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Progress in developing Poisson-Boltzmann equation
solvers

Abstract
This review outlines the recent progress made in developing
more accurate and efficient solutions to model electrostat-
ics in systems comprised of bio-macromolecules and nano-
objects, the last one referring to objects that do not have bio-
logical function themselves but nowadays are frequently used
in biophysical and medical approaches in conjunction with
bio-macromolecules. The problem of modeling macromolec-
ular electrostatics is reviewed from two different angles: as a
mathematical task provided the specific definition of the sys-
tem to be modeled and as a physical problem aiming to better
capture the phenomena occurring in the real experiments. In
addition, specific attention is paid to methods to extend the
capabilities of the existing solvers to model large systems to-
ward applications of calculations of the electrostatic poten-
tial and energies in molecular motors, mitochondria complex,
photosynthetic machinery and systems involving large nano-
objects.
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1. IntroductionThe macromolecular stability, dynamics, and interactions are governed by a precise balance of various forces amongwhich the electrostatics plays a prominent role. The reason for that is the fact that practically all atoms carry partialcharge and the distance between atoms are of the order of several angstroms. At such conditions, the magnitude of theelectrostatic force is comparable to, and even exceeds some of the other components. In addition, the main differencebetween electrostatics and other effects and energies is that pH- and salt-dependent effects are primarily electrostaticsin origin. Taking all these facts together, modeling of electrostatics is a must for understanding the effects in molecularbiophysics [14, 15, 87, 97, 164, 173, 184]. A collection of relevant papers can be found in the special issues of thejournal Communications in Computational Physics [118, 121, 127, 148, 156, 183], where various methods for modelingelectrostatics and their applications in molecular biology are presented.However, while the modeling of electrostatic potential and the corresponding energies is an important task, accomplishingthe task is not trivial. In explicit-solvent models the difficulty comes from the large number of atoms (macromolecularand water atoms) which have to be simulated while computing their mutual interactions at each step of the simulation.Having in mind the long-range effect of electrostatic interactions, many existing modeling packages apply a cut-off
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Progress in developing Poisson-Boltzmann equation solvers

for electrostatic interactions to speed up the calculations or utilize Particle-Mesh-Ewald (PME) [1, 39, 140] and fastmultipole methods (FMM) [12] to account for it. Combining this with the potential problems of reaching convergenceas the size of the system gets large, modeling large systems with explicit methods is still a challenge [99], althoughsignificant progress has been made in developing fast molecular dynamics packages such as NAMD [91, 132, 170],GROMACS [137, 161], and the development made by D.E. Shaw’s group [62, 133, 138], just to mention some. Onthe other side of the spectrum are methods utilizing continuum electrostatics, which generally consider the water ascontinuum medium with a high dielectric constant, while the macromolecule(s) is treaded as a cavity with a low dielectricconstant [15, 22, 87]. These approaches have the advantages of modeling the system at equilibrium, so convergenceis not an issue, and are much faster than the explicit methods. However, it comes with the price of losing most of theatomic details, which in cases involving specific macromolecular-water molecules interactions may lead to significanterror. Hybrid methods do exist as well, but the main problem arises in modeling the interface and interactions betweenthe explicit and implicit phases [65].In this review we will focus on a particular subset of continuum electrostatic approaches, namely the approachesutilizing the Poisson-Boltzmann equation (PBE) to deliver the electrostatic potential and energies (see the recentexcellent review [118]. The popularity of PBE in macromolecular electrostatics is due to the fact that it is a solution of awell-defined physical problem and that there are many computational techniques to obtain the solution of the PBE forirregularly shaped objects. Combined with the ever increasing capabilities of modern computers and computer clusters,the methods based on the PBE enjoy a huge user base and are used in many biophysical applications. Such a demandprompted many groups to develop software and web-based resources to utilize the PBE method [144, 153, 160].In our opinion, the methods utilizing PBE and the efforts in developing new or improving existing solutions can beroughly grouped into two main categories: (a) mathematical and computational developments to improve the PBEsolution provided a well-defined system made of two or more dielectric regions and (b) physics-based approaches tobetter capture the effects originating from atomistic nature of the macromolecule(s) and water phase. Although thesegroups of methods share the common ultimate goal to better model macromolecular electrostatics, they differ in theiremphases and approaches and will be outlined in separate sections of the review.This review will also outline the progress made in developing faster PBE solvers capable of handling large systems [17,106] (larger than thousands of Angstroms). Such a development was inspired by the availability of atomic structuresof large macromolecular assemblages typically obtained via combined efforts of X-ray crystallography and electronmicroscopy. Thus, recently large assemblages of mitochondria complex [8], photosynthetic machinery [2, 66], ribosomecomplex [67, 73, 155], and many others [41, 53] were obtained. Frequently such complexes are involved in electronor proton transfer via long and complex pathways, the revealing of which requires precise calculations of the globalelectrostatic map and energy components.
2. Mathematical and computational developmentsIn order to proceed with this section, we need first to define the framework of the problem. Typically, it is defined as thetwo dielectric media problem (Fig. 1) [118], where the macromolecule is considered to be a low dielectric cavity and thewater phase to be a homogeneous high dielectric medium. The goal is to develop methods and computer code to delivera more accurate solution in shorter execution time. By more accurate solution one means that the numerical solution isvery close to the analytical one in cases of simple geometry, when analytical solution can be obtained [109]. It is assumedthat if this is achieved, the corresponding method will be accurate even for cases for which an analytical solution doesnot exist. Another way of defining the accuracy is as the mathematical approach that suffers the fewest assumptions.Alternatively, one can argue that if the results at various levels of resolution converge quickly to a particular value,the corresponding method is accurate [42, 187]. The execution time strongly depends on the size of the system to bemodeling and required resolution to achieve accurate results. For relatively small biological macromolecules of sizesmaller than one hundred Angstroms and resolution of about 0.5Å or 0.25Å, most existing software for solving PBE arecapable of delivering the results in minute-time scale. One can argue that such a speed is sufficient even in the caseof computing a large number of cases, because the jobs can be submitted in parallel over multiple processors within acomputer cluster, a computational resource which nowadays is abundant. However, in cases of large systems (largerthan 500Å) and the same resolution as above, the computational time can be prohibitively large which combined withthe memory requirements prompts developing new computational approaches for solving the PBE.We will begin this section by outlining the most popular methods for solving the PBE for irregularly shaped dielectriccavities (macromolecules) immersed in a water phase. By doing so, we will omit the details of mathematical derivation
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Fig 1. A two dielectric media problem. The space is divided into 3 regions by the molecular surface(solid curve) and the ion-exclusion layer (broken
curve): Ω1(molecule), Ω2(stern layer) and Ω3(water environment). Mobile ions, carrying either positive or negative charges, are only present
in the water phase.

