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Due to the enormous importance of electrostatics in molecular

biology, calculating the electrostatic potential and correspond-

ing energies has become a standard computational approach

for the study of biomolecules and nano-objects immersed in

water and salt phase or other media. However, the electro-

statics of large macromolecules and macromolecular com-

plexes, including nano-objects, may not be obtainable via

explicit methods and even the standard continuum electro-

statics methods may not be applicable due to high computa-

tional time and memory requirements. Here, we report further

development of the parallelization scheme reported in our

previous work (Li, et al., J. Comput. Chem. 2012, 33, 1960) to

include parallelization of the molecular surface and energy cal-

culations components of the algorithm. The parallelization

scheme utilizes different approaches such as space domain

parallelization, algorithmic parallelization, multithreading, and

task scheduling, depending on the quantity being calculated.

This allows for efficient use of the computing resources of the

corresponding computer cluster. The parallelization scheme is

implemented in the popular software DelPhi and results in

speedup of several folds. As a demonstration of the efficiency

and capability of this methodology, the electrostatic potential,

and electric field distributions are calculated for the bovine mi-

tochondrial supercomplex illustrating their complex topology,

which cannot be obtained by modeling the supercomplex

components alone. VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23340

Introduction

Electrostatic potential and energies originating from the

charge distribution within biomolecules greatly impact intra-

molecular and intermolecular interactions. Various explicit

(treating the solvent as individual water molecules) and

implicit (treating the water phase as a continuum media) mod-

els have been developed to calculate electrostatic potential

and corresponding energies of biomolecules and nano-objects

immersed in water and salt phase. Implicit models are usually

considered to be more computationally efficient and suitable

for calculating the electrostatic potential of large objects and

systems.[1–5] One of the most recognized implicit models is the

nonlinear elliptic Poisson-Boltzmann equation (PBE)[6–8]:

r � ðeðxÞruðxÞÞ2kðxÞ2sinhðuðxÞÞ524pqðxÞ; (1)

where / is the electrostatic potential, e is the spatial dielectric

function, k is a modified Debye-Huckel parameter, and q is the

charge distribution function.

Due to the important role of PBE in molecular biology,

numerous PBE solvers have been developed independently in

various laboratories to solve the PBE by a number of numerical

methods, including finite difference, finite element, boundary

element methods, etc.[9] A short list of PBE solvers includes

AMBER,[2,10–12] CHARMM,[13] ZAP,[14] MEAD,[15] UHBD,[16]

AFMPB,[17] MIBPB,[18,19] ACG-based PBE solver,[20] Jaguar,[21]

APBS,[22,23] and DelPhi.[24–26] Despite their differences, all these

solvers consist of three major components: determination of

the molecular surface[27–30] or dielectric coefficient map,[31,32]

calculation of the potential, and acquirement of the corre-

sponding electrostatic energies. It is outside the scope of this

work to compare the performance of the earlier mentioned

PBE solvers, but they all become very slow if applied to large

systems such as viruses,[33,34] molecular motors,[35] and systems

made of nano-objects and biomolecules.[36] For such large sys-

tems, for example, the adeno-associated virus,[34] even one of

the fastest solvers, the DelPhi program, takes more than half

of a day to complete the calculations at minimum require-

ments for the grid resolution 5 0.5 Å/grid.[37] For many of the

other mentioned PBE solvers, more precise resolution may be

needed to achieve stable results, and this may take days to

calculate. Obviously, significant speedup is required to make

these serial algorithms applicable to the study of large macro-

molecular assemblages, as it was done by parallelizing

APBS,[23] FDPB,[38] UHBD,[39] etc.

Inspired by the development of high-performance scientific

computing techniques, in this article we introduce several

techniques, resulting in parallelization scheme for solving the

PBE. To illustrate the effectiveness of this approach and pro-

vide concrete examples, it was implemented in the DelPhi pro-

gram. The method is graphically demonstrated in Figure 1 and
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is described in detail in the methods section. Using Delphi as

an example, the execution flow chart consists of three major

tasks: surface construction, iteration, and energy calculation as

shown in Figure 2. Each task is then divided into subtasks that

are carried out in parallel by slave processors (green ovals in

Fig. 2). Enhanced by the computational power of multiple pro-

cessors, the method reduces the computational time of the

parallelized DelPhi program several folds. It should be clarified

that the reported method is not based on standard spatial do-

main decomposition only; instead, the proposed algorithm

delivers the solutions by applying specific techniques to each

of the three major tasks and reflects the physical nature of the

quantities being modeled. Thus, the construction of the mo-

lecular surface, being a geometrical problem, is parallelized via

the methods of geometrical clustering and duplicated calcula-

tions at extended boundaries. The iterations of calculating the

electrostatic potential, being long-range, are parallelized via a

combination of numerical techniques and specific software

design but without invoking any assumptions, and finally, the

calculations of the corresponding electrostatic energies, being

independent of the geometry, are parallelized via multithread-

ing. The resulting solutions obtained with the parallelized

code, in terms of the electrostatic potential and energies, track

the solutions obtained with the serial algorithm to double pre-

cision. Although such accuracy may not be biologically rele-

vant for many current applications, keeping the parallelized

and serial code consistent is important for future code

development.

