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Abstract

Traditional implicit methods for modeling electrostatics in biomolecules use a two-dielectric

approach: a biomolecule is assigned low dielectric constant while the water phase is considered as

a high dielectric constant medium. However, such an approach treats the biomolecule-water

interface as a sharp dielectric border between two homogeneous dielectric media and does not

account for inhomogeneous dielectric properties of the macromolecule as well. Recently we

reported a new development, a smooth Gaussian-based dielectric function which treats the entire

system, the solute and the water phase, as inhomogeneous dielectric medium (J Chem Theory

Comput. 2013 Apr 9; 9(4): 2126-2136.). Here we examine various aspects of the modeling of

polar solvation energy in such inhomogeneous systems in terms of the solute-water boundary and

the inhomogeneity of the solute in the absence of water surrounding. The smooth Gaussian-based

dielectric function is implemented in the DelPhi finite-difference program, and therefore the

sensitivity of the results with respect to the grid parameters is investigated, and it is shown that the

calculated polar solvation energy is almost grid independent. Furthermore, the results are

compared with the standard two-media model and it is demonstrated that on average, the standard

method overestimates the magnitude of the polar solvation energy by a factor 2.5. Lastly, the

possibility of the solute to have local dielectric constant larger than of a bulk water is investigated

in a benchmarking test against experimentally determined set of pKa's and it is speculated that side

chain rearrangements could result in local dielectric constant larger than 80.
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Introduction

Calculations of electrostatic potential and energy of macromolecules are essential to

understand the mechanism of biological processes 1-5. However, these calculations cannot

be done analytically for irregularly shaped objects and numerical methods must be applied.

The methods can be grouped into two categories, explicit models and implicit models 6.

Explicit models treat water as individual molecules; in contrast, implicit models average the

effect of water phase as continuum media 7-12. Compared to explicit models, implicit

models are more efficient, therefore be able to handle much larger systems 10, 13, however, it

comes with the price of losing some atomic information and ambiguity of how to describe

the dielectric properties of the system, the solute and the water phases.

A possible solution addressing the above mentioned deficiencies of implicit methods is to

develop dielectric function that mimics some of the missing atomic effects. Following the

original work of Nicholls and coworkers 14, recently we reported a smooth Gaussian-based

dielectric function implementation in DelPhi 15. In this implementation, the solute and the

water phase are treated on the same footing and there is no sharp dielectric border between

them. Even more, the protein surface and protein interior are modeled as an inhomogeneous

dielectric medium 15. While such a model sounds physically more reasonable than the two-

dielectric model, it poses the question of how to model the solvation energy. The question

has two components: conceptual and technical. The technical question is where to draw the

border between solute and the water and the conceptual question is how to treat the solute

molecule in absence of the water surrounding.

In the past, the main motivation for introducing Gaussian-based dielectric function was to

smooth the boundary solute-water 14, 16, 17. Indeed once the dielectric function distribution

is known, the molecular surface can then be defined as surface with a particular value of the

dielectric “constant” 16, 18, 19. Typically the optimal value of the dielectric surface is

obtained via benchmarking test against experimental data 20-24. Much less attention was

given to the conceptual question of how to treat the solute in absence of water

surrounding 25, since such treatment is necessary for the thermodynamics cycle of

calculating the polar component of solvation energy (note that the approach of induced

surface charges 26 is not straightforward to apply in case of smooth dielectric boundary). In

this work we discuss these issues and show their effects on the polar solvation energy

calculations.

Another important question which will be addressed in this work is the upper bound of the

dielectric “constant” inside a biomolecule. Previous work of Zhou and coworkers 22 using

zero probe radius to deliver the molecular surface and dielectric map within a Poisson-

Boltzmann solver showed that such an approach results not only in different molecular

surface (vdW surface), but also introduces many cavities inside the molecule 27. These

cavities were considered high dielectric cavities with dielectric constant of 80 (bulk water),

and it was reasoned by the experimental observation that water molecules can propagate

inside biomolecules 28, 29. However, we argue that the water penetration may not be the only

and the most important contributor to the high local dielectric constant inside biomolecules.

Reorientation of charged side chains or structural changes associated with charged domains
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may have a larger effect on the dielectric properties of the macromolecule than water

penetration, and may result effective local dielectric constant larger than 80.