of the corresponding equations and formulae, and will skip the discussion about the boundary conditions at the interfacemacromolecule-water while focusing on the basis principles of each of the methods, recent developments, and describingtheir capabilities. Readers interested in more detailed discussion about the boundary conditions and formulation of thecorresponding equations should be directed to a recent excellent review [118].
2.1. The Poisson-Boltzmann equationThe PBE is a nonlinear elliptic partial differential equation taking the form of [58, 85, 87]

∇ · (ε (x)∇φ (x))− k (x)2 sinh (φ (x)) = −4πρ (x) (1)
where φ is the electrostatic potential, ε is the spatial dielectric function, k is a modified Debye-Huckel parameter, and
ρ is the charge distribution function. Eqn. 1 is simplified and linearized by approximating sinh (φ) ≈ φ when the atomsare not highly charged. Eqn. 1 takes different forms in different space domains indicated in Fig. 1.The ultimate goal is to obtain the ?throughout the space and then to deliver the corresponding electrostatic energy. Theelectrostatic energy then can be further broken into components such as Coulomb and solvation energies and the energyof interactions between ions and permanent charges [141]. Below we describe the basic concepts of several popularnumerical approaches of solving the PBE.
2.2. Finite differenceFinite difference (FD) methods for solving PBE are more intuitive when comparing to others (finite element, boundaryelement methods, etc.). They are based on superimposition of regular rectangular Cartesian mesh over the system wherethe PBE will be solved. Following the standard Finite volume approach, one can deliver a formula to calculate thepotential of Eqn. (1) at each grid point [36]

εi−1/2,j,k [φi,j,k − φi−1,j,k ] + εi+1/2,j,k [φi,j,k − φi+1,j,k ] + εi,j−1/2,k [φi,j,k − φi,j−1,k ] + εi,j+1/2,k [φi,j,k − φi−1,j,k ]+
εi,j,k−1/2[φi,j,k − φi,j,k−1] + εi,j,k+1/2[φi,j,k − φi,j,k+1] + (κh)2 sinh(φi,j,k ) = 4πqi,j,k /h, (2)

where ε′s are the dielectric constants at neighboring mid points, h is the uniform grid spacing in x-, y- and z- directionand qi,j,k is the total charge within the cubic volume centered at grid (i, j, k). One should iterate Eqn. 2 over all grid
44

Brought to you by | Clemson University
Authenticated | 10.248.254.158

Download Date | 9/25/14 6:51 AM



Progress in developing Poisson-Boltzmann equation solvers

points until desired criterion is achieved. We should mention that there are many alternative formulations of Eqn. 2,depending on the approximations made. For more details, interested readers are advised to see [36].The obvious advantage of the Cartesian grid method is that there is practically no computational cost for the gridgeneration. However, the major disadvantages are the charge distribution singularities and the artificial component ofthe grid energy originating from interactions between grid points carrying partial charges from the same atomic charge.However, these problems can be avoided by utilizing the energy decomposition method [141], instead of dealing withthe grid energy itself.There are various solvers that utilize FD schemes for solving the PBE, among them PBSA [36, 168], MEAD [21],MIBPB [42], PBEQ [92], UHBD [122], ZAP [134], DELPHI [109], and many others (Table 1). Below we will briefly outlineseveral particular implementations, which are currently among the most popular software used in the computationalcommunity.Most of the recent developments in the area of Finite Difference Poisson-Boltzmann (FDPB) method were done by Luoand co-workers (readers interested in earlier developments are advised to check the works due to Honig, Nicholls, Sharpand Gilson [70, 128, 146] and McCammon group [56, 57, 120]). It is outside the scope of this review to describe allcontributions made by Luo’s lab, since it will require writing a separate paper. Currently, the PBSA is one of the mostpopular PBE solvers and is incorporated into the Amber package [36, 168]. Both linear and non-linear forms of PBEare supported. Among linear PBE solvers users can choose between conjugate gradient, modified incomplete Choleskyconjugate gradient (ICCG), geometric multigrid, and successive over-relaxation methods (SOR) [167]; to solve a non-linear equation one can select either the Inexact Newton (NT) method in conjunction with modified ICCG or geometricmultigrid, conjugate gradient, SOR, adaptive SOR and damped SOR [36]. In addition to the traditional methods [166],which were shown to yield a very high degree of consistency with DELPHI [142], a new discretization method, theImmersed Interface method (IIM), was developed and implemented in the PBSA [165]. In IIM the standard FD scheme isused for regular grid points, which are far from the interface. The linear equations on the irregular grid point (close tothe interface) involve 27 grid points and are constructed by minimization of the local truncation error magnitude [165].Many other features are currently available in the PBSA as separate treatments of attractive and repulsive componentsto determine non-polar solvation energy [157] and polarizable force field [158].The ZAP software developed by Nicholls and co-workers is part of the OpenEye library [72]. Perhaps the most distinctivefeature that makes ZAP unique among all FDPB methods is the presentation of the atoms within the macromolecule. InZAP, the density of an atom is treated as a Gaussian density function, instead of more commonly used van der Waalsspheres:
ρGA (r) = pA exp(−kr2