It should be emphasized that the reported parallelization

techniques are equally applicable for solving the linearized

and nonlinear PBEs. Moreover, these techniques are not re-

stricted to the DelPhi program. They can be easily modified

and recruited by other software to parallelize the surface con-

struction, iteration algorithms, and energy calculations.

To illustrate the capabilities of the proposed parallelization

method, it was applied to model a large super molecular com-

plex: the mitochondrial supercomplex.[40] Here we take advant-

age of a recently reported three-dimensional (3D) structure of

mitochondrial supercomplex I1III2IV1
[40] to demonstrate the

complexity of the distribution of the electrostatic potential

Figure 1. Parallelization techniques involved: a) Geometric clustering b) Duplicated calculations at extended boundary grids. Regions disputed to different

processors are demonstrated by their colors. “Boundaries” of regions are indicated by arrows. Calculations on each processor are extended to the left and

right one more grid so that two successive regions share a common region of three grids. c) Parallelization of GS/SOR iterations using one-sided DRMA

operations provided in MPI-2 library. Network communication between two processors using MPI-2 one-sided operations is shown in upper half of the

graph. d) Mimic of multithreading programming: a sum of n numbers on the master processor (MP) is broken into k 1 1 partial sum, each of which is cal-

culated on a single slave processor (SP) simultaneously.
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and field in large systems with very complicated shape placed

in a model of biological membrane.

Parallelization Scheme

In this section, we describe in detail the parallelization scheme

and its implementation in the DelPhi program. The goal of our

method’s design is to reduce the computational cost time

noticeably without losing “accuracy,” meaning we will not sac-

rifice the ability to reproduce the same results obtained by

sequential calculations up to double precision. This is required

in order to assure that the error will not propagate in future

code developments. However, it should be clarified that such

accuracy may not be crucial for most biological applications,

because the errors associated with the model and the parame-

ters chosen are much larger.

The DelPhi execution flowchart (Fig. 2) consists of three

major steps: (i) The “initial setup” step initializes the dielectric

constant map, as well as several other maps, and generates

the van der Waals, solvent accessible, and molecular surfaces

by a rapid construction method described in.[41] (ii) The

“iteration” step utilizes the Gauss-Seidel (GS) or Successive

Over Relaxation (SOR) algorithms to iteratively update the 3D

electrostatic potential map at grids until the predefined toler-

ance or the maximum number of iterations is achieved.[25] (iii)

The “energy calculation” step calculates the user-specified

energies, such as the grid energy, the coulomb energy, and

the reaction field energy. If desired, the dielectric, electrostatic

potential, and ion concentration maps are saved in standard

files, which can be easily rendered by visualization software

like VMD,[42] CHIMERA,[43] etc.

Most of sequential PBE solvers, including DelPhi, are practi-

cally limited to solving the PBE for molecules and complexes of

size less than couple of hundred Angstroms; this is true no mat-

ter which numerical methods are carried out due to the high

computational time and memory requirements when the sys-

tem’s size is large. After carefully benchmarking the execution

time cost of each step in the DelPhi program, our numerical

Figure 2. Demonstration of the parallelization scheme for parallel computing. The execution flowchart of the DelPhi program for calculating electrostatic

potential and energies is split into three tasks (initial setup, iteration and energy calculation). Tasks performed by the master processor (MP) and slave pro-

cessors (SP1, SP2, …, SPn) are described in pink rectangle and yellow cloud callouts, respectively. Green oval indicates parallel computing performed on

multiple slave processors. Levels of the algorithm are divided by black broken lines. Network communication between the master and slaves is demon-

strated by either black arrow (master distributes job to slaves) or red arrow (master collects results from slaves).
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experiments revealed that the most expensive procedures,

which consequently must be carried out in parallel, are indeed

the procedures mentioned earlier: the surface construction, the

“iteration” step, and the calculations of electrostatic energies. As

these procedures involve different methods and deal with differ-

ent quantities, specific techniques must be taken into considera-

tion in order to increase the performance of parallel computing.

We shall describe the parallelization techniques as follows.

Initial setup

Parallelizing the surface construction in the “initial setup” step

can be achieved via the standard space domain decomposi-

tion method. In addition, two techniques are designed to

improve the performance without losing accuracy: one is

called “geometric clustering” (Fig. 1a), which reduces dupli-

cated calculations and network communication among pro-

cessors during the construction of the van der Waals and

molecular surfaces, and the other is called “duplicated calcula-

tions at extended boundary grids” (Fig. 1b), which carries out

additional calculations on grids located on the extended

boundary in order to maintain consistency between the results

obtained by parallel and sequential calculations.

Geometric clustering

By considering each atom a “hard ball” with a certain radius,

the van der Waals surface can be viewed as the composition

of the surface of these “hard balls.” DelPhi utilizes a fast van

der Waals surface construction method,[41] which reduces com-

putational cost by restraining calculations on grids inside

boxes centered at those atoms. The grids inside each box are

classified as follows: external grid points, internal grid points,

boundary grid points, and internal boundary grid points, each

based on their six nearest midpoint positions[41] in order to

determine the boundary grids approximating the van der

Waals surface of the object. One can see that these boxes may

share large overlapping area if the atoms are located within

close proximity to each other in space (boxes of the same

color shown in Fig. 1a).

