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Malaria infection has posed a major health threat for hundreds of years in human history. Yet, due to the
complex interactions between a host immune response and the parasite, no sophisticated mathematical models
exist to study its dynamics. In this work, we propose a new system of structured partial differential equations
that account for the dependence of red blood cell infectivity on maturation level. These equations are coupled
with another set of differential equations for investigating the population dynamics of Plasmodium falciparum and
its interaction with red blood cells and cells of the immune system. A finite difference scheme is developed to
solve the system. Numerical simulations are applied to investigate the interplay between the host immune re-
sponse and the parasite dynamics, the disease dynamics in acute infection, and treatment effectiveness with

1. Introduction

In 2013, the World Malaria Report estimated that 207 million
clinical episodes, and 627,000 deaths were caused by malaria in 2012
[40], indicating malaria has been a constant threat to more than 40% of
children all over the world. Young children are most vulnerable to this
disease and many deaths are due to the lack of effective treatments
[13,17,28]. Malaria is caused by parasites which are transmitted
through the bite of an infected Anopheles mosquito. Of the four human
malarial species, Plasmodium falciparum is by far the deadliest [31,32].

Due to its status as a major health threat to human beings, there has
been a rise in research of this deadly infection in recent decades. The
mathematics community has joined the effort and has applied several
approaches towards understanding the disease. A large percentage of
these applications have been focused on the dynamics of the malaria
parasite within an infected host using mathematical models
[2,3,9,14-16,18,19,25,34,36,37]. For instance, an age-structured
mathematical model is developed in [36] to study the population dy-
namics of malaria parasites and their interactions with immune cells.
The developed model consists of a system of delay differential equa-
tions to incorporate a time delay between the infection of red blood
cells (RBCs) by the merozoites and the release of merozoites for the next
generation. A mathematical model is proposed in [29] for simulating
severe malaria infections based on the hypothesis that malaria parasites
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can be absorbed in already infected RBCs due to the restrained avail-
ability of uninfected RBCs to merozoites. This model consists of four
ordinary differential equations that describe the dynamics of RBCs, first
time infected RBCs, double infected RBCs, and merozoites. Meanwhile,
a Markov chain Monte Carlo method is adopted in this model to study
parameter identifiability and model behavior. In [7] an intra-host
model of immune response to Plasmodium falciparum infection is pro-
posed and then this model is extended to include treatment with anti-
malarial drugs. In [21] a system of differential equations is developed to
analyze the dynamics of blood stage malaria with immune response and
the effectiveness of drugs in the treatment of Plasmodium falciparum
malaria infection. In all of the above mentioned models the release of
RBCs is assumed to be at a constant rate.

In this work, a novel model is developed to study the population
dynamics of Plasmodium falciparum and its interaction with the process
of RBC production and the immune system. The mathematical model is
formulated as structured partial differential equations to account for the
dependence of RBC infectivity on its maturation level. The model is
then extended to investigate the disease dynamics in the case of severe
infection by incorporating the hypothesis that merozoites get absorbed
into already infected RBCs when there is a limited supply of uninfected
RBCs in the acute infection. A high-resolution finite difference scheme
is developed to solve the model numerically. Biological simulations are
performed to investigate the disease dynamics of the within-host
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malaria infection, the impact of the infection on the RBC production
process, and the response of the immune system to the infection. The
behaviors of the complex within-host system in the case of severe in-
fection and under antimalarial drug treatment are also studied. The
models and the numerical methods provide a useful tool to investigate
the impact of a variety of disease parameters within the parasite dy-
namics, as well as insights to efficient control strategies of the disease in
various scenarios. For instance, one can conduct simulations to identify
crucial experimental parameters for studying the interplay between the
host immune response and the parasite. To our best knowledge, this is
the first study that incorporates the interplay and the erythropoiesis
process together to investigate a severe infection scenario within the
complex within-host system and under anti-malaria drug treatment.

The rest of this work is organized as follows. In Section 2, a new
mathematical model for studying host-parasite interactions is provided
and numerically investigated. In Section 3, the model is extended to
gain some understanding of severe malaria by imposing a mathematical
hypothesis. Conclusion and discussion of this work are provided in
Section 4.

2. A new structured mathematical model for studying host-
parasite interactions

2.1. The mathematical model

Natural transmission of malaria occurs when a human host is ex-
posed to the bite of an infective female anopheline mosquito. Recent
studies using intravital imaging have shown that sporozoites are in-
jected by mosquitoes into the skin, where they can remain for up to 6
hours, and that approximately one-third of those leaving the skin may
enter lymphatics and drain to the regional lymph nodes; other spor-
ozoites trickle into the bloodstream and traffic to the liver, resulting in
multiple potential sites for sporozoite-host interaction ([10] and Refs.
therein). The interaction among RBCs, malaria parasites, and the host
immune system in this process is shown in Fig. 1. Further details will
follow.

