and exact solution of Example 1.

Spatial convergence tests are conducted first to compare the performance of the two
spatial discretization methods, MIB and GFM. To this end, the time step is fixed to be small,
∆t = 1.0× 10−6, and Nx(= Ny) varies from 41 to 201 with an increment of 10 for all four
proposed numerical methods. Log–log plots of L∞ and L2 errors at the final time T = 1 are
shown in Figure 6a,b, respectively. All four methods are found to converge and be capable
of achieving reasonable accuracy. The two MIB-involved methods achieve similar accuracy
in the range of (1.0× 10−5, 1.0× 10−3) for L∞ error and (1.0× 10−6, 1.0× 10−4) for L2

error, respectively, which are about two-magnitude smaller than those achieved by the two
GFM-involved methods in all tested cases. Moreover, convergent rates are calculated using
MATLAB subroutine polyfit and reported in Figure 6a,b as well. It can be seen that for the
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L2 errors, the rates of the MIB schemes are about 1.6, while those of the GFM schemes are
essentially 1. We believe the difference is caused by the hypothesis made in the GFM—it
not only lowers the accuracy but also degrades the convergence rate. By considering a
fixed number of time steps, wall clock times against Nx are presented using log–log plot in
Figure 6c. Execution times of all four methods are found to be almost same and increase
at a similar rate slightly less than two. It is thus our belief that all methods are essentially
equivalently efficient and they are all fast O(N2)-methods where N stands for the number
of grids per direction.

(a) L∞-error (b) L2-error (c) Wall clock time

Figure 6. Spatial convergence tests of Example 1.

We next test the stability of four methods. To this end, we will consider various ∆t
values, and for each ∆t, a very long time integration is conducted with the number of
time steps being 10,000. By considering two spatial meshes with Nx = 81 and Nx = 281,
stability results are presented in Table 1. All computations are found to be stable, except for
one case of the MIB-ADIPR method with Nx = 281 and ∆t = 1.0× 10−2. The errors for
this unstable case are skipped and marked with dash signs in Table 1. The present study
suggests that the MIB-ADIPR is the least stable method among the four methods. Moreover,
the results shown in Table 1 also indicate that the two MIB-involved methods are usually
more accurate than two GFM schemes.

Table 1. Stability tests of Example 1.

Nx(= Ny) = 81

T (= 104 · ∆t)
MIB-ADID1 MIB-ADIPR GFM-ADID1 GFM-ADIPR

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1.00× 102 1.37× 10−2 7.27× 10−4 3.47× 10−2 3.41× 10−3 2.27× 10−2 1.22× 10−3 2.34× 10−2 2.29× 10−3

1.00× 101 1.33× 10−3 1.51× 10−4 1.43× 10−3 1.49× 10−4 2.10× 10−2 1.26× 10−3 2.11× 10−2 1.26× 10−3

1.00× 100 8.92× 10−4 1.06× 10−4 8.94× 10−4 1.05× 10−4 1.37× 10−2 8.50× 10−4 1.37× 10−2 8.50× 10−4

1.00× 10−1 1.43× 10−3 1.23× 10−4 1.43× 10−3 1.23× 10−4 2.39× 10−2 1.23× 10−3 2.39× 10−2 1.23× 10−3

Nx(= Ny) = 281

T (= 104 · ∆t)
MIB-ADID1 MIB-ADIPR GFM-ADID1 GFM-ADIPR

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1.00× 102 8.64× 10−2 2.52× 10−3 - - 1.36× 10−2 3.81× 10−4 3.58× 10−1 1.81× 10−2

1.00× 101 1.05× 10−3 2.34× 10−5 7.11× 10−3 8.60× 10−4 7.78× 10−3 3.87× 10−4 7.86× 10−3 4.46× 10−4

1.00× 100 2.64× 10−5 1.70× 10−6 1.16× 10−4 1.49× 10−5 5.09× 10−3 2.69× 10−4 5.09× 10−3 2.69× 10−4