A straightforward approach for the parallelization of the

construction of the van der Waals surface is to group the

atoms according to their sequential appearance in the struc-

tural file and then dispatch them to different processors for

calculating the surface in parallel. However, we must bear in

mind that the atoms read from the PDB files are usually geo-

metrically unsorted; therefore, it is highly possible that adja-

cent atoms are dispatched to different processors by chance.

In the worst case scenario, two or more slave processors may

repeat the same calculations in a large overlapping area at the

same time and return to the master processor large amounts

of redundantly computed values. This would result in a signifi-

cant waste of the computational power of the processors and

unnecessarily increase the demand of network traffic between

master and slave processors. It is, therefore, advised to spend

some computational time to sort the atoms on the master

processor before dispatching them to the slave processors.

Taking advantage of the simplicity and efficiency of the

Quicksort method[44] and other various existing algorithms for

parallelizing (see Refs. [45–47] for example), we parallelized the

surface construct as follows and consider our implementation

to be one geometric clustering[48,49] by nature.

The following method was developed to sort the atoms in

3D space before dispatching them to slave processors. For the

sake of simplifying the description of this method, we make

the following two hypotheses which, indeed, are not manda-

tory to implement the method. We first assume the number of

available processors NCPU 5 nx � ny � nz for positive integers nx,

ny, and nz. These integers indicate how many segments the

computational domain is partitioned into in x-, y-, and z-direc-

tion, respectively. These integers usually are chosen to be as

close as possible to each other in order to treat x-, y-, and z-

direction equally. Next, we assume the number of atoms Natom

is a multiple of NCPU and Natom � NCPU so that each processor

is given Natom/Ncpu atoms to work on. Given that the above

two assumptions are satisfied, we intend to split the computa-

tional domain into nx, ny, and nz segments in x-, y-, and

z-direction, respectively, so that each subdomain, consisting of

Natom/NCPU atoms, is given to one slave processor for parallel

computing.

First, the atoms are sorted by their x-coordinates, using a

fast sorting method, and are evenly broken into nx groups.

The sorting method we chose to use is the quicksort

method,[44] which makes O(nlog(n)) comparisons to sort n

items on average. Next, the atoms in each of these nx groups

are sorted by their y-coordinates and are split into ny groups,

Table 1. Parameters used in numerical experiments of protein 2YBB.

Parameter Value Meaning and unit

perfil 80 A percentage of the object longest linear

dimension to the lattice linear

dimension.

grid resolution 0.5–1.0 one grid spacing (Å/grid).

indi 4.0 The internal (molecules) dielectric

constant.

exid 80.0 The external (solution) dielectric constant.

prbrad 1.4 A radius (Å) of probe molecule that will

define solvent accessible surface in the

Lee and Richard’s sense.

salt 0.1 The concentration of first kind of

salt,(moles/liter).

bndcon 2 Dipolar boundary condition. The boundary

potentials are approximated by the

Debye-Huckel potential of the

equivalent dipole to the molecular

charge distribution.

ionrad 4 The thickness of the ion exclusion layer

around molecule (Å).

relpar 0.9 A manually assigned value for relaxation

parameter in nonlinear iteration

convergence process.

maxc 0.0001 The convergence threshold value based on

maximum change of potential.

linit 2000 An integer number (> 3) of iterations for

solving linear PBE.

ninit 2000 An integer number (> 5 0) of iterations

for solving nonlinear PBE.

energy(s,c,g) – Grid, solvation and coulombic energies are

calculated.
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resulting in nx � ny groups of atoms in total. Applying the

same sorting-splitting methodology one more time in

z-direction yields nx � ny � nz groups of atoms of equal number

Natom/NCPU. Finally, each group of atoms is given to one indi-

vidual slave processor for calculation. A detailed description of

implementing the geometric clustering is provided in Table 2

and a pseudocode implemented in DelPhi can be found in the

Supporting Information.

The earlier method is designed to balance the workload of

processors. In addition, this method can be easily parallelized

due to its divide-and-conquer nature by applying the Quick-

sort method to sort each group on one individual processor

simultaneously. One can view this method as a dynamical

space decomposition method in the sense that the whole

computational domain is dynamically partitioned into multiple

exclusive subdomains of various lengths in x-, y-, and z-direc-

tions, according to the density of the atoms in the subdo-

mains: a higher density of atoms results in a smaller

subdomain and vice versa.

Duplicated calculations at extended boundary grids

After the van der Waals surface is obtained, the molecular sur-

face is generated by the Smoothed Numerical Surface (SNS)

method[41] in the DelPhi program by running a water probe

with a user-specified radius (usually is set to be 1.4 Å) on the

van der Waals surface. The “out” midpoints that surround

external boundary grid points are dispatched to slave process-

ors in order to perform the SNS method in parallel. However,

the resulting molecular surface obtained by parallel computing

could be different from that obtained from sequential comput-

ing when aggregated midpoints are dispatched to different

slave processors. These midpoints share same neighboring

grid points, whose status is changed by the SNS method

across multiple processors at the same time. Parallel comput-

ing can be achieved, yet very inefficiently, by synchronizing

the status of the midpoints and their neighbors across pro-

cessors during calculations.