Seven population and population density variables are taken into
consideration in the proposed models. Their interpretations are listed in
Table 1. For each of these seven variables, a differential equation is
established accounting for a specific biological process to describe its
changes with respect to individual independent variables.

We establish the model starting with the RBC production process.
When detecting low oxygen levels in the blood stream, the host’s body
responds by releasing erythropoietin, a hormone produced primarily by
the kidney, at a rate of f which is assumed to depend on the RBC po-
pulation, M. Erythropoietin decays at a rate denoted by ag. The ery-
thropoietin concentration, E(t), is therefore modeled by the differential
equation

dE (t)

EP =r 0 M) - st POIEQ), @D

Precursor RBC
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Table 1
Model variables.

Variable Interpretation

Pt p) Density of precursor cells at time ¢ with maturation level y

m(t, v) Density of healthy mature red blood cells (RBC) of age v at time t
E(t) Erythropoietin concentration at time t

X(0) Number of infected red blood cells at time t

Y Concentration of merozoite at time t

I(t) Concentration of immune cells at time ¢

A(D) Concentration of antibodies at time t

where P(t) = _[.S” ¥ p(t, w)du is the precursor population.

The hormone erythropoietin triggers the stem cells in the bone
marrow to join the RBC precursor population. The recruitment of stem
cells is assumed to be proportional to the erythropoietin concentration
in our model and is described by the boundary condition

gEMNP(E, 0) = ¢OEQ), (2.2)

where ¢(t) is the proportionality coefficient function and g is the pre-
cursor growth rate.

Malaria parasites do not infect precursors. However, it was found
that infected RBCs release a toxin that suppresses precursor produc-
tion [6]. To this end, we model the dynamics of precursor density by a
partial differential equation
op(t, 1) p(t, 1)

5 T gEW))———=oa(t, p, E@)p(t, p) — HX(®)p(t, p),
t du

(2.3)

where o is the net results of precursor birth (mitosis during the begin-
ning of maturation phase) and natural mortality rate, and H is a rate of
reduction.

Once the precursor reaches the maximum maturation level, pg, it
leaves the bone marrow and joins the RBC population. It is assumed
that the supply rate of RBCs is accelerated by the presence of infected
RBCs, although the mechanisms regarding the acceleration are still
poorly understood [41]. We simply model this acceleration rate by the
term koX(t) with 0 < k; < 1. The age-dependent natural mortality rate
of RBC is denoted by a,,. We assume this mortality rate also depends on
the population of mature RBCs, M. Free merozoites in the blood stream
seek to infect RBCs at a rate modeled by k,. Antibodies specific to
malaria parasites inhibit the invasion of erythrocytes by merozoites.
Thus the infection rate, k,, depends on A(t). In this work the infection
rate is modeled as k. (t, A(t)) = " :21 YOL where k; is the rate of infection
in the absence of antibody inhibition, and k, describes the efficiency of
antibodies at reducing erythrocytic invasion. RBCs are recruited
through the maturation of precursors modeled by

m(t, 0) = g(EW)p (L, pp). 2.4

Provided above assumptions, the dynamics of RBC density is thereby
modeled by the partial differential equation

R e o - — e e

}

Fig. 1. Model diagram for the interaction among erythropoietin, precursor, mature RBC, merozoites, infected RBC, immune cells, and antibodies.
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omt,v) | SmULY) _ () — (6, v, M(D)ME, v)
ot av
K
1+ kA(t)Y(t)m(t i (2.5)

where M (t) = _];”F m(t, v)dv is the total population of RBCs.

Once a free merozoite enters the host blood stream, it seeks to infect
a healthy RBC. Infected RBCs travel throughout the blood stream while
parasites duplicate within them. After a certain time, the cell bursts (at
a rate of s(t)) and releases a number of new parasites into the blood
stream which seek to continue the process. Infected RBCs experience a
constant mortality rate which is denoted by a,. Infected RBCs are also
killed by immune cells with a rate modeled by k;I()X(f) due to the
immunosensitivity of infected RBCs [26]. In the light of the above
process, the dynamics of infected RBCs is modeled by

xo
dt 1+ kA

Y (OM ) — s(OX () — X () — kal ()X (£).