1.00× 10−1 4.57× 10−5 2.87× 10−6 4.56× 10−5 2.84× 10−6 8.90× 10−3 3.20× 10−4 8.90× 10−3 3.20× 10−4

It is meaningful to numerically study the condition of ∆t in terms of h when the MIB-
ADIPR converges. To this end, Nx = 181, 281, 381, 481 are selected and for each Nx value,
and the largest stable ∆t value is searched via the bisection method. The least square fitting
of the resulting ∆t’s and h’s lead to a numerical stability condition for the MIB-ADIPR
scheme, i.e., ∆t ≤ 11.7h1.88.
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Temporal convergence is studied next. In this set of tests, the spatial mesh is fixed
to be reasonably large, Nx = Ny = 391, while the time step varies from ∆t = 1.0× 10−2

down to ∆t = 1.0× 10−4. The resulting L∞- and L2- errors at the final time T = 1 are
reported in Table 2. Corresponding convergent rates are calculated by errors obtained at
two consecutive tested time steps in Table 2.

Table 2. Temporal convergence tests of Example 1.

MIB-ADID1 GFM-ADID1

∆t L∞ L2 L∞ L2

Error Rate Error Rate Error Rate Error Rate

1.00× 10−1 9.35× 10−1 - 7.11× 10−2 - 5.65× 10−2 - 1.35× 10−2 -
5.00× 10−2 5.52× 10−1 0.76 2.70× 10−2 1.40 3.36× 10−2 0.75 4.09× 10−3 1.72
1.00× 10−2 1.10× 10−1 1.00 3.17× 10−3 1.33 6.14× 10−3 1.06 4.18× 10−4 1.42
5.00× 10−3 5.10× 10−2 1.11 1.06× 10−3 1.58 4.73× 10−3 0.38 2.82× 10−4 0.57
1.00× 10−3 7.28× 10−3 1.21 3.97× 10−4 0.61 4.73× 10−3 0.00 2.06× 10−4 0.20
5.00× 10−4 1.94× 10−3 1.91 1.11× 10−4 1.84 4.81× 10−3 −0.24 2.04× 10−4 0.01
1.00× 10−4 8.14× 10−5 1.97 4.32× 10−6 2.02 4.83× 10−3 0.00 2.04× 10−4 0.00

MIB-ADIPR GFM-ADIPR

∆t L∞ L2 L∞ L2

Error Rate Error Rate Error Rate Error Rate

1.00× 10−1 - - - - 5.65× 10−2 - 1.35× 10−2 -
5.00× 10−2 - - - - 3.36× 10−2 0.75 4.09× 10−3 1.72
1.00× 10−2 - - - - 6.14× 10−3 1.06 4.18× 10−4 1.42
5.00× 10−3 5.17× 10−1 - 6.61× 10−2 - 4.73× 10−3 0.38 2.82× 10−4 0.57
1.00× 10−3 2.74× 10−2 1.83 4.02× 10−3 1.74 4.73× 10−3 0.00 2.06× 10−4 0.20
5.00× 10−4 6.90× 10−3 1.99 1.01× 10−3 1.99 4.81× 10−3 −0.02 2.04× 10−4 0.02
1.00× 10−4 2.80× 10−4 1.99 4.16× 10−5 1.98 4.83× 10−3 0.00 2.04× 10−4 0.00

A few important observations can be made on the results obtained in the temporal
convergence tests. First, several entries are skipped in Table 2, because the MIB-ADIPR
is unstable when ∆t ≥ 1.0× 10−2. We note that the errors of unstable cases are much
less than those in Table 1 in terms of magnitude. This is because the stopping time is
fixed to be T = 1 in the present study. Thus, the number of time steps is actually quite
small for large ∆t values. Consequently, the error accumulation is not significant. On the
other hand, all other three methods produce reasonably small errors and are believed to
converge in all tested cases. Secondly, the convergence rates of the two MIB-involved
methods are mostly within the range between one and two as expected. For the MIB-
ADID1, the temporal convergence rate is about one initially but becomes close to two as ∆t
is small enough. This is believed to be rooted in how the jump conditions are treated in the
MIB method, i.e., tangential derivatives u+