Stimulated by the previous strategy for constructing the van

der Waals surface, we developed a second method to obtain

the molecular surface. This time, the midpoints are sorted only

in one direction, for example, z-direction. Then all midpoints

with the same z-coordinate are given to one processor. In

order to handle the midpoints of atoms with adjacent z-coor-

dinates but given to different processors, each processor

extends its calculations to all midpoints with one less z-coordi-

nate on the left boundary and one more z-coordinate on the

right boundary as demonstrated in Figure 1b. By doing so,

two processors share a common region consisting of mid-

points with two successive z-coordinates such that previous

“boundary” midpoints become “internal” together with their

neighbors which have been calculated on the same processor.

Calculations in the common region are performed independ-

ently on these two processors with no synchronization. When

calculations on all processors finish, results obtained at the

“internal” points are sent back to the master processor for

assembling. A step-by-step description is given in Table 3 and

the associated pseudocode is shown in the Supporting

Information.

Iteration

After the surfaces are constructed, PBE solvers utilize various

numerical methods to calculate the potentials at grids. For

example, DelPhi utilizes the GS/SOR algorithms to iteratively

update the electrostatic potentials at grids. The technique

implemented to parallelize these iteration methods has been

reported in Ref. [37]. For consistency, we only outline the idea

here.

The GS/SOR methods are iteration algorithms to solve a sys-

tem of equations numerically. Although they usually enjoy a

faster convergence rate when compared with the Jacobi

method, the standard implementation of these methods

restricts their utilization for parallel computing due to the

sequential nature of a requirement of using the most recently

updated values in current iteration as soon as they are avail-

able. A variety of parallelization techniques[50–54] have been

developed to parallelize the GS/SOR methods. In the DelPhi

program, special techniques, namely the “checkerboard” order-

ing (also known as the “black-red” ordering) and contiguous

memory mapping,[25] have been implemented previously in

order to achieve better performance than the standard imple-

ments of the GS/SOR methods. On the basis of these techni-

ques, we chose to implement the algorithm similar to that

Table 2. A detailed description for implementing geometric clustering.

Given NCPU available processors (NCPU 5 nx � ny � nz for positive integer nx, ny, and nz) and Natom atoms, we assume Natom is a multiple of NCPU and Natom

� NCPU. The following steps intend to distribute each processor Natom/NCPU atoms for parallel computing.

Step 1. All atoms are sorted according to their x-coordinates either by the regular (sequential) Quicksort method on the master processor, or by a

parallel Quicksort method on all processors. Then all processors are split into nx groups, each of which consists of ny � nz processors. Processors in

the 1st group keep the 1st Natom/nx sorted (in x-direction) atoms and discard the rest atoms; processors in the 2nd group keep the 2nd Natom/nx

sorted (in x-direction) atoms and discard the rest atoms; …, and so on.

Step 2. Each processor sorts its own atoms according to their y-coordinates by the Quicksort method independently, or all processors in the same

group together adopt a parallel Quicksort method to sort the same set of atoms. Then each group of ny � nz processors is split into ny subgroups,

each of which consists of nz processors. In each group, processors in the 1st subgroup keep the 1st Natom/(nx � ny) atoms and discard the rest; pro-

cessors in the 2nd subgroup keep the 2nd Natom/(nx � ny) atoms and discards the rest; …, and so on.

Step 3. After sorting its atoms according to their z-coordinates in the same fashion, the 1st processor in each subgroup keeps the 1st Natom/(nx � ny �
nz) atoms; the 2nd processor keeps the 2nd Natom/(nx � ny � nz) atoms; …, and so on. Each processor now has Natom/(nx � ny � nz) atoms geometrically

staying close to each other.

Step 4. After each processor performs calculations on its own atoms, the results are collected and assembled on the master processor.
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described in[53] and utilize the Master-Slave paradigm to paral-

lelize the iterations using one-sided Direct Remote Memory

Access (DRMA) operations provided in the Message Passing

Interface library MPI-2[37] (Fig. 1c). The multiprocessor paralleli-

zation of the GS/SOR methods in the DelPhi program is so

highly efficient that the computational time is reduced as a

linear/nearly linear function of the number of processers on

the protein 3KIC. Interested readers are directed to Ref. [37] for

more details.

Energy calculation

Three energies are usually of users’ interests: (i) the grid

energy which is obtained from the product of the potential

and the charge at each grid point, summed over all points on

the grid; (ii) the coulomb energy which is calculated using

Coulomb’s law and demonstrates the energy required to bring

charges from infinite distance to their resting positions within

the dielectric specified for the molecule; and (iii) the reaction

field energy (also known as the solvation energy) obtained

from the product of the potential due to induced surface

charges with all fixed charges of the solute molecule.

The parallel calculation of energy is more straightforward

and less complicated than the previous two calculation meth-

ods. The first technique is based on the observation that cal-

culating the coulomb energy, by definition, does not require

that the potentials be obtained by iterations. Therefore, the

coulomb energy can be calculated either before the “iteration”

step by slave processors while the master processors is still

performing initial setups, or by the master processor while the

slave processors are iteratively updating the potentials. By

implementing either of the above two techniques, we expect

to significantly reduce the cost of calculating the coulomb

energy in the overall program execution time.