(2.6)

A number of new merozoites are released into the blood stream
when an infected RBC bursts. We denote by r the average number of
merozoites released per bursting infected RBC when no immune exists.
Immune cells suppress this parasite production with efficiency k.
Merozoites suffer from a natural mortality rate, a,, and some are killed
by immune cells with efficiency ks. The merozoite population is also
reduced through the infection of RBCs. Combining the above interac-
tions we model the dynamics of merozoites by

ave _ r ) .
& - 1tk PXO - aYO-kIOYE
k
" lr k! OM©O o

The human immune system reacts to the presence of malaria
parasites and releases many different types of immune cells.
Recruitment of immune cells is stimulated by the presence of infected
RBCs and merozoites. For the sake of simplicity, we treat all immune
cells as one population and model the change of immune population by

dr (t)
dt

X ()
ke + X ()

ALY ()
ky + Y (©)

= A1) + ( jl(t) —al (D),

(2.8)

where A/(t) is the host’s rate of producing immune cells, A, and A, de-
note the immunogenicity of infected RBC and merozoites, respectively,
and ar is the mortality rate of immune cells. We denote by ke the po-
pulation of infected RBC at which the immune cells grow at A,./2 in the
absence of merozoites, and by k; the population of merozoites at which
the immune cells grow at A,/2 in the absence of infected RBC.

Finally, antibodies that block the invasion of RBCs by merozoites
are secreted mainly by immune cells when merozoites are present [4].
We denoted by # the maximum reproduction rate of antibodies. Anti-
bodies are proteins that travel around in the bloodstream, recognize
parasites, and bind to them [20]. The decay rate of antibodies in the
blood stream thus depends on the parasite population. We model their
decay rate by a,A(t)Y(t). We introduce the last differential equation for
describing the change of antibody population as

dA(t) =9l (0) Y1)

= rvo WA (D).

(2.9
Here, kg denotes the population of merozoites at which the antibodies
grow at 50% of its maximum growth rate #.

Grouping the above mentioned equations together yields the first
model (model I):
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ax(t) k _
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ar ()
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a - e+ (k6 +x0 T+ Y(t)) ®
— Ol[I(t)
dA(t) Y(©)
- nI(t )kg +Y0 — ag A(D)Y (1),

(2.10)
with the following imposed boundary and initial conditions
gEW)pE, 0) = ¢E(®),

m(t, 0) = g(EM)p(L, up),
p0,w) = PG, 0<pu<pg,
m,v) = m°(v), 0<v<up
E(©) = E° X(0) = X°, Y(0) = Y, I(0) = I°,
A0) =
(2.11)

For easy reference, detailed descriptions of involved parameters and
their biological meanings are provided in Table 2.

2.2. A finite difference algorithm

The exact solution to Model I is analytically intractable due to its
complexity. We therefore seek numerical approximations to investigate
the quantitative properties of the model and study interactions between
host erythropoiesis, immune responses, and malaria parasites. In the
numerical process, it is important to keep in mind that the outputs of
the model are population size and densities, so that the numerical so-
lutions must be nonnegative. Moreover, the numerical approaches are
expected to be efficient, deliver accurate approximations to the exact
solutions, and be capable of resolving possible noncompatible initial
and boundary conditions arising from experimentally obtained raw
data.

The following notations are used for describing the proposed nu-
merical method. Let the whole simulation time interval [0, T] be dis-
cretized by an uniform temporal increment At into L equally-spaced
time subintervals, i.e., At = T/L, such that t = kAt for k=0, ..., L.
Similar discretization is applied to discretize intervals [0, ] and [0, vg]
with uniform mesh sizes Ay, Av, yielding n; and ny equally spaced
subintervals, respectively, such that u, =iAu for i =0, ..,n;, and
v = jAv for j =0, ..,n,. We denote the numerical approximations to
the exact values of E(t), p(t, 1), m(ty, ), P(t), m(ti), X(t), Y(t), I,
and A(t), by EX pF, mk P¥, M* X* Yk I* and A¥, respectively.
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Table 2
Description of model parameters.

fit, M(t) Releasing rate of erythropoietin from the kidney
ag(t, P() The decay rate of erythropoietin
g(E() Precursor growth rate
P The proportionality coefficient function.
o(t, v, E(t)) Net results of birth (mitosis during the beginning of
maturation phase) and natural mortality rate
H(X(1) The rate at which infected RBC suppresses precursor production.
ko Rate of recruitment of RBCs due to the presence of infected RBCs.