A
σ 2
A

)
, (3)

where pA, k and σA are parameters of Gaussian function and rA is the radial distance from atom A.The delivered density is then used for dielectric mapping and molecular surface assignment. It is emphasized that suchan approach results in a smooth change of dielectric constant between solute and solvent areas. Later, in 2004, theZAP algorithm was incorporated in the CHARMM [34] package, providing a fast and stable smooth permittivity modelfor implicit salvation energy calculations in molecular dynamics simulations [135]. Furthermore, in order to increase thespeed of calculations, a modified ZAP (CHARMM-ZAPI model) was introduced as a hybrid implicit solvent model [134].In this model, the solute-solvent area is described by the mean of a two-zone model, where the non-polar effect ofthe water molecules is treated implicitly with the accessible area model; electrostatic is calculated with previouslydescribed smooth permittivity based FD model for solving PBE when close to the solute and by Coulombic model whenfar from the solute; and ions in solution and the macromolecule itself are treated explicitly with a Langevin dynamics.In comparison with totally explicit-solvent model, the two zone model, presented in ZAP, shows significant reductionin computational time, while retaining an accurate treatment of the electrostatics near the solute. At the same time, aZAP-based algorithm for predicting pKa’s was used in pKa-cooperative [5, 129] and it was demonstrated that it deliversaccurate predictions [174].Matched interface and boundary method (MIB), developed by Wei and co-authors, is another novel method for deliveringsolution of the PBE in conjunction with the FD scheme [69, 180, 188, 189]. The MIB, in addition to the standard scheme,allows for special treatment of the solute-solvent interface jump condition, which makes the original PBE well-posedfor sharp solvent-solute interfaces [42, 69]. The basic idea of the MIB scheme is to define sets of regular and irregulargrid points near the interface, according to the desired convergence order. Irregular grid points near the interface arecalculated by applying a smooth extended potential function according to the need of a high order discretization scheme
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by the iterative use of lowest order jump conditions. Subgrid information given by interface and mesh intersectingposition, fictitious values determined by interface, and values of the function in regular grid points are implemented infinite-difference central scheme. Fictitious values of the potential function guarantee the smooth change of parameterson the solute-solvent interface, and eliminate dielectric constant discontinuity and molecular surface shape singularity.The charge source term singularity (delta function) is removed by decomposition of PBE into regular and singular parts(Dirichlet to Neumann mapping method) [180]. The MIB performance was shown to be impressive - resulting in shortcomputational time and high accuracy at a given mesh size [42, 69, 180]. The MIB is the first and only known second-order convergent FD PB solver tested on singular protein surfaces generated by the MSMS software package [187],although other methods such as curved boundary method. [20] and fast multipole boundary element [11] were reportedto achieve similar or even better convergence on the spherical geometry (Kirkwood model), for which the MIB methodachieves six order convergence [181].DelPhi, originally developed in Honig lab and currently maintained in Alexov’s lab, provides a numerical solution for PBEbased on the finite-difference scheme coupled with unique implementations of Gauss-Seidel and SOR iterations [109].Among the unique DelPhi features are the abilities to assign different dielectric constants to multiple regions, to treatmixed ions with various valence [141] and to generate the molecular surface by utilizing marching cube algorithm [142].Perhaps the most unique feature of DelPhi is the capability to handle geometrical objects [142]. Recently, it wasextended to an atomic-style presentation of the geometrical figures along with visualizing and manipulating the sizesand shapes of the geometrical objects [152]. As output files, the DelPhi allows for calculating not only the electrostaticpotential map, but also dielectric constant and ion concentration maps. Recently, a parallelized DelPhi was reportedwhich allows calculating the electrostatics of large supramolecular structures [106, 107].It should be mentioned that DelPhi was implemented into DelPhi web server (http://compbio.clemson.edu/sapp/
delphi_webserver/). It calculates electrostatic energies, electrostatic potential, ions, and dielectric maps for a givenmacromolecule [172]. The extra features implemented in the web server allow for fixing structural defects of the moleculeand placing the missing hydrogen atoms with selected force field parameters before DelPhi calculations. The DelPhi webserver utilizes Jmol viewer. [77] to visualize the corresponding structural file and, if requested, electrostatic potential canbe mapped onto a molecular surface [144]. Furthermore, the server was upgraded to generate atomic-style geometricalfigures such as Parallelepiped, Sphere, Cylinder, Cone, as well as more complicated geometric objects [153]. The positionand size of the object can be manipulated by the user in real time.
2.3. Finite elementThe Finite Element Method (FEM) is another popular mathematical technique for finding numerical approximation tothe solutions of differential/integral equations by discretizing the bounded problem domain into a number of subdo-mains, called the finite elements, over which the solutions are approximated by local basis functions, usually low-orderpolynomials. This method is enjoying increasing attention from many research areas due to its capabilities of solvingnonlinear equations, adaptively refining local meshes, providing rigorous convergence analysis and delivering highlyaccurate approximations to the exact solutions of the original equations. Following the Galerkin approach, the FEMapproximates the exact solution φ of Eqn. 1 by φ̄h, a linear combination of the basis functions uh of a subspace Vh ofthe Sobolev space H10 (Ω), such that

< F
(
φ̄h
)
υh >:= ∫Ω (ε∇φ̄h)·∇υh + k2 sinh (φ̄h)υh − fυhdx = 0, ∀υh ∈ Vh, (4)

provided φ̃h is an approximation to the boundary condition φ̃, φ̄h ∈ φ̃h+Vh and f is a sum of square integrable functionsapproximating the right-hand side of Eqn. 1.One FEM approach to solve the PBE can be traced back to Bowen and Sharif’s work [33] and further improved by Holstand co-workers [13, 79, 80]. In their work, piecewise linear finite elements over a simplex tessellation of a truncatedsolvent-filled sphere around the biomolecule, as well as a posteriori error estimation for adaptive mesh refinement,was used [80]. The FEM, coupled with the inexact-Newton-multilevel methods [82, 84, 86], was implemented in thesoftware Manifold Code (MC) aiming at solving a general class of nonlinear elliptic equations, including PBE, in 2- and3-dimensional spaces [78]. It was not until recently that the first rigorous a priori error estimate for a Galerkin-basedFEM applied to solve the PBE and corresponding approximation theory were established in [3, 44, 81] and briefedin [83]. These developments are expected lead to another major improvement of FEM PBE solvers.
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Progress in developing Poisson-Boltzmann equation solvers