The second technique, based on the observation that the

desired energies are approximated by summing values com-

puted over all grids, follows a commonly adopted simple, yet

effective, trick in multithreading programming: a summation is

split into multiple partial sums, each of which is calculated by

one thread (processor in our case) simultaneously (Fig. 1d).

The final result is obtained by summing those partial sums by

one thread (master processor). Again, see the Supporting In-

formation for a pseudocode.

Results

PDB preparation

We used the large mitochondrial complex to test the perform-

ance of the proposed parallelization scheme. To make it suita-

ble for the modeling, the original coordinate file (PDB ID:

2YBB) was subjected to several procedures: (a) the m, n, o, and

p chains in the original PDB file had only Ca atoms and no res-

idue assignment. For this reason they were manually substi-

tuted by analogical L, M, N, and (K1J) chains respective to the

membrane domain of respiratory complex I of Escherichia coli

BL21(DE3) (PDB ID: 3ROK) as previously described in Ref. [40]. In

order to relax plausible structural clashes in the modified

structure, the complex was subjected to relaxation by energy

minimization using Chimera software[55]; (b) the final corrected

structure was subjected to the profix program from the

JACKAL package (http://wiki.c2b2.columbia.edu/honiglab_pub-

lic/index.php/Software website: JACKAL)[56] developed in Dr. B.

Honig’s lab in order to add missing atoms and/or sequence

fragments; (c) the protonation of macromolecule was per-

formed with Chimera software[55]; (d) a model of the mem-

brane was built by ProNO Integrator[57] and was added to the

structural file. The entire structural file, including the mem-

brane model, is available for download from the website

http://compbio.clemson.edu/downloadDir/2YBB_H-MEM.pdb.

Computational environment

The numerical experiments reported below were performed

by a dedicated queue on the Palmetto cluster at Clemson Uni-

versity (http://citi.clemson.edu/palmetto). This computational

queue consists of one master node (Model: HP DL980G7)

equipped with Intel Xeon 7542 @ 2.7 GHz CPU and 50 GB

memory, and 200 slave nodes (Model: Sun X6250) equipped

Table 3. A detailed description for implementing duplicated calculations at extended boundary grids

Given NCPU available and Nmidpt midpoints, we assume Nmidpt � NCPU.

Step 1. All atoms are sorted according to their z-coordinates either by the regular (sequential) Quicksort method on the master processor, or by a

parallel Quicksort method on all processors.

Step 2. Many midpoints may have the same z-coordinates. Count the number of different z-coordinates that the midpoints have (for example, say p

different z-coordinates in total) and save the number of midpoints with the same z-coordinate in an array named counts (for example, say

counts5{k1, k2,…, kp} such that
Pp

i51 ki5Nmidpt .

Step 3. Each processor intends to perform calculations on the number of midpoints as close as possible in order to balance the workload on each

processor as much as possible. Because of this, first of all, the smallest number q1 satisfying
Pq1

i51 ki � Nmidpt=NCPU is searched and obtained. Then all

midpoints with their z-coordinates belonging to the subset {k1; k2;…; kq1
; kq111} are given to the 1st processor for future parallel computing. Notice

that all midpoints with z-coordinates equal to kq111 serve as the “extended right boundary grids”, especially in the case of kq1115kq1
11. The results

on them are calculated in case they may have impact on the calculations on the rest of points. However, these results are not collected by the

master processor for the final assemblage.Similarly, starting from kq1
11, the smallest number q2 satisfying

Pq2

i5q111 ki � Nmidpt=NCPU is searched and

obtained. Then all midpoints with their z-coordinates belonging to the subset {kq1
; kq111;…; kq2

; kq211} are given to the 2nd processor for future

parallel computing. All midpoints with z-coordinates equal to kq1
or kq211 serve as the “extended left/right boundary grids”, respectively, and the

results obtained on them are not collected.Repeat the same procedure until all midpoints are assigned to one processor. It is possible that there

are more processors left. In such case, these processors are marked “idle” and not involved in the next step parallel computing.

Step 4. All processors perform calculations of constructing surface on its own midpoints independently. The obtained results are sent back to the

master processor for the final assemblage.
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with Intel Xeon E5420 @2.5 GHz CPU and 32 GB memory. Only

one CPU per node participated in each run in order to avoid

possible memory competition on the same node. Both the se-

quential and parallel codes were compiled with GNU compiler

GCC version 4.5.1 (http://gcc.gnu.org/), and the parallel code

was executed using MPICH2 version 1.4 (http://www.mcs.anl.-

gov/research/projects/mpich2/). Myrinet 10 G is used for net-

work interconnect.

Both the sequential and parallel calculations were per-

formed on processors with identical hardware configurations

and were provided enough memory to avoid possible slow-

downs caused by additional data exchanges between the

memory and hard disk. All identical runs were repeated five

times and their averages are reported here in order to reduce

random fluctuations caused by temporary system workload

and network communication.

Numerical experiments and performance analysis

In order to compare the parallel experiments quantitatively to

the sequential ones, we are particularly interested in a standard

quantity, the speedup (more precisely, the absolute speedup):

SN5 T1

TN
; where T1 is the execution time of the sequential pro-

gram and TN is the execution time of parallel program running

on N processors. In principle, the higher speedup implies a bet-

ter mapping of the molecule onto the grid. The achieved

speedups at grid resolution 5 1, 2/3, and 1/2 Å/grid, resulting

in the total number of grids 5 3733, 5593, and 7473, are

selected to demonstrate the performance of the parallel DelPhi

at various grid resolutions. Other quantities commonly used in

performance analysis of parallel computing, such as efficiency

and scalabilities, will be defined and used as well in analyzing

the performance of the proposed parallelization scheme.