an(t, v, M(t)) The mortality rate of mature RBCs.
k; Parasite infection rate in the absence of antibodies

ks Efficiency of antibodies

s(t) The bursting rate of infected RBC
Qx The mortality rate of infected RBC
ks Immunosensitivity of infected RBCs

r The average number of merozoite released after one burst

k4 Efficiency of immune cells at supressing the parasite production
ay, Removal rate of free merozoite through mortality

ks Immunosensitivity of merozoites

A0 Rate at which immune cells are produced by the host

Ax The immunogenicity of infected RBC

Ay The immunogenicity of merozoites

ar The mortality rate of immune cells

ke Infected RBC population at which the immune cells grow at A,./2
in the absence of merozoites
k7 Merozoites population at which the immune cells grow

at A,/2 in the absence of infected RBC
n Maximum reproduction rate of antibodies

aa Decay rate of antibodies
kg Merozoites population at which the antibodies grow at 50%
of its maximum growth rate n
Finally, we denote f* =f(t%), ozf:f =ap(t*), g =g(EE)),

ak = a(t*, v, E(t5)), H* = H(X(t")), and other notations follow the
same fashion.

Given above notations, we utilize the first order finite difference
method to discretize model I (2.10)-(2.11) and obtain

Ek+l _ Ek
v = fk — a‘!:EEk+l,
k+1 _ pk k _ pk
b = L] +gk+1p1 AHpPl = Uikﬂp,k _Hkpik+1’ i=1,..,m,
k+1 k k [3
mT —m m;y — m*_ k
J J + J -1 _ ngk _ (am)?m}cﬂ _ 1 - k k+1’
At Av 1+ kA
Jj=1...n,
Xk+1 _ Xk ki
= 1 Yhpk+1 — gk+1xk+1 _ aJCXk+l
At 1 + kA
_ k3[kxk+l,
k+1 k
Y-y = I gtk _ oy YR — kg Ikyk+
At 1+ kyI*
k Yk-H.MIH-l
T 1+ k Ax
k k k k+1
-1 = A*H 4+ AxX"T AHY K
At ke + XK1 kg 4 YEHL
— a[fk+l,
13 k k
At — A = nIiﬁl yeH _ aAAk+lyk+l
At kg + Y¥k+1 ’
gk+1pk+l — ¢k+lEk+l
m(’,H'l - gkﬂpkﬂ.
(2.12)

Regrouping terms in (2.12) yields
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EXl = (E* 4 fRAD/(1 + afAb),
At At
Pik+l ((1 _ Egm-l + UikHAf]pi.k + Mgk+lpik—l]/(l + Hkﬂt),
i=1..,n,
ml = [(mk( - —) + ﬁmk + koX*At
i =M Ay i1 T Ko
1+ @ear + — M yrag
mlj 1+ szk ’
j=1,.
Xkl — | xk 4 ki — L VEMEIAL /(1 + sPHIAL + a At + ksTEAL),
1 + kA
v = vk T skgkniag i1 4 a,Ar 4 kst
1+ kyI*
LM““AI
1+ kA*
A Xk+1 A, Yk+1
1= | e kA 4 | 2 s I*At /(1 + agAt),
( ! ke + X1 kg + YEH (1 + ande)
k+1 K g1 Y / k+1
A = |A  +nl AL /(1 + o Y AL),
( T ket v ] U+ )
P(;(H - (¢k+1Ek+1)/gk+1’
m[i)ﬁl - gk+1pk+l,
(2.13)
Coupling (2.12) and (2.13) with initial conditions
pio = po(yi), i= 0,...,}1.1
m = m(¥), j=0,..m
E@ = E°%X(0) = X°,Y(0) = Y%, I(0) = I° A(0) = A°,
(2.14)

delivers the desired finite difference scheme for solving model L.

2.3. Simulation results

We utilize numerical schemes (2.13) and (2.14), together with the
parameter values listed in Table 3, to study the interactions among
RBCs, malaria parasites, and host immune responses.

In all results described below, the unit for precursor population P(t)
is cells per kg body weight x 10!, the unit for mature RBC population
is cells per kg body weight x 10'!, the units for infected RBC is cells
per kg body weight, and the unit for E is mU/mL.

(i) Effect of host immune responses

Shortly following a first time infection, it is assumed that there is no
immunity. After surviving the infection, patients develop a certain level
of immunity. Firstly, we investigate how the host innate and adaptive
immune responses affect the disease dynamics without treatment. Fig. 2
shows that the natural host immune responses can slightly reduce the
number of infected RBCs and merozoites, but the defense of the im-
mune system is not able to neutralize the malaria infection. After the
infection, the RBC level experiences a sharp drop and stays at a low
level afterwards.