Since the solutions are provided via a grid algorithm, the finite-difference method 30,

implemented in DelPhi 11, 31, is desirable for probing how sensitive the results are with

respect to the parameters of the grid; especially the grid spacing, frequently termed “scale”.

It is anticipated that at fine grid spacing (larger scale), the solutions will be more reliable,

however, one wants to achieve such reliable solutions at smallest computational cost in

terms of time and memory. Here we test the scale convergence of the solutions delivered

with the smooth Gaussian-based function and compare with the convergence of the solutions

obtained with induced surface charges method. The motivation for such comparison stems

from the fact that in the two-dielectric model, it was repeatedly shown that the induced

charges method outperforms the standard method of calculating the polar solvation energy

and is almost grid independent at grid resolution larger than 1Å/grid 11.

Method

1. Smooth Gaussian-based dielectric function

The smooth Gaussian-based dielectric function was previously described 15, therefore here it

will be only briefly outlined. Following Nicholls and coworkers 14, the atomic density at

position r generated by atom i is calculated as:

(1)

where ρi (r) is atomic density at position r generated by atom i; ri is distance between r and

center of atom i; σ2 is the variance of Gaussian distribution; Ri is the radius of atom i

defined by force filed used.

Then, the total atomic density is calculated as:

(2)

where ρmol (r) is the is total atomic density at position r generated by the whole molecule; ρi

(r) is atomic density generated by atom i. This equation guarantees that the total atomic

density at the atom-atom overlapping region is higher than in each of the single atom, but

the total density will not exceeds 1.

Finally, the atomic density is converted into a dielectric distribution as:

(3)

here ε(r) is dielectric distribution of the molecule. εin is the reference dielectric value for

biomolecules, εout is the dielectric value for water.
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2. Calculating polar component of solvation energy

Currently DelPhi calculates the polar solvation energy in the case of sharp dielectric

border(s) via the induced surface charges (reaction field energy) subroutine, an approach

which was repeatedly shown to outperform the standard two steps methods 26. However, the

implementation of a similar approach in the case of smooth dielectric boundary would

require integration over the transition layer of solute-bulk water. Currently this is

computationally inefficient, and because of that the two steps procedure was implemented.

This standard two steps method is implemented as follow: 1. A 3D dielectric distribution is

calculated by using equation (1)-(3), and the grid energy Gprotein–water of the system is

calculated. 2. A Gaussian “surface” is constructed by selecting a certain epsilon value (such

as epsilon=20). The epsilon values outside the surface are then set to have the value of

vacuum, while the epsilon distribution inside the surface stays the same as in step 1. The

motivation for this is assumption at in vacuum the protein retains its properties. Then the

grid energy of this new system is calculated as Gprotein–vacuum. The difference between the

grid energies in the above two steps is the solvation energy.

(4)

3. Structure files and parameters used in the calculations

The calculations were performed on a protein data set of 91 proteins 15. The selection of

these 91 files was previously described 15. These structures were used to carry out

calculations for the polar component of the solvation energy. In the case of smooth

Gaussian-based dielectric function, the reference dielectric value εin was set to be 4.0, and

the variance σ was 0.93. These two parameters were optimized in our previous test on pKa

calculations 15. The epsilon for surface cutoff is set to be =20, which is optimized from

small molecule test 15. For the other parameters, perfil is set as 70, salt concentration is 0,

the scale is set as 2.0. The force field used is Amber 32.

4. Scale/resolution dependence

To investigate the sensitivity of the results with respect to the grid resolution (scale), the

following considerations were made: since the test cases are real proteins for which polar

solvation energy cannot be calculate analytically, one needs to define what the correct

energy is. It is well known that an increase of the resolution (larger scale) would result in

more accurate results. Because of that, the following measure of the accuracy was adopted:

(5)

where  is the scale relative error at scale= i, Gscale=6.0 is the reference grid energy,

which is considered to be the correct energy. For each protein in the dataset  is

calculated and the scale i was varied from 0.2 to 6.0 with step= 0.2.
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5. Upper bound of dielectric constant inside biomolecule

In the original equation (3), the upper bound of the dielectric constant of a biomolecule is

the same as the dielectric constant value of water εout. This is because the original model

attempts to account for water penetration inside the biomolecule only. However, we argue

that side chain rearrangement and structural domains motion may cause even larger

dielectric effect than water penetration. Such a possibility is illustrated in the supplementary

material by a simplified example (figure S1). To allow the local dielectric constant inside the

biomolecule to sample values larger than those of bulk water, the equation (3) is modified

as:

(6)

where ε is the dielectric value for the entire biomolecule-water system. ρ is the atomic

density of the system. ρ equal to 0 means the region is totally in water, in this case the

dielectric is set as εout, which is 80; when ρ > 0, or inside the biomolecule, the upper bound

of dielectric constant is set as ε′out, which can be bigger than 80.