τ and u−τ at the next time step are approximated
by their values at the current time step. The order of such approximation is O(∆t), which
significantly affects the temporal precision when ∆t is large. When ∆t is small enough,
such approximation becomes negligible so that the temporal convergence is dominated
by the ADI scheme itself. Thus the MIB-ADID1 method attains a second order temporal
convergence when ∆t < 1.0× 10−3. For the MIB-ADIPR method, once it is stable, its
temporal convergence rate is about two, as shown in Table 2. However, the rates obtained
by MIB-ADIPR are not seen to be significantly higher than those obtained by MIB-ADID1.
Thirdly, the temporal rates of two GFM methods are about one initially but quickly drop
to zero as ∆t becomes smaller. This means that the GFM spatial discretization invokes
a quite large error, which finally dominates the computation. The refinement in time
does not reduce the total error any further so that the temporal order becomes zero. In
comparing with two GFM schemes, the two MIB-involved methods produce relatively
larger errors when ∆t ≥ 1.0× 10−3, but far fewer errors when ∆t < 1.0× 10−3. A similar
trend was observed when the diffusion coefficient is piecewise constant and is reported in
Reference [15].

Results obtained in this example suggest that all four methods are able to produce sat-
isfying numerical solutions when the step size is small. However, the MIB-ADID1 method
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is by far our most favorable method considering it is the most accurate and stable method.
The geometric shape of the interface used in this example is rather simple, and we thereby
continue to test the four methods in the next example with a more complicated interface.

Example 2. In the second example, the interface Γ is similar to that shown in the work [35].
The level set function is given by

ϕ(x, y) =
√

x2 + y2 − r0

(
1 +

3

∑
k=1

βk cos
(

nk

(
arctan

( y
x

)
− θk

)))
, (39)

with parameters

r0 = 0.483,

 n1
β1
θ1

 =

 3
0.1
0.5

,

 n2
β2
θ2

 =

 4
−0.1
1.8

, and

 n3
β3
θ3

 =

 7
0.15
4.5

.

Contour plots of the diffusion coefficient and exact solution are shown in Figure 7. It is obvious that
the shape of the interface in Example 2 is much more complex than that in Example 1. We want
to see how the geometry of the interface impacts the proposed methods. Results obtained in spatial
convergence, stability tests, and temporal convergence using the same numerical setup as that in
Example 1 are shown in Figure 8, Tables 3 and 4, respectively.

(a) Variable β (b) Exact solution
Figure 7. Diffusion coefficient β and exact solution of Example 2.

(a) L∞-error (b) L2-error (c) Wall clock time

Figure 8. Spatial convergence tests of Example 2.
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Table 3. Stability tests of Example 2.

Nx(= Ny) = 81

T (= 104 · ∆t)
MIB-ADID1 MIB-ADIPR GFM-ADID1 GFM-ADIPR

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1.00× 102 1.52× 10−2 1.24× 10−3 2.40× 10−1 1.28× 10−2 8.05× 10−2 1.90× 10−2 9.23× 10−2 1.79× 10−2

1.00× 101 1.51× 10−3 2.68× 10−4 2.36× 10−3 3.26× 10−4 8.20× 10−2 1.98× 10−2 8.18× 10−2 1.97× 10−2

1.00× 100 1.14× 10−3 2.08× 10−4 1.16× 10−3 2.13× 10−4 5.45× 10−2 1.34× 10−2 5.43× 10−2 1.33× 10−2

1.00× 10−1 2.00× 10−3 3.34× 10−4 2.00× 10−3 3.34× 10−4 8.53× 10−2 1.89× 10−2 8.47× 10−2 1.88× 10−2