(ii) Effect of parasites vital rates

Next, we investigate the impact of various vital rates of the parasites
on the disease dynamics. There are various approaches to reduce
merozoite infection such as reducing the number of free merozoites
released per bursting infected RBC, r, or increasing parasite mortality,
a,. We simulate different changes on the parasite vital rates to in-
vestigate the sensitivity of the system to these rates. Fig. 3 shows that
the total healthy RBC population is clearly affected by the number of
free merozoites released by one infected RBC per burst. It seems that a
25% reduction in r reduces the merozoites population by almost 50%,
and a 75% reduction in r will neutralize the disease infection and keep
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Table 3
Parameter values and their dimensions.
Parameter  Units Value Source
T days 20
Ur maturity level 5.9 [5,23]
vp days 120 [34]
fie, M(1)) days! _1se0 [34]
1+ 003821596
ag(P) days—! 13.8P +0.04 [1,34]
0.08 +P
&(E) maturity level / day 3.02E +0.31 [1,34]
3061+ E
#(t) 4.45 x 1077 [34]
o(t, i, E) days~! 2.773 0.5 [1]
g(E)(l+exp|4(_u—3)J - 1+£)
H) days™! LELES [6]
X+1
ko cells days! 9.0 x 1075 estimated
ault, v, M) days™! 0.0083 [3]
131 20x107° [36]
k2 ul 6.0 x 1074 estimated
s(t) days~! 0.5sin *(sit/2) [30]
a, days—! 0.025 1371
ks cell x ul x d 10-8 estimated
r parasites/infected RBC 16 [16,37]
kg cell x ul 8.5 x 10~ estimated
a, days~1 48 [37]
ks d-! 10-8 [3]
A exulxd?! 10.0 estimated
Ax days™! 0.05 [71
Ay days—! 0.05 [71
a days! 0.05 [3]
ke ul x et 2000 [71
k7 ul x m! 1500 [7]
n days~! 0.6 [71
A days~! 50 x 10710 [71
kg wlx m! 1500 [71
P’ cells/maturity level 0.002510 < p < 3 estimated
x 10! 0.0075x > 3
m°() cells/age x 10" 0.025 estimated
E° mU/mL 15 [34]
X° cells / kg body weighy 0 estimated
x 10M
Y’ 2% 10° estimated
r 10-2 estimated
A° 0 estimated
RBC (10"'/kg body weight) [ , 'mn Infected RBC
No immune response
2 - = = With immune resw
0 W
0 5 10 15 20 0 5 10 15 20
Erythropoietin (1010 Merozoites
2000 rythrop 5 x10
1000 1
0 0
0 5 10 15 20 0 5 10 15 20
Immune cells Antibodies
400 200
-
-
-
200 Phe 100
-
- - -
0 == 0
0 5 10 15 20 0 5 10 15 20
Time (days)

Fig. 2. Comparison of the dynamics with/without host immune responses.
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RBC (10" /kg body weight) o 1010 Infected RBC
5
0
0 5 10 15 20 0
9 Merozoites
2000 x10
10
1000
5
0 - 0
0 5 10 15 20 0 5
Immune cells
400 A 2000 |
200 - r
= = = 25% reduction
s 50% reduction
=] == 75% reduction ;
0 5 10 15 cu 5 10 15 20

Time (days)

Fig. 3. Effect of reducing the free parasites per bursting infected erythrocyte (r)
on the disease dynamics.

RBC (10" /kg body weight) 1o 100 Infected RBC
5
0
0 5 10 15 20 0
9 Merozoites
2000 x10
10
1000 5 )
0 0
0 5 10 15 20 0 5 10 15 20
Immune cells Antibodies
400 400
200 i
%y
= = = 25% increase
0 50% increase
0 5 10 L] I— 75% increase|  ° 10 15 20
Time (days)

Fig. 4. The effect of increasing parasite mortality rate (a,) on the disease dy-
namics.

the RBC population at a healthy level. Figs. 4 and 5 demonstrate that
the disease dynamics is also very sensitive to parasite mortality rate a,
and parasite infection rate k;. However, reducing the number of free
merozoites released per infected RBC (r) seems to be the most effective
way of maintaining a healthy population of RBCs and controlling the
disease. These simulation results are consistent with prior studies in
literature [1,2,29]. The rate that describes the impact of parasites on
RBC production, ko, does not affect the disease dynamics noticeably, as
shown in Fig. 6.