Motivated by the success of the MC package, the numerical routines for solving the PBE in MC libraries, as wellas other algorithms developed by Baker and co-workers, were implemented in the Adaptive Poisson-Boltzmann Solver(APBS) [17] and reported in [13] (Table 1). The APBS now has become one of the most popular FEM solvers for PBE.Other recent developments of APBS include a) parallel computing of the PBE on massively parallel computers [16, 17]by the parallel refinement techniques introduced in [18], b) a Java-based graphical user interface (GUI) for electrostaticcalculations at the membrane with APBS as a back-end for solving the PBE [38], c) web servers and services forelectrostatic calculations using APBS and PBD2PQR [160], and d) a modular programmatic interface to the APBSlibrary of electrostatic calculation routines [96].A newly developed weighted adaptive Least-Squares FEM, also known as the first-order system least-squares (FOSLS)FEM, proposed by Olson and co-workers [23, 40] for solving linear Regularized PBE (RPBE) can be viewed as analternative to traditional Galerkin and mixed Galerkin FEMs and are worth being mentioned here. In this method, thelinear RPBE is reformulated into a system of first-order equations. A quadratic functional based on the residual of thesystem of equations is constructed. Minimizing the functional provides a posteriori error estimation for adaptive meshrefinement. This approach, when comparing to other FEMs, delivers optimal convergence for both the potential and itsgradient field, yielding accurate calculations of solvation free energy and other physical quantities [40].Other variations of the FEM and acceleration techniques are available [118]. Such methods include the FEM developedby Friesner and co-worker [51], the FEM using Newton-Krylov iterations developed by Noy and co-workers [147], anda mortar FEM developed by Zhou and co-workers [175]. These methods could lead to new numerical approaches forinterested readers and thereby are listed here for the completeness of this section.
2.4. Boundary elementSince a biological molecule in water can be considered as a low dielectric media immersed in a high dielectric media,the boundary of these two different mediums is the surface of the molecule, termed S (solid curve in Fig. 1). Thus theentire space is divided into two different regions (note the difference with respect to the three regions shown in Fig. 1:1)Ω1, the region inside the molecule with dielectric constantε1; and 2)Ω2and Ω3, the regions outside the molecule withdielectric constantε2. In water phase, ε1 < ε2, and one can define the dielectric ratio, ε = ε2

ε1 .Using Green’s theorem, Boundary Element Method (BEM) converts the volume integral of the entire space into a surfaceintegral on the boundary S. The electrostatic potential at position −→R can be obtained via the following equations (formore detail and the corresponding derivation see Refs. [31, 68, 93, 111, 112, 116, 143, 182]):
12 (1 + ε)φ(−→R ) = ∫�

s

[(G0 −Gκ )∂φ∂n (−→ρ )− (∂G0
∂n − ε

∂Gκ

∂n

)
φ(−→ρ )]dS + Nq∑

k=1 qkG0 (−→R ,−→ρ k

)
, (5)

12
(1 + 1

ε

)
∂φ
∂n0 (−→R ) = ∮

s

[(
∂G0
∂n0 −

1
ε
∂Gκ

∂n0
)
∂φ
∂n (−→ρ )− ( ∂2G0

∂n0∂n −
∂2Gκ

∂n0∂n
)
φ(−→ρ )]dS + Nq∑

k=1 qk
∂G0
∂n0

(−→R ,−→ρ k

)
, (6)

where qk = Qk
ε1 is the normalized charge, n is the normal directed from Ω1 to Ω2, κ2 = 8πe2I

ε2kBT denotes the Debye-Huckelscreening parameter, and Gκ (−→R ,−→ρ ) = exp[−κ|−→R−−→ρ |]4π|−→R−−→ρ | is the fundamental solution of the linear PBE such that G0(−→R ,−→ρ )(when κ = 0) represents the fundamental solution of the Poisson equation.By converting the volume integral into a surface integral, the number of points concerned is reduced. However, theaccuracy of the surface representation is extremely important for this method. Although lots of works used differentdefinitions of the surfaces, such as van der Waals [131], solvent-accessible [102], or solvent-excluded surfaces [50], thereis no clear conclusion indicating which definition is the best.In order to make BEM suitable for electrostatic calculations for biological macromolecules, many groups have madeimprovements [20, 93, 111, 136, 163, 185] to the original BEM work [182] and developed different solvers (Table 1).To accelerate the Boundary Element Method, different techniques have been implemented, such as fast multipolemethod [10, 24, 31, 74, 113], fast Fourier transform (FFT) method [35, 98], and other methods [75, 114, 159]. Thelargest BEM calculation for biomolecules on a serial platform was performed on a ribosome complex, which containsabout 500 K atoms [45]; while the largest BEM calculation on parallel (GPU) platform was performed on multi-millionatom systems [179].
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Table 1. Existing numerical methods and corresponding solvers for solving PBE.

Program
name

charge Program
available for
download

URL description

Finite DifferencePBSA(AMBER) Part of Amber package yes http://ambermd.org FD scheme offering numerous algo-rithms to deliver the solution; po-larizable force fieldDELPHI No charge for academia yes http://compbio.clemson.

edu/DelPhi.php

FD scheme with the Gauss-Seideliteration techniqueMEAD No charge yes http://hospital.stjude.

org/mead_filerequest/

request.html

FD algorithm; includes modeling ofa membrane as a low dielectric slab,possibly with a water-filled channelthrough a protein in the membraneMIBPB No charge yes http://www.math.msu.

edu/~wei/MIBPB

High order discretization schemeclose to the molecule-solvent inter-face; Dirichlet to Neumann map-ping methodPBEQ Part of Charmm package yes http://www.charmm-gui.

org/?doc=_input/

pbeqsolver

Calculates electrostatic potentialand solvation energy, in both aque-ous solvent and membrane environ-ments.UHBD No charge yes http://projects.h-its.

org/mcm/projects/

afwb-2002/uhbd.html

Capable of solving the linearand non-linear Poisson-Boltzmannequation using a finite-differencemethod; performing Brownian dy-namics simulations of the associa-tion of two molecules and of the in-ternal dynamics of a protein.ZAP commercial yes http://www.eyesopen.

com/zap-tk

Very fast algorithm with Gaussianrepresentation of the dielectric con-stant
Finite elementAPBS No charge yes www.poissonboltzmann.