Results and discussions

1. Comparing polar solvation energy calculated with smooth Gaussian-based dielectric
function and the standard two-dielectric model

The vast majority of the polar solvation energy calculations reported in literature were done

with the two-dielectric model 33-36, while only a few cases considered that the protein may

have structural regions with different dielectric properties 25, 37, 38. However, in all cases the

boundary between different dielectric regions inside the biomolecule (and in most of cases

between solute and water) was considered to have sharp borders. Since our approach differs

from these cases, it will be useful to investigate how the calculated polar solvation energies

compare among the models.

To carry out such an investigation, the polar solvation energies were calculated using both

the two-dielectric homogeneous model and the smooth Gaussian-based dielectric function,

both available in DelPhi distribution 11, on the dataset of 91 proteins 15. The parameters for

the calculations utilizing the smooth Gaussian-based dielectric function were provided in the

method section (εin = 4.0 and σ = 0.93), while the internal dielectric constant εin for the two-

dielectric model was varied from 2.0 to 12.0 in steps of 2.0. Then, the polar solvation

energies obtained with two-dielectric model (homogeneous internal dielectric constant,

termed “Homo” for short; ΔGHomo) and with smooth Gaussian-based dielectric function

(termed “Gaussian”; ΔGGaussian) were compared via linear regression:

(7)

Li et al. Page 5

J Theor Comput Chem. Author manuscript; available in PMC 2014 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For each εin of homogeneous method, a and b are determined by the linear regression

method. Moreover, the correlation between ΔGHomo and ΔGGaussian is also calculated

(Figure S2 and Table 1).

In analyzing the results from figure S1 (see Supporting Information), one can appreciate that

the points are scattered along the main diagonal, the largest deviations observed for cases

with large polar solvation energies. The pattern does not change as εin varies from 2.0 to

12.0 in the two-dielectric model, but the slope of the fitting line does. Despite the irregular

shape of the proteins used in the dataset, still such a behavior is expected based on the Born

solvation model 39. The best correspondence between results calculated with the smooth

Gaussian-based dielectric function and two-dielectric model are obtained with εin =10.0 (for

the internal dielectric constant in two-dielectric model). Such a correspondence was also

found in pKa calculations from our previous work 15. The correlation coefficient between

the Gaussian method and the homogeneous method with εin =10.0 is P=0.959; the slope a is

1.02 and b is -49.92 kT. From table 1, the slopes change against εin, when εin =10, the slope

a is very close to 1.0. However, even when εin =10, the correlation is still 0.959 and b is

-49.92kT. This indicates that when εin =10, the solvation energies calculated by

homogeneous method and Gaussian method have very similar tendency, but the two

methods do have differences for individual proteins. Actually the differences for individual

proteins are expected, this is the reason why the Gaussian method was able to obtain better

results on pKa and some other calculations 15.

2. Scale dependence

Scale dependence is an important feature for PB solvers implemented in the finite difference

method40, 41. In previous work, we demonstrated that the Gaussian method performs better

on grid shift error and rotation error compared to the homogeneous method 15. In this work,

we tested the scale dependence error using equation (5). Figure 2 shows the results of scale

error for the Gaussian method and the homogeneous method. It is important to note that in

the homogeneous method, the traditional two-step method was replaced by an induced

charges method for solvation energy calculation 26. This induced charges method has been

proved to be less scale dependent than the two-step method 26. In this work, the comparison

is between the homogeneous method with induced charge method and the Gaussian method

with the two steps method (as it was mentioned above, a straightforward implementation of

the induced charges method in the smooth Gaussian-based dielectric model is currently

computationally demanding).

Figure 2 shows that at scale=2.0 grid/Å (resolution 0.5 Å/grid), both methods are able to

obtain results with scale error < 1%, but the smooth Gaussian-based dielectric function

yields better accuracy (scale error <0.8%). The standard deviations are quite similar.

However, at scale < 2grids/Å (worsened resolution), the smooth Gaussian-based dielectric

function outperforms the two-dielectric model in both the scale error and standard deviation.