(iii) Effect of immune cell protection and antibody prevention

We then simulate how host immune cells and antibodies would
affect the disease infection if the host innate and adaptive immune
responses become more effective. As demonstrated in Figs. 7-10, the
numerical results show that simply strengthening the immune system
does not put the infection under control. Increasing the im-
munosensitivity of infected RBC and merozoites (denoted by k; and kg
respectively) does not reduce the infection level, nor does it keep the
RBC at a healthy level. When improving the immunogenicity of infected
RBC (A,) or merozoites (A,), the secretion of immune cells gets faster,
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RBC (10""/kg body weight)

x1

010

Infected RBC

10
5 10 15 20 0 5 10 15 20
Erythropoietin 10° Merozoites
2000 rythrop %10
10
1000
: 5
0 . = 0 . =
5 10 15 20 0 5 10 15 20
Immune cells Antibodies
400 2000
21
00 —_—,
= = = 25% reduction
0 ' 50% reduction
0 5 10 15 | memam 75% reduction| 9 10 15 20

Time (days)

Fig. 5. The effect of reducing the maximum infection rate of the parasites (k;)
on the disease dynamics.
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RBC (10"'/kg body weight) 1o 2100 Infected RBC
2 5
0 0
0 5 10 15 20 0 10 15 20
Erythropoietin 9 Merozoites
2000 Y P %10
10
1000
5
0 0
0 5 10 15 20 0 10 15 20
Immune cells Antibodies
400 A 200‘
200 kg orkg
= = =10 times
) —— 50 times
0 5 10 15 | === 100 times 5 10 15 20
Time (days)

Fig. 7. The effect of immunosensitivity of infected RBC (k3) and merozoites (ks)
on the disease dynamics.

RBC (10"'/kg body weight) 5 x10" Infected RBC RBC (10'"/kg body weight) o 2101 Infected RBC
2 | ‘/J"W z s
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
2000 Erythropoietin «10° Merozoites 2000 Erythropoietin x10° Merozoites
10 . 10
1000 1000 .
t 5
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Immune cells Antibodies 1000 Immune cells 400 Antibodies
400 200
Agora,
L = = = 25% increase 200
200 _——-2x kn ---------- 50% increase
----- 75% increase
.......... ax k, - 0
0 o Kk 0 5 10 15 20 0 5 10 15 20
0 5 10 15§ me—em x kg 5 10 15 20 Time (days)
Time (days)

Fig. 6. The effect of malaria infection on erythropoiesis process (ko) on the
disease dynamics.

which results in a slow decrease in the population of infected RBC and
merozoites. However, this does not maintain a healthy level of RBC
population. When increasing the efficiency of antibodies in blocking the
parasite infection of healthy RBCs, k,, or increasing the reproduction
rate of antibodies, 5, by 75%, the infected RBC and merozoite popula-
tion experience only a slight decrease.

2.4. Investigation of efficient treatment strategies

(i) Treatment with Sulfadoxine/Pyrimethamine (SP) or
Artemether/lumefantrine

Intermittent preventive treatment in pregnancy (IPTP) with sulfa-
doxine/pyrimethamine has proven efficacious in reducing the incidence
of pregnancy-associated malaria [39]. It is recommended for all preg-
nant women in most countries in Africa [22,33], although there exist
concerns that sulfadoxine/pyrimethamine now demonstrates in-
adequate therapeutic efficacy due to an increasing resistance to sulfa-
doxine/pyrimethamine [12]. SP works by blocking the formation of

70

Fig. 8. Impact of immunogenicity of infected RBC (A,) and merozoites (4,) on
the disease dynamics.

folinic acid within the malaria organism, which kills the parasite.

Artemether/lumefantrine, sold under the trade name Coartem, is a
prescription medication used to treat acute uncomplicated malaria in-
fections due to Plasmodium falciparum. It provides effective treatment
for children with uncomplicated Plasmodium falciparum infection in
areas with highly endemic and multidrug-resistant malaria [11].
Coartem acts against the erythrocytic stage of malaria infection the
same way as SP.

When SP or Coartem is administered, the number of merozoites
released by one burst infected RBC, r, is reduced to (1 — y)r, where y
represents the drug efficacy. To incorporate the drug efficacy in the
mathematical model, we modify the 5th equation in model I (2.10) as
below and keep the other equations the same.

ay (@) _ (1 -yp)r
dt 1+ k(@
__k

1+ kbA(D)

sOX (1) — oy (DY (1) — ksI(DY (1)

Y(OM®), (2.15)

Fig. 11 shows that the administration of the drug SP or Coartem will
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Fig. 9. Impact of efficiency of antibodies in blocking parasites infecting RBC
(k) on the disease dynamics.
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Fig. 10. Impact of the reproduction rate of antibodies (7) on the disease dy-
namics.

effectively control the disease. Specifically, when the drug efficacy
reaches 50%, the level of infection is shown to be very low in the first
two weeks. After that, however, the population of infected RBCs and
merozoites climb up while the RBC level goes down graduallly. When
the drug efficacy gets to 90%, parasites are cleared and the RBC level
remains at a stable healthy level. Our simulation result is close to the
clinical treatment result where the drug efficacy was 0.946 ([27]) for
uncomplicated malaria caused by Plasmodium falciparum.