org/apbs

An adaptive finite element Poisson–Boltzmann solverNA NA no NA Numerical solution of the Poisson–Boltzmann equation using tetrahe-dral finite-element meshesNA NA no NA FEM using Newton-Krylov itera-tionsNA NA no NA A mortar FEM Poisson–BoltzmannsolverNA NA no NA A first-order system least-squaresFEM for the PBE
Boundary elementAFMPB NA yes http://cpc.cs.qub.ac.

uk/summaries/AEGB_v1_0.

html

An adaptive fast multipole Poisson–Boltzmann solver
FTWARE NA yes http://cvcweb.ices.

utexas.edu/software

Derivative boundary formulation ofthe problem;A smooth approximation of themolecular surface.FFTSVD NA no NA multiscale algorithm and FFTmethodFPB commercial no http://

continuum-dynamics.

com/lib-pro-fpb.html

A hybrid approach for solvingthe nonlinear Poisson–Boltzmannequation
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McCammon and co-workers developed a BEM solver called AFMPB [114], which implements various techniques toaccelerate calculations. At the surface generating stage, the traditional BEM discretizes the surface into triangularelements and the number of unknowns is equal to the number of triangular elements. In AFMPB, a “node-patch”approach is developed to reduce the number of unknowns on the surface, thus the calculation time is reduced as well.The idea of “node-patch” is to construct a “working” patch around each node, using the centroids of adjacent elementsand midpoints of surrounding edges, and assume the unknowns are constants on each new “node-patch”. Therefore, thecharge on the patch is approximated by the product of the unknown at the node and the total area of the node-patch forfar-field integration, while normal quadrature method is used as in the constant or linear element method for near-fieldintegration. After discretizing the surface in a “node-patch” way, adaptive fast multipole method and Krylov subspacemethod are used to speed up the iterations.The FFTSVD is another fast BE solver [9], developed by White and co-workers, which is aimed at modeling electrostaticsproblems in bio-microelectromechanical systems (bio-MEMS). The main feature of FFTSVD is that the calculation oftotal actions is done via a fast multiscale algorithm. This algorithm calculates the actions at different length scalesseparately, and then combines them together at the end. In order to calculate the long-range interactions, a FFT methodis implemented to project the sources onto grids and then interpolate the results back from the grids.The BEM section will not be completed without mentioning the contributions made by Fenley and Boschitsch. Their fastmultipole linear PBE is described in series of papers [31]. Further, they developed a nonlinear PBE solver that combinesboundary element and finite difference to solve the nonlinear PBE [28, 31]. Special attention was paid on the boundaryformulation [29, 30]. These methods were applied to solve various problems in molecular biology [76, 95, 176, 177].It should be mentioned as well that polarizable continuum models (PCMs) are another group of widely used implicit sol-vent models based on reaction-field theory and boundary-element discretization of the solute/continuum interface [100].Typically in these methods one forces the integral equation to be satisfied exactly at a set of discrete points on theboundary, utilizing various techniques [19]. In addition, the PCM was used to develop various models as SMD, a contin-uum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuumdescription of the solvent [124]; a Debye-Huckel-like screening model (DESMO) [101]; and to calculate hydration freeenergies of small molecules [126].
2.5. Other methodsBesides the three primary classes of methods mentioned above, there is another category of methods, termed the indirectapproaches [118], to achieve the numerical solution of the PBE by approximating the solutions of other equations orsystems of equations in the equilibrium state, which solve the PBE as well.One such indirect approach was introduced by Ortoleva and co-workers [145]. A vibrational functional £ is defined as

£ [φ] = ∫Ω
(12ε (r) |∇φ (r)|2 − 4π ∫ φ(r)

0 dφ′ρ(r, φ′))d3r (7)
and the PBE can be obtained by minimizing the functional 7 with respect to φ, provided that φ and its derivativesvanishes on the boundaries of the domain Ω.Using a Largevin steepest descent approach with friction coefficient ε−1

ε (~r) ∂φ∂t = −δ£δφ (8)
to minimize the function £ yields an advection-diffusion equation

∂φ
∂t =∇2φ + ∇ε · ∇φε + 4πF

ε

Nions∑
i=1 zic

∞
i exp(−ziFφRT

)+ 4π
ε

Ncharges∑
i=1 qiδ (~r − ~ri) , (9)

where t is a pseudo time variable.The Parabolic Eqn. 9 is solved by an operator splitting scheme, the 3D Douglas alternating direction method (ADI) [61],such that the advection and nonlinear terms are calculated explicitly, while the diffusion term is computed implicitly
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with modifications described in [55] for fast convergence and unconditional stability. The steady-state solution to Eqn. 9agrees with the solution to the PBE due to the existence and uniqueness of the solution to the PBE.The pseudo-time indirect method described above provides a new insight and points out a new direction of numericalmethods development to solve the PBE. However, the intermediate potentials obtained while the pseudo-time tevolvesdo not possess clear physical meaning. Hence, in this method, the time increment ∆t is preferred to be chosen to be aslarge as possible without considering the accuracy of the computed intermediate values as long as the steady state canbe reached. It has been shown that extremely large ∆t could be used for particular runs [147].Another real-time indirect method introduced by recent work of Lu, Zhou, and co-workers relates the PBE to the systemof Poisson-Nernst-Planck equations (PNP) [119]
∂pi (r, t)
∂t =∇ · (Di (r) (∇pi (r, t) + β∇

(
qiφ (r, t))pi (r, t))) , r ∈ Ωs, i = 1, . . . , k (10)

∇ · ε (r)∇φ (r, t) = −ρf (r)−∑
i
qipi (r, t), r ∈ Ω, i = 1, . . . , k (11)

where pi (r, t) is the density distribution function of the diffusing particles of the ith species with diffusion coefficient
Di (r), ρi is the fixed source charge distribution, k is the number of species, β = 1/kBT is the inverse Boltzmann energy,and Ωs is the solvent region consisting of one or multiple diffusive species, such as mobile ions and small diffusingmolecules. It is easy to see that Eqn. 11 is reduced to the PBE when assuming 1:1 ionic solution and no other diffusingspecies except mobile ions. Solving the PNP equation is out of the scope of this work. Interested readers are directedto [105, 115, 117, 119] for more details.The solution of the PBE can also be achieved by solving the coupled system of PNP equations at the equilibrium state