What is the reason for the smooth Gaussian-based dielectric method to outperform the two-

dielectric method even though it utilizes a less accurate approach (in terms of the grid

algorithm) in polar solvation energy calculations? Figure 3 is a cartoon presentation of

mapping of a single atom onto the grid and is aimed to offer an explanation of the observed
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effect. It can be seen that the same atom is represented in quite different ways by the

homogeneous and the Gaussian method. In this figure, red lines are epsilon distributions

under low scale, blue lines are epsilon distribution under high scale. 1. Homogenous method

results sharp epsilon jump near the boundary, no matter how large the scale is used; in

contrast, Gaussian model always generates smoother epsilon distribution. When the scale is

larger, the epsilon distribution generated by Gaussian model is even smoother. 2. From

figure 3 e, one can see that when different scales are used to model the same atom in the

homogeneous method, the epsilon distributions could be very different, which results a

difference of born radius of this single atom and generates the scale error; however, when

scales are different, the epsilon distributions of the Gaussian method are more similar to

each other. These two factors are the main reasons which cause the Gaussian method to be

less scale dependent than the homogeneous method.

3. Upper bound of dielectric constant

Side chain rearrangement affects the dielectric property of biomolecules. If the side chain

flexibility is considered (figure S1), the upper bound of the dielectric constant of the

biomolecule could be even higher than epsilon for water. Supporting Information (figure S1)

offers a simple example illustrating that charged side chain rearrangement can generate local

electrostatic field larger than the local electrostatic field generated by water reorientation.

Therefore, in principle, the internal dielectric constant of biomolecules could be larger than

of the bulk water.

Here we explore the possibility of assigning local internal dielectric constant larger than 80

in a benchmarking test against experimentally determined pKa's taken from pKa-

cooperative 42, 43 (http://pkacoop.org/wordpress/?p=28). It should be emphasized that these

pKa values are highly perturbed resulting in pKa shifts of 5 and more units. Previous

continuum electrostatic based pKa calculations showed that the value of internal dielectric

constant has prominent effect of the calculated pKa shifts 44. It was pointed out that larger

internal dielectric constant results in smaller pKa shifts 44. Since the experimental dataset is

comprised of cases with large pKa shifts, it is anticipated that further rising of the internal

dielectric constant above the optimal value for a given model should result worsen pKa

shifts predictions. In our previous work 15, the upper bound of dielectric constant for the

Gaussian method was set as 80. Here we carry the same type of calculations, but allow the

local internal dielectric constant to sample values larger than 80. Thus, the parameters of the

smooth Gaussian-based dielectric function are the same as in the previous work 15, with the

only difference that the ε′out varies as 100, 120 and 60. The results are summarized in Table

2.

Table 2 shows the best 20 results in terms of the RMSD between calculated and

experimental pKa shift along with the corresponding parameters of the protocol. All of these

RMSDs are smaller than in the previous work, which was 1.77, indicating better

performance. In all top 20 results, the ε′out value is always larger than 80. This indicates that

by increasing the value of upper bound of the dielectric value inside biomolecule, the

calculations result in better predicted pKa shifts. Interestingly, the increase of the upper

bound of the internal dielectric constant did not result in change of neither the reference
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dielectric constant nor the variance in the Gaussian formula. Indeed, when εin is 4.0, the best

σ value is still 0.93, in accordance with our previous results. At the same time, the optimal

upper bound of the internal dielectric constant ε′out is now 120, rather than 80. These results

indicate that perhaps the side chain and domain rearrangements occurring in the pKa

experiments can be better modeled via dielectric function which can take local values larger

than of 80. For illustration figure S3 (in Supporting Information) shows the distribution of

the dielectric constant with upper bound of 80 and 120. It can be seen that the change of the

upper bound affects not only the surface regions, but also some regions inside the

biomolecule.

Conclusion

The scale dependence of the results is one of the most critical drawbacks of finite difference

methods. It forces researchers to perform calculations at various scales (resolutions) to test

the sensitivity of the results and to use fine scales which results in computationally

demanding simulations. To avoid this drawback, the standard homogenous algorithm

implemented in DelPhi uses the method of induced surface changes to calculate solvation

energy. However, in the case of the Gaussian-based smooth dielectric function, this method

cannot be easily applied and the concern was that the smoothed dielectric boundary may

result is worsening the grid dependence of the solvation energy calculations. However, the

results reported in the paper clearly indicate that this is not the case and that the smooth

Gaussian-based dielectric function performs even better than the induced surface charges

algorithm. This observation is attributed to the lesser sensitivity of the region solute-water

mapping onto the grid as compared with the sharp boundary mapping. Less scale

dependence is an inherent feature of the smooth Gaussian-based dielectric distribution.