(ii) Treatment with Atovaquone-Proguanil

Atovaquone-Proguanil, commercially known as Malarone, is a drug
used to treat or prevent malaria. Malarone has been the principal
treatment of acute malaria since it was marketed in 2001 [8]. It is ac-
tive against malaria infection during the blood and exoerythrocytic
stage. Treatment with Malarone reduces the infection rate k; of RBCs
and the bursting size r by a factor of 8 with 0 < @ < 100% representing
the drug efficacy. To incorporate the drug efficacy of Malarone, we
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Fig. 11. Treatment effects of SP or Coartem.
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Fig. 12. Treatment effects of Malarone.

modify the 3rd-5th equations in model I in the way shown below and
keep the other equations the same.

= koX (1) — am(t, v, M(t))m(t, v)

_ -9k
1+ kKAL)
0<v<vg

am(t, v) + am(t, v)
ot 0

Y()m(t, v),

dX(@®) _ 1 -96k
dt 14 kA(D)
v () _ (1-9)r
dt 1+ k(@)
-9k

1+ kA

Y(OM(1) — s()X (1) — a, X () — ks I(£)X (1),

s(OX(t) — a, Y (t) — ksI(£)Y (t)

Y (OM (1),

(2.16)
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Our simulation results in Fig. 12 show that administration of the drug
Malarone has better treatment effects than Coartem and SP. RBC levels
increase faster than the other two drugs while merozoites and infected
RBCs decrease faster. If the drug efficacy reaches 80% or higher, the
infection will be treated.

3. A prospect model for investigating severe malaria infections
3.1. The mathematical model

Malaria may rapidly become a severe case without prompt and
appropriate treatment [35]. The major complications of severe malaria
include cerebral malaria, pulmonary edema, acute renal failure, severe
anemia, and/or bleeding. Acidosis and hypoglycemia are the most
common metabolic complications [38]. Any of these complications can
develop rapidly and progress to death within hours or days [38]. Im-
mune clearance and the availability of infected RBCs in which the
parasites develop and reproduce are two major factors that shape the
peaks and troughs of malaria parasitemia and thus in turn affect disease
severity and transmission [24]. Authors in [29] hypothesized that
merozoites enter already infected RBCs to multiply faster due to the
limited availability of uninfected RBCs to merozoites when total clog-
ging of venules occurs in severe malaria. Their hypothesis was pre-
sented from a mathematical point of view to gain some understanding
of severe malaria. We utilize this hypothesis in model I (2.10) to in-
vestigate how such a hypothesis would affect the host’s erythropoiesis
and the disease dynamics. A second model (model II) is propsed below
to incorporate the double infection assumption.

BO — 6 M0) - aste, POEO,
-4 +g<E(r))%j‘) = ot i EO)P(t 1) — HEK()p(t, ),
0 <p < py,
) D) oy (t) ~ amtt, v, MOOIm(E, %)
at B K
- m)’(f)m(f, V),
0<v <V
dx(t) ki
e mY(f)M(t) - 51X () — aaX(t)
— BIOX (0 - RO (0,
PO~ mOY O - 0% - @k ® - KIOXO,
ay (t) _ n r
T TR ORO + s %0
—a,Y(t)
K
—ksI()Y (t) — TZA(QY(:)M )
- ﬁ[xl(r) + )@(t))w),
ai) _ X () A, Y (1) B
TR (k6+;q(:) et Y(:)]I(') ol @),
dam Yo
BrTE Uf(t)7k8+ 0) as A(E)Y (1),

3.1)

with the same boundary conditions as in model 1. Here, X; and X, are
the population of newly infected RBCs and double infected RBCs, re-
spectively. For newly infected RBCs we model the burst rate by s;, the
natural mortality rate by a,,, and the average number of newly released
merozoites upon rupture by r;. Already infected RBCs could be infected
for a second time by merozoites at a rate modeled by X;Y. The double
infected RBCs die off at a rate a,,, rupture at a rate s,, and release r,
new merozoites per bursting.
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3.2. A finite difference algorithm

Similar numerical treatments applied to solve model II (3.1) yield
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k+1 k k k
b — P p — b .
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fl J i -1 _ k ko k1 1 kg1
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o ,
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3.2)