∇ ·
(
Di (r) (∇pi (r, t) + β∇

(
qiφ (r, t))pi (r, t))) = 0, r ∈ Ωs, i = 1, . . . , k (12)

−∇ · ε (r)∇φ (r, t)− ρf (r)−∑
i
qipi (r, t) = 0, r ∈ Ω, i = 1, . . . , k (13)

Eqn 12-13 extends the PBE to include more physical effects that could affect diffusion and electrostatics, and can besolved by previously described numerical methods, such as the Gauss-Seidel iteration method [118, 119].A stochastic approach utilizing Monte Carlo methods for solving the PBE was developed by Mascagni, Fenley, andco-workers and it was shown that the stochastic based linear 3D PBE solvers have very low memory demands [64, 121,125, 150]. It was demonstrated that by applying a series of numerical optimizations one can make the computationaltime of these Monte Carlo LPBE solvers competitive with deterministic methods.
3. Physics based approachesAt atomistic level of detail, a system made up of macromolecules immersed in water can be considered as a multitude ofatoms: atoms of water molecules and amino acids (nucleic acids). The goal of physics based continuum electrostaticsis to capture (or mimic) as many atomic details as possible in the continuum model. In doing so, several considerationsshould be made as described below (see Fig. 2). Water molecules in the bulk are relatively free to move and reorient,although there is a tendency of forming dynamic water clusters. However, near to the macromolecular surface, watermolecules may be involved in specific interactions with protein moiety either via hydrogen bonds or van der Wallsinteraction. If such interactions cannot be formed, the water molecules are considered to lose their flexibility (cannot flipamong alternative hydrogen bonds). Because of this, the biophysical properties of the bulk water and the shell of watermolecules surrounding the macromolecule are different, especially in terms of their ability to reorient in response to thelocal electrostatic field, which in turn reflects their rotational polarizability. The polarizability of bulk water results ina dielectric constant of about 80, while the dielectric constant of the water shell should be lower, due to the restrictedorientational and translational motions (Fig. 2). Frequently small or large cavities and channels can be seen inside themacromolecule. Some of them can be filled with “crystallographic” water, i.e. water molecules with large residential timeand low flexibility that can be seen in the X-ray experiment. Other cavities may appear empty either because they arefilled with transient water or are empty. How to treat such cavities and channels in the continuum electrostatics is thesecond important question that physics based approaches must address. Obviously, several water molecules, either with
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restricted flexibility or being transient, will not have the bulk water dielectric properties, but rather should be modeledwith a low dielectric constant (Fig. 2). Finally, the amino acids (or nuclei acids) making up the macromolecule interior,have different polarity and different flexibility. The amino acids in the hydrophobic core are well packed and their atomsdo not carry much partial charge. Thus their ability to reduce the local electrostatic field is very limited which in termsof continuum electrostatic is described as low dielectric constant. In contrast, at the macromolecular surface or aroundco-factors binding sites, the amino acids may not be tightly packed and may be quite polar. Because of this, they arecapable of responding to the local electrostatic field and such a response results in a high dielectric constant (Fig. 2).These thoughts indicate that in order to mimic the effects occurring in atomistic models into the continuum models,the two dielectric-constant approaches are not sufficient and more sophisticated models are needed. In addition, thepresence of mobile ions in the water phase deserves special attention and will be discussed further below.

Fig 2. The continuum electrostatic model for macromolecule immersed in water phase. The water phase is colored in blue and the molecule is
colored in orange. A. The immediate shell of water molecule surrounding the macromolecule. B. A cavity inside the macromolecule filled
with water. C. The macromolecule interior with inhomogeneous dielectric distribution indicated with grey color.

3.1. Treating the water shell around macromoleculeSignificant efforts were invested to reveal the importance of water molecules in the first level of water shell in vari-ous reactions [49, 52, 171, 178]. It was demonstrated that the water molecules which are most tightly bound to thebiomolecules have significantly different features as compared to the bulk water, indicating that the surface-bound watermolecules need to be treated differently from the bulk phase. This prompted development of hybrid methods whichcombine the implicit solvent model with explicit solvent model to improve the PB calculations [54, 103]. In this approach,the surface-bound water molecules are explicitly treated into the PB equation in the same manner as the macromolecule,while the rest of the water phase is considered to be continuum high dielectric medium. As an alternative from the angleof continuum electrostatics, the specific dielectric properties of the water shell surrounding the macromolecule can bemodeled (a) with dielectric constant (or function) different from that of the bulk or (b) the effect can be mimicked with aspecific definition of molecular surface.In terms of a continuum description of the surface-bound waters, there are currently only a few existing solutions.Beginning with macromolecule interior and moving toward the macromolecular surface and further into the water phase,the ability of the corresponding medium to respond to local electrostatic field constantly increases [151]. This suggeststhat an appropriate continuum dielectric function would be able to provide a “correct” description of the dielectricproperty of the system. Such an approach was recently taken and implemented in DelPhi [108]. This development isbased on the original work of Nicholls and co-worker [72], but uses different formalism to convert atomic densities intolocal dielectric constant and does not flatten out the dielectric distribution inside the macromolecule. As a result, thedielectric constant smoothly increases from the protein interior to the water phase, and the surface-bound water shellis described with a dielectric constant larger than the protein and lower than the bulk water (Fig. 3). An alternativeapproach was developed by Wei and co-workers [43, 186] where the dielectric jump at the interface solute-solventis replaced by interpolation function in MIBPB. With this regard, Luo and co-workers introduced a computation ofdielectric boundary force based on the definition of the Maxwell stress tensor. This is followed by a new formulation ofthe dielectric boundary force suitable for the finite-difference Poisson-Boltzmann methods [37].As mentioned above, the molecular surface definition is another important step in any PB algorithm, either from a geo-metrical perspective or for mimicking the effects of surface-bound water molecules. The most commonly used definitionsof boundary macromolecule-water are the solvent accessible surface (ASA) definition [102] and the solvent excludedsurface [50] definition, which is also well known as molecular surface (MS surface). Other definitions were also used
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including van der Waals surface [131], Gaussian surface [71], spline surface [90], geometric flow surface [46], and blobbyand skin surfaces [59]. Depending on the task and the problem studied, different surface definitions are preferred. Forexample, in the last round of pKa-cooperative, the best results of ZAP were reported for MS definition at epsilon ofprotein equal to 8.0.
3.2. Treating cavities and channels inside macromoleculeAnother important consideration is the treatment of cavities and channels inside biomolecules. Almost all existing PBEsolvers treat the macromolecular interior as a homogeneous medium and small water cavities are deleted. One plausiblesolution was suggested by Zhou and co-workers to use a zero probe radius in calculating epsilon map [131]. It resultsin many mid grid points being assigned the high dielectric constant of water [4, 60]. However, small cavities filled witha few water molecules do not have a dielectric constant of bulk water. The water molecules flexibility is much restrictedand such cavities should be assigned dielectric constant higher than that of the macromolecule but lower than that ofthe bulk water. Based on these considerations, it seems to us, the smooth Gaussian-based dielectric constant approachis the best suited to the task. Indeed, it is currently implemented in DelPhi and provides physically adequate dielectricdescription of the internal macromolecular cavities (Fig. 3) [108].