Numerical experiments

The first series of experiments were performed to solve the

PBE (linear and nonlinear) for the protein 2YBB using the

sequential DelPhi program in order to determine the computa-

tional cost on various grid resolutions and grid dimensions. All

parameters, shown in Table 1, except the resolution were fixed

in all experiments. Notice that the parameter ionrad is set to

be 4.0 Å (twice as large as the default value 2.0 Å) in order to

reduce the time cost for solving the nonlinear PBE and to

make it similar to the time cost of the linear calculations and

to make the three components of the calculations: the surface

construction, potential interaction, and energy calculations car-

rying similar weight in the total speedup. Thus at 10 CPUs, the

surface construction takes about 14 min, the energy calcula-

tions about 15 min and the SOR interactions about 56 min

with ionrad 5 4.0 Å or 10 h and 14 min with ionrad 5 2.0 Å.

Obviously in the case of ionrad 5 2.0 Å, the speedup will be

almost entirely due to the speedup of SOR algorithm, an

investigation already reported in our previous work. Because

of that, the ionrad was selected to be 4.0 Å to allow the

speedup to be assessed having contributions from the three

parallelized components mentioned earlier. The resulting CPU

time (in hours) of individual calculations (broken lines) and

total execution time (solid lines), by varying the grid resolution

are shown in Figure 3a (notice that smaller resolution results

in more grids and better approximation). It is obvious that all

CPU time increases dramatically in both linear and nonlinear

cases when using finer (smaller) resolution; especially, the time

for solving the nonlinear PBE (solid light-green line), which

requires significantly more iterations to achieve the given tol-

erance, increases rapidly from about 1 h when grids 5 3733

(resolution 5 1.0 Å/grid) to more than 11 h when grids 5

7473 (resolution 5 0.5 Å/grid) primarily due to the increase of

time cost by iterations (broken dark blue line). Figure 3b dem-

onstrates the percentages contributed by individual calcula-

tions at grid resolution 5 1, 2/3 and 1/2 Å/grid. One can see

that the three major components (surface construction, itera-

tion, and energy calculation) mentioned in the Introduction

section together contribute more than 97% of the overhead in

all cases, which re-emphasizes the importance of parallelizing

them in order to substantially reduce the computational cost.

The rest of the calculations (green bars) do not contribute

much and therefore are not parallelized and remain identical

in both sequential and parallel codes.

In the next series of experiments, the number of adopted

slave processors ranges from 10 to 100 in increments of 10.

The results obtained by our computational experiments are

shown in Figure 4. The achieved speedups for grid resolution

5 1, 2/3, and 1/2 Å/grid in parallel computing on various

CPUs are shown in Figure 4a, 4c, and 4e on the left panel,

respectively. In order to have better insight and compare the

performance of sequential and parallel implementations, three

examples at CPU 5 10, 40, 90 are chosen for detailed demon-

stration. The CPU time (in min) of individual calculations of

these three examples are demonstrated by the height of the

colored columns, as well as the contributed percentages of

individual calculations in the overall execution time are labeled

next to the columns on the right, in Figure 4b, 4d, and 4f on

the right panel for each grid resolution.

Performance analysis

From Figure 4a, 4c, and 4e, it is easy to see that the proposed

parallelization scheme is able to achieve better performance

(higher speedups) for solving both linear and nonlinear PBEs

when more CPUs (up to 100 CPUs) are utilized by observing that

the speedup lines of overall execution time (solid yellow and

light-green lines) increase monotonically from CPU 5 10 to CPU

5 100 and reach their peaks at CPU 5 100. It is also clear that

the problem size and complexity have great impact on the

achieved speedups. Taking the performance of the paralleliza-

tion scheme implemented in DelPhi at 100 CPUs as an instance,

the method achieved 16-time speedup (solid yellow line in Fig.

4a) for solving the linear PBE at grid resolution 5 1 Å/grid, and

achieved 33-time speedup (solid light-green line in Fig. 4e) for

solving the nonlinear PBE at grid resolution 5 1/2 Å/grid. How-

ever, in light of Amdahl’s Law, the speedup lines, which are not

flattened at their peaks when CPU 5 100, imply that the MLIPB

method has the potential to achieve higher speedups when

more than 100 CPUs are used or when the problem size is larger.
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Efficiency, which is defined as EN5 T2

N�TN
5 SN

N0 , is another quan-

tity which is closely related to speedup and gauges the per-

formance of parallel computing from another aspect. Its value

equals one in the ideal case of linear speedup. Efficiency deter-

mines how much computational power of each processor is

utilized in solving the problem, as compared to how much

effort is wasted in communication and synchronization. In our

case, efficiency, by its definition, can be easily calculated from

the results shown in Figures 4a, 4c, and 4e. For instance, when

solving the nonlinear PBE at grid resolution 5 2/3 Å/grid, the

method achieved 75% efficiency at 10 CPUs, and achieved less

efficiency, down to 28% at 100 CPUs (solid light-green line in

Fig. 4c) due to increasing network communication.