Nx(= Ny) = 281

T (= 104 · ∆t)
MIB-ADID1 MIB-ADIPR GFM-ADID1 GFM-ADIPR

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1.00× 102 1.32× 10−1 5.98× 10−3 - - 9.17× 10−2 1.98× 10−2 - -
1.00× 101 2.49× 10−3 1.40× 10−4 2.72× 10−2 1.98× 10−3 8.74× 10−2 2.05× 10−2 8.85× 10−2 2.10× 10−2

1.00× 100 2.32× 10−4 4.22× 10−5 3.99× 10−4 6.45× 10−5 5.83× 10−2 1.39× 10−2 5.83× 10−2 1.39× 10−2

1.00× 10−1 6.16× 10−4 1.05× 10−4 6.17× 10−4 1.05× 10−4 8.89× 10−2 1.98× 10−2 8.89× 10−2 1.98× 10−2

In Figure 8a,b, it is found that convergence rates obtained by the two MIB-involved
methods are reduced to slightly less than one but are still much greater than the convergence
rates obtained by the two GFM-involved methods. It is believed that the reduction of
spatial convergence rates is due to the more complicated shape of the interface when jump
conditions need to be taken care of at more irregular and corner pointers in the numerical
procedure. Moreover, the corresponding wall clock time shown in Figure 8c is found to
be higher than those obtained in Example 1 due to additional calculations required for
additional jump conditions. However, the overall complexity is still O(N2) for both MIB
and GFM methods.

The “negative” impact of the interface can also be observed in stability tests. In Table 3,
both MIB-ADIPR and GFM-ADIPR become unstable for Nx = 281 and ∆t = 1.0× 10−2. It
is definitely different from the results we obtained for solving problems with a piecewise
constant diffusion coefficient in the work of [15], because all GFM-ADI methods are uncon-
ditionally stable in that context. For constant coefficient problems, the GFM finite difference
matrices for δxx and δyy are symmetric. However, such symmetry is lost for the present
variable coefficient problems. Consequently, the GFM-ADIPB becomes conditionally stable.

The temporal convergence tests are shown in Table 4. Both the MIB-ADID1 and GFM-
ADID1 schemes produce larger errors than those obtained in Table 2, while the convergence
patterns are very similar. Limited by the spatial accuracy of the GFM, the ADID1 stops to
convergence as ∆t decreases. For the MIB-ADID1, the temporal order increases from one
to two, as ∆t is decreasing. Moreover, more cases of the two ADIPR-involved methods
are found to diverge, no matter which spatial discretization, either MIB or GFM, is used.
As a matter of fact, it is hard to tell which spatial discretization method is better in terms of
stability when solving problems with variable diffusion coefficient β.

Based on results presented in Examples 1 and 2, it is reasonable to believe that ADID1
is superior to ADIPR to be used for temporal discretization in terms of convergence and
stability—both ADID1-involved methods converge in almost all tested cases, and the
two ADIPR-involved methods converge only when the time step ∆t is small, and the
results they obtain are not seen to be more accurate than those obtained by MIB-ADID1.
Moreover, it seems that the MIB-ADID1 method, which maintains reasonable convergence
rates in both spatial and temporal convergence tests, is the best method among all four
proposed methods. In the examples that follow, we will just focus on testing the two
ADID1-involved methods.
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Table 4. Temporal convergence tests of Example 2.

MIB-ADID1 GFM-ADID1

∆t
L∞ L2 L∞ L2

Error Rate Error Rate Error Rate Error Rate

1.00× 10−1 1.24× 100 - 1.33× 10−1 - 7.02× 10−2 - 1.53× 10−2 -
5.00× 10−2 6.48× 10−1 0.94 4.95× 10−2 1.42 6.12× 10−2 0.20 1.28× 10−2 0.25
1.00× 10−2 1.35× 10−1 0.97 5.85× 10−3 1.33 5.36× 10−2 0.08 1.34× 10−2 −0.03
5.00× 10−3 6.60× 10−2 1.03 2.94× 10−3 1.00 5.43× 10−2 −0.02 1.34× 10−2 −0.03
1.00× 10−3 5.65× 10−3 1.53 4.99× 10−4 1.10 5.60× 10−2 −0.02 1.34× 10−2 −0.01
5.00× 10−4 1.55× 10−3 1.87 1.42× 10−4 1.81 5.61× 10−2 −0.00 1.34× 10−2 0.00
1.00× 10−4 1.29× 10−4 1.54 2.16× 10−5 1.17 5.62× 10−2 0.00 1.34× 10−2 0.00