Fig 3. Dielectric constant distribution map for the reaction center protein calculated with Gaussian approach implemented in DelPhi. The reaction
center protein is in a cartoon presentation; A plane of dielectric distribution is also shown in this figure.

3.3. Treating macromolecule inhomogeneous dielectric responseBiomolecules are inhomogeneous objects, which are quite polar but not very polarizable. The polarizability and thedielectric response are not uniform and vary within the structure of the molecule [6, 7]. To address this, DelPhi allowsthe users to assign multiple dielectric constants throughout the molecule [141]. This feature was shown be successfulfor solvation energy calculation [141, 169]. In principle, ZAP Gaussian function is used to assign different dielectricconstant for molecules, however, in the original description of the method, the dielectric function was flattened insidethe macromolecule resulting in an almost homogeneous dielectric distribution [72]. The current Gaussian-based smoothdielectric constant function implemented in DelPhi assigns different dielectric constant at each mid grid point as can beseen in Fig. 3 showing the dielectric constant distribution for a protein and water phase [108]. Besides the two popularPB solvers mentioned above, there are other methods developed for modeling the inhomogeneous dielectric property ofbiomolecules [130, 154, 162].
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3.4. Treating mobile ions in the water phaseThe PBE is a continuum mean-field approach assuming point-charge ions in thermodynamic equilibrium and neglectingion-ion correlations and fluctuations. Because of this, PBE is capable of describing only non-specific interactionsbetween solvent and solute and may not be applicable for cases where more detailed interactions are important (highlycharged macromolecule, strong coordination between solvent molecules, and specific solute-solvent interactions). Forexample, in the case of a highly charged surface area of a macromolecule which attracts counterions from the solvent,the calculated ionic concentration close to the surface could be non-physically large, resulting in ion packing which isphysically impossible due to the finite size of ions.Two main directions of PBE modification were undertaken: (a) explicitly include empirically calculated sizes of ions inPBE; and (b) incorporate non-electrostatic interactions in interaction potential by applying liquid-state theory [63], whichautomatically accounts for ion size and includes ion correlations and electrostatic fluctuations. The main advantage ofthe first type approach is its simplicity, but the appropriate size of ions should be known a priori. The second approachdescribes the system in more detail but is more complicated and computationally expensive.More physically reasonable ion treatment in PBE is developed throughout size modified PB theory (SMPBE) whichaccounts for the entropic penalty cost due to the volume exclusion and is described as “lattice-gas model” [26, 27]. Inthis model each ion occupies a certain volume and its interactions are dictated only by non-bonded potential energyfunctions. The non-electrostatic (Lennard-Jones potential) interactions among the ions are modeled with a hard-wallpotential energy function so that the ions cannot overlap each other. It was shown [27] that at high ion densities locatedclose to the surface, the short range ion–ion interactions become comparable to the Coulomb interactions and can nolonger be neglected. In particular, the ion density is bounded by the maximum value which is obtained when the ions areclosely packed. The standard way of including the finite size of the ions in the Poisson–Boltzmann approach is to definea narrow layer close to the surface as impenetrable to the ions. This layer is usually referred to as the Stern layer andits width is equal to the ion radius. Outside this layer, the regular Poisson–Boltzmann equation is implemented. Insidethe layer, the modified PBE is used instead:
∇ · (ε(~r)∇φ(~r)) + 4π

a3
N∑
i=1qi exp(βµi − βqiφ(~r))

1 + N∑
i=1 exp(βµi − βqiφ(~r)) = −4πρ(~r), (14)

where a is the size of the ions (for simplicity it was assumed that positively and negatively charged ions are of the samesize), µi is the chemical potential of ith ion, and β is 1/kT. Notice that the only difference between Eqn. 10 and Eqn. 1is the 2nd term on the left-hand side.In recent work [149], the finite ion size effect upon the electrostatic free energy the ion SMPBE was tested on themodel of a low-dielectric spherical cavity containing a central charge in an aqueous salt solution. The results werecompared with ones obtained by solving nonlinear PBE. SMPBE showed a very different electrostatic free energy thanthe nonlinear PBE due to the additional entropic cost of placing ions in solution. Authors pointed out that althoughthe energy predictions of the SMPBE can be reproduced by fitting an appropriately sized Stern layer, or ion-exclusionlayer to the nonlinear PBE calculations, the size of the Stern layer is difficult to estimate a priori.In 1992 Coalson and Duncan introduced lattice-field theory (LFT) [47], which generalizes the statistical mechanics of aclassical Coulomb gas by treating gas particles of finite size. Authors suggested that short-range repulsions betweenpairs of simple ions can be taken into account by adding an appropriate Yukawa pair potential (VYukawa(r)) to thelong-range Coulomb interactions between particles separated on a distance r in the simple ion gas. That is,
VYukawa(r) = −g2 exp(−mr)