Earlier, the speedup and efficiency analysis is discussed in

strong scaling sense, where the problem size (grid resolution)

stays fixed while the number of processing units is increased

in terms of parallel scaling. Weak scaling is another case in

which the problem size assigned to each processing unit stays

constant and additional units are used to solve a larger total

problem. A discussion of weak scaling efficiency is not

applicable in this work due to the large size of the problem.

Numerically solving the PBE for the 2YBB protein at minimal

requirement (grid resolution 5 1 Å/grid) yields the total num-

ber of grids 5 3733, which can be done on 10 slave process-

ors. However, to keep the problem size the same on the slave

processors and to increase the number of the slave processors

involved in the calculations, it will require a dramatic increase

in the size of the problem on the master node. For example,

to complete the benchmarking on 10 slave processors it will

require grid size on the master processor to be 8033. While

this is still doable, the next increments to 20 and more slave

processors will make the problem too big to be handled by

the master processor because of the limits of its memory

capacity.

It should be pointed out here that the speedups shown in

Figure 4a, 4c, and 4e, as well as the efficiencies calculated ear-

lier, are achieved based on the total program execution time,

including the time consumed by the nonparallelized calcula-

tions after applying the parallelization scheme in the DelPhi

program. The same amount of time cost by nonparallelized

Figure 3. Increasing CPU time of the DelPhi program when calculating electrostatic potential and energies for protein 2YBB. a) CPU time cost by individual

calculations and overall execution time at various grid resolutions b) Individual percentage contributed by each parallel calculation when solving linear

and nonlinear PBE at three selected grid resolution 5 1, 2/3, and 1/2 Å/grid.
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calculations (green columns) contributes a little to the execu-

tion time in sequential experiments, but contributes increas-

ingly more notable fractions in all parallel experiments as the

number of CPUs increases due to the significantly reduced

time cost by parallelized calculations (purple, blue, and red

columns). For instance, the nonparallelized calculations for

solving the linear PBE at grid resolution 5 1 Å/grid contributes

3% (the first green column in Fig. 3b) in the overall execution

time, but contributes 27, 44, and 61% (the green portions of

the left three stacked columns in Fig. 4b) when the number of

used CPUs in parallel computing was 10, 40, and 90, respec-

tively. The same results can be observed for all other cases in

Figure 3b, 3d, and 3e.

The following observations are made in order to understand

how much the nonparallelized calculations slow down the

speedups at various grid resolutions. One can see that the

overall execution time (the solid yellow and green lines) stays

beneath (in Fig. 4a), or in between (in Figures 3c and 3e) the

Figure 4. Speedups obtained by the MLIPB method at grid resolution 5 1, 2/3, and 1/2 Å/grid and results obtained for selected examples at CPU 510, 40,

90. (a) and (b) Results obtained at grid resolution 5 1 Å/grid. c) and d) Results obtained at grid resolution 5 2/3 Å/grid. e) and f ) Results obtained at grid

resolution 5 1/2 Å/grid).
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broken lines for each individual calculations. This indicates that

the nonparallelized calculations (the same as those demon-

strated by the green columns in Fig. 3b) in the parallel code

have a smaller slow-down impact on the speedups of the pro-

gram execution as the number of grids increases. This result is

consistent with the observation of decreasing percentage con-

tributions by the nonparallelized calculations (green columns)

when the resolution decreases in Figures 4b, 4d, and 4f.

Due to the notable impact of the nonparallelized routines

on calculations of speedup and efficiency, additional attention

is required to investigate the individual performance of each

parallel calculation in order to fully understand the perform-

ance of the parallelization scheme.

The individual speedup, in the strong scaling sense,

achieved by each parallelized calculation is demonstrated by

broken lines in Figures 4a, 4c, and 4e. One can use the defini-

tion of efficiency to calculate corresponding efficiencies as

well. For example, it is observed that the techniques for paral-

lelizing surface construction, which perform best and complete

calculations 34 times faster when using 90 CPUs (38% effi-

ciency) at coarse grid resolution 5 1 Å/grid (broken red lines

in Fig. 4a), achieve much less maximal speedup, about 18

times faster, on 100 CPUs (17% efficiency) at finer grid resolu-

tion 5 2/3 Å/grid (broken red lines in Fig. 4c) and about 11

times faster on 100 CPUs (11% efficiency) at finest grid resolu-

tion 5 1/2 Å/grid (broken red lines in Fig. 4e). On the other

hand, the technique for parallelizing iterations, which achieves

maximal speedup of 21 in linear case (broken light-blue lines

in Fig. 4a) and speedup of 29 in nonlinear case (broken dark-

blue lines in Fig. 4a) on 90 CPUs (23 and 32% efficiency,

respectively), is surpassed by the techniques for parallelizing

surface construction at coarse grid resolution 5 1 Å/grid, but

outperforms the techniques for parallelizing surface construc-

tion by achieving speedup of 34 in linear case (broken light-

blue lines in Fig. 4c) and speedup of 52 in nonlinear case on

100 CPUs (broken dark-blue lines in Fig. 4c) on 100 CPUs (34

and 52% efficiency, respectively) at finer grid resolution 5 2/3

Å/grid, and speedup of 36 in linear case (broken light-blue

lines in Fig. 4e) and speedup of 54 in nonlinear case (broken

dark-blue lines in Fig. 4e) on 100 CPUs (36 and 54% efficiency,

respectively) at finest grid resolution 5 1/2 Å/grid (see also

Ref [37]).