MIB-ADIPR GFM-ADIPR

multirow2*boldmath∆t L∞ L2 L∞ L2

Error Rate Error Rate Error Rate Error Rate

1.00× 10−1 - - - - - - - -
5.00× 10−2 - - - - - - - -
1.00× 10−2 - - - - - - - -
5.00× 10−3 - - - - - - - -
1.00× 10−3 - - - - 2.74× 10−1 - 2.40× 10−2 -
5.00× 10−4 3.18× 10−1 - 1.27× 10−2 - 1.73× 10−1 0.67 1.57× 10−2 0.62
1.00× 10−4 1.29× 10−4 4.85 2.16× 10−5 3.96 7.61× 10−2 0.51 1.42× 10−2 0.06

Example 3. In our first example, a grid line cuts the interface at most at two irregular interface
points due to the simplicity of the interface’s geometry. In the second example, a grid line can
cut the interface more than twice, but corner interface points only occurred in a few cases. In the
examples which follow, we would like to have both irregular and corner interface points occurring in
many interface locations in order to earn more profound insight on how they are going to affect the
proposed numerical methods. To this end, an interface constructed by a parametric function

γ(η) = 0.5 + b sin(kη), (40)

is used in this and next example. Here b > 0 governs the magnitude and curvature of the interface,
k > 0 is a positive integer determining the number of “heads” of the curve, and η is an angle in the
range of [0, 2π]. By choosing parameters (b, k) = (0.25, 4), a four-head interface, together with
imposed β and exact solution, is demonstrated in Figure 9. When compared to the interfaces used in
Examples 1 and 2, this interface has sharper curvature at four corners so that corner interface points
are encountered in almost all tested cases.

(a) Variable β (b) Exact solution

Figure 9. Diffusion coefficient β and exact solution of Example 3.

Using the same numerical setup, results obtained for spatial, temporal and stability
tests on the two ADID1-invloved methods are reported in Figure 10, Tables 5 and 6,
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respectively. No significant differences are observed in the results obtained in this example
when compared to those obtained in the previous two examples. In fact, the rates obtained
in spatial tests (Figure 10) and temporal tests (Table 6) are similar to those obtained in
Examples 1 and 2, and no divergence is found in stability tests (Table 5). It suggests that the
numerical treatments introduced in both MIB and GFM methods are equally accurate when
dealing with the jumps imposed at irregular and corner interface points. Moreover, wall
clock time shown in Figure 10b is between those shown in Figures 6c and 8c, suggesting that
the efficiency of both methods is not jeopardized significantly by the corner points either.

(a) Errors (b) Wall clock time

Figure 10. Spatial convergence tests of Example 3.

Table 5. Stability tests of Example 3.

Nx(= Ny) = 81 Nx(= Ny) = 281

T (= 104 · ∆t)
MIB-ADID1 GFM-ADID1 MIB-ADID1 GFM-ADID1

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1.00× 102 3.14× 10−2 2.79× 10−3 2.83× 10−2 6.36× 10−3 2.70× 10−1 2.10× 10−2 3.21× 10−2 6.74× 10−3

1.00× 101 5.58× 10−4 9.52× 10−5 2.73× 10−2 6.99× 10−3 5.59× 10−3 4.99× 10−4 2.73× 10−2 8.04× 10−3

1.00× 100 4.63× 10−4 7.65× 10−5 1.85× 10−2 4.93× 10−3 9.91× 10−5 8.22× 10−6 1.86× 10−2 5.67× 10−3

1.00× 10−1 7.21× 10−4 9.91× 10−5 2.50× 10−2 4.88× 10−3 1.33× 10−4 1.51× 10−5 2.42× 10−2 5.48× 10−3

Table 6. Temporal efficiency tests of Example 3.