The protein interior in water phase and in vacuum was modeled with the same dielectric

distribution, an important detail of the reported approach. This is justified by the observation

that frequently protein molecules retain their structures and functions when transferred in

gas phase 45-48. Because of that, their intrinsic flexibility and therefore dielectric properties

in vacuum should remain the same as in water phase.

Since so far, almost all reported modelings of the solvation energy are done with the

standard two-dielectric model, one may wonder what the approximate correspondence is

with respect to the calculations done with the smooth Gaussian-based dielectric function. It

was found that the rough correspondence is 2.5, i.e. the two-dielectric model overestimates

the solvation energy by factor of 2.5. However, this observation should be taken with

caution since the individual energies could be different by more than several tens of kTs.

This indicates that the smooth Gaussian-based model cannot be replaced by the

homogeneous model in the way of selecting “proper” dielectric constant, because no matter

what dielectric constant value is used, the dielectric distribution of homogeneous model will

always lose some atomic details, on the contrast, the smooth Gaussian-based method reflects

some of the atomic details of the solute and water phase.

Previous works considered the possibility that the dielectric constant of solute may be a

large number 33-36. Such a possibility was attributed to plausible water penetration inside the
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solute and therefore the upper bound of dielectric constant inside molecules was considered

to be 80. However, the side chains or entire structural domains may be quite flexible and

may be charged. Considering the effect of such flexible charges, the upper bound of

dielectric constant inside molecules could be even higher than 80. In this work, it is found

that by increasing the upper bound of the dielectric constant of biomolecules, we can obtain

even more accurate pKa calculations as compared with the case of using 80 for the upper

bound of internal dielectric constant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The standard two-step method for solvation energy calculations. The left panel shows the

solute in water phase and the levels of the dielectric constant values are color-coded. The

right panel illustrates the same solute in vacuum. Note that the dielectric constant

distribution inside the molecular surface is identical to the dielectric constant distribution in

water.
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Figure 2.
Scale dependence comparison between homogeneous and Gaussian methods on solvation

calculations.
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Figure 3.
Illustration for scale dependence feature of homogenous method and Gaussian method. a.

one-dimensional epsilon distribution in homogeneous method with a low scale. b. one-

dimensional epsilon distribution in Gaussian method with a low scale. c. Epsilon distribution

in the homogeneous method with a high scale. d. Epsilon distribution in the Gaussian

method with a high scale. e. Comparison of epsilon distributions using low and high scales

for the same system in the homogeneous method. f. Comparison of epsilon distributions

using low and high scales for the same system in the Gaussian method.
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Table 1

Comparison between ΔGGaussian and ΔGHomo with different εin.

εin correlation a b(kT)

2 0.951 5.9747 -312.5323

4 0.953 2.8726 -147.744

6 0.955 1.8428 -93.1143

8 0.957 1.3304 -66.0189

10 0.959 1.0245 -49.9243

12 0.960 0.8217 -39.3187

In this table 1, parameters for Gaussian method are fixed: εin = 4.0 and σ = 0.93; For each εin of homogeneous method, the correlation between

ΔGHomo and ΔGGaussian is calculated, a and b are determined by the linear regression method.
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Table 2

Top 20 results in terms of the RMSD between calculated and experimental pKa shift.

Eps(in) sigma Eps'(out) RMSD

8.0 1.00 120 1.69

8.0 0.99 120 1.70

8.0 1.00 100 1.71

6.0 0.96 120 1.72

8.0 1.01 120 1.72

6.0 0.97 120 1.72

6.0 0.97 100 1.72

8.0 1.01 100 1.73

4.0 0.93 120 1.73

6.0 0.96 100 1.73

4.0 0.93 100 1.73

8.0 0.99 100 1.73

8.0 0.98 120 1.74

4.0 0.94 100 1.74

4.0 0.94 120 1.75

6.0 0.95 120 1.76

8.0 1.02 100 1.77

6.0 0.98 100 1.77
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