r , (15)
where g is a magnitude scaling constant, m is the mass of the affected particle and r is the distance to the particle.The theory was then generalized to treat gas particles of finite size [48]. It was shown that the LFT provides a stable,flexible and efficient real-space lattice algorithm for solving the PB equation.Other investigations focused on the importance of nonelectrostatic interactions between molecules via the excluded-volume interactions, which can be described by the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of
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state [32, 123]. This approach accounts not only for the excluded-volume effect but also for the differences betweenthe anion and the cation diameters. By using different equations of state, it is possible to include different types ofnonelectrostatic interactions between the ions such as dispersion interactions, quadrupolar interactions, and bindinginteractions.
4. Improving the speed of the methods for solving PBE via parallelization techniquesAll existing serial solvers, despite the numerical algorithms implemented, are limited to solve the PBE for relatively smallbiomolecules and systems due to high computational demand (time and memory) when calculating the electrostatics oflarge systems such as viruses [104, 139], molecular motors [94], and systems made of nano-objects and biomolecules [25].For such large systems, even the fastest solvers, like the DelPhi program, typically take more than half a day to carry outthe calculations at the minimum requirement of grid resolution in order to deliver accurate results. Obviously, significantspeedup is needed to make these serial algorithms applicable to study large macromolecular assemblages.Acceleration of calculations can be achieved either by introducing new techniques to improve the performance of existingnumerical algorithms, which is under development in cooperation with mathematicians in many labs, or by utilizingcutting-edge parallel computing techniques to make use of the computing power of multiple computing units (CPU/GPU)to fulfill the computational task in parallel by breaking the task into pieces so that each of them is carried out on oneunit. In this section, we will focus on the second approach which seems more promising and easier to achieve andthereby attracts more attention due to current fast development of high performance scientific computing techniques.As far as we know, several popular PBE solvers have been parallelized via different techniques to allow users performintensive calculations on parallel computers/clusters, such as APBS, PBSA and DelPhi, and parallelization is takeninto consideration and is under construction in other solvers, such as MIBPB. Here we will describe the parallelizationtechniques implemented in PBSA, APBS and DelPhi, as well as another technique developed recently [89] in order toeffectively parallelize specific numerical methods for solving the PBE.APBS inherits the parallel refinement technique in MC adaptive multilevel finite element package, developed by Bandand Holst [18], to achieve parallel computing. We summarize the Bank-Holst parallel refinement technique here. Given
P processors, a global (in the entire problem domain) approximation of the solution to the equation is calculated usingan initially coarse mesh on all processors. Then, the problem domain is partitioned into P subdomains, each of which isassigned to one processor for local updating, with possible surrounding overlaps, according to the achieved approximatesolution in conjunction with an a posteriori error estimator. Finally, each processor solves the same equation over theentire problem domain with the confinement that the adaptive mesh refinement only occurs within the local subdomain.APBS extends the usage of the Bank-Holst parallel refinement technique to finite difference solvers and introduces a new“parallel focusing” algorithm by combining it with the commonly used electrostatic “focusing” technique. In the “parallelfocusing” algorithm, the subset of the global mesh surrounding the area of interest is partitioned into P subdomainswith overlap region spanning about 5-10% of the neighboring subdomains. Each subdomain is given to one processor forfine-scale finite difference calculation but only the results obtained on the non-overlap regions are used for assemblingthe fine-scale global solution, as well as calculating forces and energies [17].Similarly, Luo and co-workers implemented and evaluated a coarse-grained distributive method for FDPB calculationsof large biomolecular systems. The method is based on the electrostatic focusing principle of decomposing a largefine-grid FDPB calculation into multiple independent FDPB calculations, each of which focuses on only a small anda specific portion (block) of the large fine grid. It was shown that given the proper settings, the distributive methodwas able to achieve respectable parallel efficiency with tested biomolecular systems on a loosely connected computercluster [88].Parallelization of the DelPhi program, on the other hand, is achieved by noticing that the procedure for calculatingelectrostatics can be classified into 3 major tasks: determination of the molecular surface, calculation of the potential,and obtaining the corresponding electrostatic energies. Specific techniques were applied to parallelize each of the threemajor solution steps, which reflect the physical nature of the quantities being modeled. Thus, the construction of themolecular surface, being a geometrical problem, is parallelized via geometrical clustering and extended boundaries; theiterations of the electrostatic potential, being long-range, are parallelized via a combination of numerical techniquesand specific software design, but without any assumptions [106], and finally the calculations of the correspondingelectrostatic energies, being independent of the geometry, are parallelized via multi-threading [107]. It should beemphasized that the reported parallelization techniques are equally applicable for solving the linearized and nonlinearPBEs. Moreover, these techniques are not restricted to the DelPhi program. They can be easily modified and recruited
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by other software to parallelize the surface construction, iteration algorithms, and energy calculations. Performance ofthis method implemented in parallelized DelPhi is reported in refs [106, 107].Recently, Hwang et. al [89] introduced a new fully parallel Newton-Krylov-Schwarz (NKS) algorithm for finite elementdiscretization of the PBE. The NKS algorithm uses an inexact Newton method with backtracking (INB) as the nonlinearsolver. In each Newton step, a Krylov subspace method serves as the linear solver for the corresponding Jacobian system,in conjunction with a parallelized overlapping Schwarz method via domain decomposition serving as a preconditioner toaccelerate the convergence of the linear solver [89]. This algorithm was tested and benchmarked on examples arising fromsimulations of colloidal particle interactions. It was observed that this algorithm, coupled with local mesh refinement nearcharged particles, systematically increased the solution accuracy, as well as the accuracy of other sensitive quantitieslike the electrostatic force, and obtained 71% or better efficiency on up to a hundred processors for a 3D problemwith 5 million unknowns [89]. The parallel PBE solver that uses parallel adaptive mesh refinement techniques describedin [110] is under development and is expected to be a powerful and efficient simulation tool for studying three-dimensionalcolloidal and interfacial problems in the future.
5. ConclusionIn this review, current developments in the area of PBE were outlined from two different perspectives: one was math-ematical and the other was physical. It was indicated that significant efforts are being invested in developing novelmathematical approaches to provide more efficient methods for solving the PBE via FDM, FEM, BEM, and other nu-merical algorithms. Hybrid approaches were reported as well. At the same time, relatively fewer efforts were investedin better description of the physical effects originating in systems made of macromolecules immersed in water phase.Perhaps, simultaneous development reflecting the modern techniques in computer science and mathematics along withbetter physical models will be best approach of improving the applicability, accuracy, and scalability of PBE basedmethods for modeling electrostatics in molecular biology.
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