3.3. Simulation results

Simulations in [29] apply delayed rejection adaptive Markov chain
Monte Carlo methods to determine parameter distribution in within-
host severe P. falciparum malaria. In order to demonstrate the dynamics
of severe malaria described by our model II (3.1) quantitatively, we
adopt the sample means of their estimates regarding the following
second infection parameters: ay, = 0.0241, a,, = 0.1014,
ky = 2.5119 x 101, 3 = 2.0108 x 1019, 5, = 0.5, 5, = 0.5, r,. The va-

= 31.7924, 1, = 27.6375
lues of other parameters are the same as those shown in Table 3.

Simulation results are demonstrated in Fig. 13. It is observed that, if
the merozoites enter already infected RBCs, they produce more mer-
ozoites shortly after the infection. Thus there is an increased chance of
more RBC infection at the beginning of the infection. The double in-
fection hypothesis dramatically affects the host’s RBC production. The
uninfected RBC population experiences a sharp decline shortly after the
infection, which is a signal for the host’s body to release more ery-
thropoietin. This hormone then stimulates proliferation and differ-
entiation of precursors. However, this increase in erythropoiesis fails to
increase the abundance in uninfected RBC population since more
merozoites are released. The uninfected RBC population remains at a
low level after the infection. The results indicate that in case of double
infection, the host may develop anemia.

4. Conclusions and discussion

In this work we developed two mathematical models to gain
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Fig. 13. Simulation of the dynamics of erythropoietin, precursor, RBCs, infected RBCs, merozoites, and antibodies in severe malaria with the assumption of double
infection.

understanding of the complex system of within-host malaria infection. demonstrate that natural host immune response is not able to control
The first model (model I) describes the host’s immune responses to the malaria infection. Increasing the immunosensitivity/im-
Plasmodium falciparum infection as well as the process of erythropoiesis munogenicity of infected RBC and merozoites does not effectively re-
under the stress of malaria infection. The numerical simulation results duce the infection level nor does it keep the RBC at a healthy level. The
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infected RBC and merozoite population experience only a slight de-
crease when increasing the efficiency of antibodies in blocking the
parasite infection of healthy RBCs. Parameter sensitivity analysis shows
that reducing the number of free merozoites released per infected RBC
seems to be the most effective way of maintaining a healthy population
of RBCs and controlling the disease. The disease dynamics is also very
sensitive to parasite mortality rate and parasite infection rate. These
simulation results are consistent with prior studies in litera-
ture [1,2,29].

We proposed a second mathematical model (model II) based on the
assumptions that in severe infection some free merozoites in the blood
stream enter already infected RBCs due to the limited availability of
healthy RBCs [29]. Using the mean values of parameters estimated by
authors in [29] we performed numerical simulations to investigate how
such a hypothesis would affect the host’s erythropoiesis and the disease
dynamics during severe malaria infections. The results (as in Fig. 13)
reveal that shortly after the infection, the RBCs decline sharply and
remain low afterwards. More merozoites are produced compared to the
case with no double infection, resulting in more RBCs being infected,
which may result in anemia in the host. To our best knowledge, this is
the first study of complex interactions between the processes of ery-
thropoiesis, the malaria parasites, and the immune responses during
severe malaria infection using mathematical models.

We also studied the effectiveness of various drugs, such as SP
(Sulfadoxine/Pyrimethamine), Coartem (Artemether/lumefantrine),
and Malarone (Atovaquone-Proguanil), for treating malaria utilizing
model I. The administration of SP or Coartem will reduce the number of
newly released merozoites per bursting infected RBCs, while Malarone
will reduce parasite infection rate as well as the bursting size. Our si-
mulation results demonstrate that the administration of these three
drugs will effectively put the infection under control when the drug
efficacy reach a certain level ( > 95% for SP and Coartem and > 75%
for Malarone). Moreover, Malarone has more significant treatment ef-
fects than SP or Coartem. However, our models only provide the disease
dynamics under the treatment of a single drug. Drug resistance which is
common and causes treatment failure is not considered in the models.
Due to the spread of resistance, WHO recommends that a combination
of drugs is used in treating malaria. For example, Malarone is re-
commended to be used only in combination with another anti-malarial
compound since the resistance will occur very quickly when used in
mono-therapy. Our models provide basic patterns in malaria infection
and under drug treatment. These models help to gain insights to com-
plex interactions of the within-host malaria infection, while more so-
phisticated models are desired for studying treatment by a combination
of drugs and for including drug resistance in the treatment.
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