MIB-ADID1 GFM-ADID1

∆t L∞ L2 L∞ L2

Error Rate Error Rate Error Rate Error Rate

1.00× 10−1 2.17× 100 - 1.96× 10−1 - 6.74× 10−2 - 1.43× 10−2 -
5.00× 10−2 1.25× 100 0.80 9.35× 10−2 1.06 3.92× 10−2 0.78 5.97× 10−3 1.27
1.00× 10−2 3.19× 10−1 0.85 1.72× 10−2 1.05 1.84× 10−2 0.47 4.94× 10−3 0.12
5.00× 10−3 1.86× 10−1 0.78 1.09× 10−2 0.66 1.75× 10−2 0.07 5.01× 10−3 −0.02
1.00× 10−3 2.51× 10−2 1.24 2.11× 10−3 1.02 1.69× 10−2 0.02 4.98× 10−3 0.04
5.00× 10−4 6.65× 10−3 1.92 5.68× 10−4 1.89 1.69× 10−2 0.00 4.98× 10−3 0.00
1.00× 10−4 2.78× 10−4 1.97 2.30× 10−5 1.99 1.69× 10−2 0.00 4.98× 10−3 0.00

Example 4. The results obtained in Example 3 have clearly demonstrated the robustness and
efficiency of the two proposed methods when treating jump conditions at both irregular and corner
interface points. In the last example, we continue to make the interface sharper with more interface
points by choosing (b, k) = (0.15, 6) in Equation (40), resulting in a six-head interface with
fast changing curvature shown in Figure 11. Similar numerical results are shown in Figure 12
and Tables 7 and 8. Once again, no significant differences are observed, and both methods well
maintain their performance in previous examples as expected. In fact, the ADI-ADID1 attains the
second order convergence in space for this variable coefficient example.
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(a) Variable β (b) Exact solution

Figure 11. Diffusion coefficient β and exact solution of Example 4.

(a) Errors (b) Wall clock time

Figure 12. Spatial convergence tests of Example 4.

Table 7. Stability tests of Example 4.

Nx(= Ny) = 81 Nx(= Ny) = 281

T (= 104 · ∆t) MIB-ADID1 GFM-ADID1 MIB-ADID1 GFM-ADID1

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1.00× 102 2.02× 10−2 2.07× 10−3 1.92× 10−2 3.73× 10−3 2.32× 10−1 1.81× 10−2 1.59× 10−2 2.52× 10−3

1.00× 101 3.59× 10−4 7.48× 10−5 1.84× 10−2 4.06× 10−3 4.98× 10−3 5.62× 10−4 1.15× 10−2 2.76× 10−3

1.00× 100 2.76× 10−4 5.66× 10−5 1.24× 10−2 2.83× 10−3 8.46× 10−5 6.57× 10−6 7.78× 10−3 1.93× 10−3

1.00× 10−1 4.79× 10−4 8.63× 10−5 1.78× 10−2 3.17× 10−3 9.96× 10−5 1.79× 10−5 1.10× 10−2 2.01× 10−3

Table 8. Temporal efficiency tests of Example 4.

MIB-ADID1 GFM-ADID1

∆t
L∞ L2 L∞ L2

Error Rate Error Rate Error Rate Error Rate

1.00× 10−1 1.44× 100 - 1.51× 10−1 - 4.40× 10−2 - 1.36× 10−2 -
5.00× 10−2 7.10× 10−1 1.02 5.88× 10−2 1.36 2.62× 10−2 0.75 4.42× 10−3 1.62
1.00× 10−2 1.48× 10−1 0.98 7.83× 10−3 1.25 9.05× 10−3 0.66 1.86× 10−3 0.54
5.00× 10−3 8.22× 10−2 0.85 4.55× 10−3 0.78 7.83× 10−3 0.21 1.82× 10−3 0.03
1.00× 10−3 1.24× 10−2 1.18 1.62× 10−3 0.64 7.26× 10−3 0.05 1.79× 10−3 0.01
5.00× 10−4 3.31× 10−3 1.90 4.43× 10−4 1.87 7.29× 10−3 0.00 1.79× 10−3 0.00
1.00× 10−4 1.33× 10−4 2.00 1.74× 10−5 2.01 7.30× 10−3 0.00 1.79× 10−3 0.00