The techniques for parallelizing energy calculations, which

achieve maximal speedups of 86, 55, and 55 at grid resolution

5 1, 2/3, 1/2 Å/grid, outperform all other parallelization techni-

ques in terms of speedup and become the most effective

methods in the parallelization scheme. The same conclusion

can also be drawn from the concrete examples in Figures 4b,

4d, and 4f by noticing that the percentages made by the par-

allel energy calculations decrease while the percentages made

by the other techniques increase provided that the number of

adopted CPUs is fixed.

The reported parallelization scheme is an alternative to the

standard space domain parallelization. We compared the effi-

ciency achieved by the MLIPB method to the parallelization

method implemented in APBS[22,23,58] and observed that,

although these two methods have very different approaches

and emphasize different aspects to parallelize the correspond-

ing numerical method for solving PBE, they are essentially

equally efficient.

Memory requirement

Another major limitation, aside from the computational time,

is the memory requirement for parallel computing. It is true

that in our parallel implementation, the master process

requires extra memory to maintain the data arising from the

MPI framework in addition to the same amount of memory for

the data required by the sequential implementation due to

the master-slave paradigm we chose to use. The memory

could be the leading limitation, for example, when the master

process, as well as several slave processes, run on the same

computer node. As mentioned in the section of computational

environment, we circumvented this issue by requiring one pro-

cess per node, and especially, the master process be assigned

to the master node with larger memory.

Memory usage is important, however, it was not our primary

concern to reduce memory usage of every process, including

the master process, when the parallelization scheme was de-

velopment. Our goal was to reduce the memory usage of the

slave processes so that either multiple slave processes can be

run on one computer node with enough memory, or so that

the slave process can be run on a computer node with less

memory. Taking the Palmetto cluster as an example, more

than 90% of computer nodes on this cluster have less than 32

GB memory and only five computer nodes have memory

larger than 500 GB (http://desktop2petascale.org/resources/

159). This implementation strategy reduces the burden on the

cluster’s architecture because only the master node is required

to have large memory.

Electrostatic potential and field distributions in

large protein complex

Recent work[40] revealed the 3D structure of bovine mitochon-

drial supercomplex and indicated that the arrangement of the

components within the complex supports the solid state

model of organization.[59] The same investigation[40] suggested

the binding sites for various cofactors (ubiquinones and

hemes) and a small protein electron carrier: cytochrome c.

However, the specific pathways guiding the electron from one

site to another are still under debate. Here we use the electro-

static potential and field maps calculated with parallelized Del-

Phi to demonstrate the complexity of their 3D topology, a

topology that cannot be obtained by modeling the individual

components alone. Such electrostatic potential and field map

would be essential component in understanding the role of

electrostatics in the electron transport processes and in analy-

sis of plausible pathways among the electron donor and

acceptor sites.

The potential map was calculated as described earlier and

visualized using VMD viewer.[42]. Figures 5a and 5b show the

electrostatic field lines and the potential distribution in the

case of the membrane being oriented perpendicular to the

view. One can appreciate the complexity of a 3D distribution
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and the fact that electrostatic potential forms distinctive pat-

terns between the subunits of the complex.

Figures 5c and 5d show electrostatic potential and field dis-

tributions at the opposite side of the membrane. Similarly to

the Figures 5a and 5b, one can see that electrostatic field

forms well-defined pockets and these pockets are connected

to each other via electrostatic interactions across the interface

of the components of the complex. It should be reiterated

that these results cannot be obtained by modeling individual

subunits within the supercomplex, but require the entire struc-

ture to be used in the Poisson-Boltzmann calculations, a task

for which the parallelized DelPhi is particularly well suited.

Discussion

In this work, we present a set of techniques to parallelize exist-

ing numerical methods for solving PBE, accelerate calculations

of electrostatic potentials, and energies of large proteins and

complexes. This parallelization method has been implemented

in a popular PBE solver, the DelPhi program, and it was

demonstrated that the parallelization scheme dramatically

reduces the time for calculations. A reduced time is critical for

large systems for which the modeling cannot be done by

parts; as is the typical case when dealing with the electrostatic

properties due to the long-ranged nature of electrostatic

potentials (as demonstrated on bovine mitochondrial com-

plex). With the progress of the development of methods for

structural determination and prediction, it is anticipated that

more and more structures of macromolecular assemblages will

be available and their modeling will require parallelized techni-

ques to solve the PBE.
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Figure 5. Resulting electrostatic field and potential maps of the bovine mitochondrial supercomplex. Membrane is shown as a slab made of pseudo atoms.

a) Electrostatic field distribution in case of side-view; b) Potential distribution in a plane at the center of the supercomplex, side-view. The protein moiety

is shown as well; c) Electrostatic field distribution in case of membrane-view; and d) Electrostatic potential mapped onto molecular surface of the super-

complex, membrane-view. The protein moiety is shown as well.
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