Provided the interface used in this example is the most general one reported in this
work, one additional set of tests is conducted to study one more factor, the contrast of β’s
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values inside and outside the interface, which could also affect the convergence and stability
of the methods. To this end, the diffusion coefficient β in Equation (37) is redefined as

β(x, y) =

{
e−(x2+y2) in Ω−

rex2+y2
in Ω+

(41)

with an additional ratio coefficient r > 0 so that the contrast of β values inside and outside
the interface can be varied. Results obtained by varying the value of r from r = 1/320
to r = 320 are presented in Table 9, with the other numerical parameters being fixed as:
Nx = 281, ∆t = 1.0× 10−2, and T = 104 ∗ ∆t = 1.0× 102. One can see that both methods
are stable and able to produce reasonable errors when the contrast ratio r is small, while
MIB-ADID1 starts to become unstable and produce relatively large errors when r is large,
i.e., r > 20. On the other hand, GFM-ADID1 is still able to maintain its stability and
produce reasonable errors even when the ratio r is as large as 320. Moreover, one may also
notice that, in Table 9, errors obtained by GFM-ADID1 are smaller than those obtained by
MIB-ADID1. Based on the results shown in Table 9, we conclude that GFM-ADID1 has a
better chance to converge when the contrast of β’s values and time step ∆t are large, while
MIB-ADID1 shall be better when small ∆t is utilized. This conclusion matches what we
observed for piecewise constant β in [15].

Table 9. β tests of Example 4.

Ratio r
MIB-ADID1 GFM-ADID1

Ratio r
MIB-ADID1 GFM-ADID1

L∞ L2 L∞ L2 L∞ L2 L∞ L2

1/320 4.22× 10−1 4.66× 10−2 1.63× 10−2 1.81× 10−3 1 2.32× 10−1 1.81× 10−2 1.59× 10−2 2.52× 10−3

1/160 4.17× 10−1 4.72× 10−2 1.65× 10−2 1.76× 10−3 10 1.75× 100 1.85× 10−1 3.44× 10−2 2.43× 10−3

1/80 4.03× 10−1 4.63× 10−2 1.67× 10−2 1.83× 10−3 20 2.57× 100 3.12× 10−1 5.31× 10−2 4.11× 10−3

1/40 3.70× 10−1 4.09× 10−2 1.69× 10−2 1.90× 10−3 40 - - 7.15× 10−2 7.31× 10−3

1/20 3.02× 10−1 3.35× 10−2 1.72× 10−2 1.83× 10−3 80 - - 9.87× 10−2 1.35× 10−2

1/10 2.97× 10−1 2.82× 10−2 1.74× 10−2 2.50× 10−3 160 - - 1.83× 10−1 2.62× 10−2

320 - - 3.54× 10−1 5.23× 10−2

4. Conclusions

In this paper, two new alternating direction implicit (ADI) schemes are developed and
compared for solving parabolic interface problems with variable coefficients. In order to
enforce the 2D jump conditions in the dimension-by-dimension ADI computations, a tensor
product decomposition shall be conducted to generate 1D jump conditions for correcting
the finite difference discretization. To this end, the tangential jumps are estimated from
the previous time step in the matched interface and boundary (MIB) scheme, while they
are simply neglected in the ghost fluid method (GFM). The resulting MIB-ADI method
is semi-implicit, while the GFM-ADI method is still fully implicit. Moreover, in addition
to the Douglas ADI (ADID1) scheme, the Peaceman–Rachfor ADI (ADIPR) scheme is
also employed to couple with both MIB and GFM methods. Various numerical tests are
conducted to investigate the accuracy, efficiency, and stability of the proposed ADI methods.
When the time step ∆t is small, all four ADI schemes can recover the accuracy reduction
near interfaces, while maintaining the ADI efficiency.

A comparison of four ADI schemes for solving variable coefficient parabolic interface
problems has been carried out and can be summarized as follows:

• Stability: Two ADIPR schemes are found to be unstable when ∆t is large, while most
reported ADID1 results are stable. This is because the ADIPR scheme is constructed
based on the Crank–Nicolson time integration, which is less stable than the implicit Eu-
ler time integration behind the ADID1 scheme. Although no instability is detected for
the GFM-ADID1 scheme, both MIB-ADID1 and GFM-ADID1 methods are believed to
be conditionally stable for variable coefficient heat equations with material interfaces.
For the MIB-ADID1 scheme, this is due to its semi-implicit nature. The GFM-ADID1
method is known to be unconditionally stable for solving parabolic interface problems
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with a piecewise constant diffusion coefficient [15] because the GFM finite differ-
ence matrices for δxx and δyy are symmetric and diagonal dominate. However, such
symmetry is lost for the present variable coefficient problems. As a consequence,
the GFM-ADID1 could become conditionally stable. Based on the present result for
the MIB-ADIPR, the stability condition of the proposed ADI methods shall take the
general form ∆t ≤ Ch2, where the constant C should depend on the ADID1 or ADIPR
time integration, as well as the diffuse coefficient β. Although the stability condition
has the same form as that of the explicit methods, the constant C is usually a quite
large number in the ADID1 methods, so that when h is not too small, the computation
is still stable for large ∆t values.

• Spatial accuracy: The GFM method can improve the accuracy of finite difference
discretization. When the interface shape is simple, the GFM method could deliver a
first order of accuracy in space. However, it is barely convergent for complex interface
shapes. The MIB method yields a satisfactory spatial convergence, with the rates being
at least one and sometimes up to two. By correcting the standard finite difference dis-
cretization of the Laplacian in divergence form, the MIB interface treatment maintains
second order accuracy in all approximations. It is noted that the MIB-ADI method
achieved a second order of accuracy in space in solving parabolic interface problems
with constant coefficients [10,12,15]. However, due to the complex nature involved
in the variable coefficient and jump discontinuity, the second order convergence in
space is not always attainable in the present study. We also note that for elliptic
interface problems with a variable coefficient, a sophisticated finite difference scheme
involving up-winding techniques has been employed to secure spatially second order
of accuracy [12].

• Temporal accuracy: For two GFM-ADI methods, the numerical error is dominated by
the spatial discretization, so that the temporal convergence rate becomes zero when
∆t is decreasing. For the MIB-ADID1 scheme, the temporal convergence rate is about
one initially but becomes close to two as ∆t is small enough. This is due to the fact
that the tangential derivative approximation in spatial discretization depends on ∆t,
i.e., O(∆t). This significantly affects the temporal precision when ∆t is large. When
∆t is small enough, such approximation becomes negligible so that the temporal
convergence is dominated by the ADI scheme itself. Thus the MIB-ADID1 method
attains a second order temporal convergence when ∆t is small enough.

• Efficiency: Both MIB-ADI and GFM-ADI methods maintain the high efficiency of the
classical ADI method. For a 2D problem with the spatial degree of freedom being
N2, the complexity of all new methods in each time step is just O(N2), which is the
same as explicit time stepping schemes. Moreover, for the ADID1 scheme, a stable
computation is possible by using a large time increment ∆t, so that total time steps
could be reduced to save CPU time, when comparing with explicit time integrations.

In summary, the MIB-ADID1 method seems the best in terms of accuracy and stability
among all four ADI methods. In the future, efficient and accurate ADI methods will be
further explored so that second order convergence in both space and time could be achieved
for variable coefficient parabolic interface problems.
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