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Predicting Nonspecific Ion Binding Using DelPhi
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ABSTRACT Ions are an important component of the cell and affect the corresponding biological macromolecules either via
direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the func-
tion of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction
is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-
bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics.
Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the
protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop
a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict
nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it
can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in
the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of
the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the
desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it
was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This
latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to
detect experimentally.
INTRODUCTION
Proteins form complex three-dimensional (3D) folds that
ultimately determine their biological role. At the same
time, these 3D structures exist in a water phase in which
many different types of ions in turn interact with the macro-
molecules. As a result, many proteins bind metal ions
specifically or nonspecifically as part of the active site or
to stabilize the protein structure by creating or maintaining
secondary/tertiary structural elements (1–4). In addition,
ions are essential components of living organisms. This is
especially the case for metal ions, because 70% of all
enzymes contain metal ions. Ions are involved in all aspects
of physiological response, such as signal transduction (5),
regulation of enzyme catalytic activity (6), maintenance of
osmotic balance (7), and the general ionic environment
(6). These few examples illustrate the importance of ions
for almost any biological process.

Metal ions in biological systems can be classified into two
types (6): 1), bulk metal ions (Na, K, Mg, and Ca), which
constitute 1% of human body weight; and 2), trace metal
ions (Fe, Cu, Mn, Zn, Co, Mo, Ti, Va and Ni), which consti-
tute 0.01% of human body weight. Both types of ions can
serve as specifically bound entities that contribute to protein
function and stability, and as mobile charge carriers in the
water phase that enable screening of the electrostatic poten-
tial. The former function has been the focus of many inves-
tigations, as outlined below, and the latter has been explored
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mostly by means of Debye-Hückel screening of noninter-
acting point charges.

The Zn ion is frequently tightly bound to proteins and is
considered an essential cofactor for hundreds of enzymes
and thousands of metabolic and regulatory proteins, serving
two main roles: structural and regulatory (catalytic) (4,8).
Structural sites are typically characterized by a zinc-
centered tetrahedral coordination in which the metal ion is
fully coordinated by four Cys residues via a thiolate group,
or His residues usually in combination with Cys, forming
zinc finger motifs (9). Structural zinc sites have important
implications for the functioning of metalloproteins (10). In
catalytic sites, zinc ions participate directly in the catalytic
process and generally exhibit a distorted tetrahedral geom-
etry, typically making three bonds to O/N/S atoms and
a fourth one to a water molecule, which in turn is frequently
an activated nucleophile for the catalytic process (8).
Calcium is one of the most important metals in cells because
it controls a broad spectrum of vital processes ranging from
bone mineralization to cell signaling (11–13). In some
extracellular enzymes, occupation of Ca-binding sites
involving surface loops leads to enhanced protein stability
and provides protection against proteolytic digestion (14).
Other enzymes have evolved Ca-binding sites in which
the Ca ion plays an electrophilic role in catalytic hydrolysis
of substrates (14). Magnesium is also one of the most vital
elements of the body. It activates ~300 enzymes and is
involved in regulation of cellular permeability and neuro-
muscular excitability (15). Half of it is present in the
skeleton and the other half is present in enzymes. The
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concentration is high inside cells but low in blood plasma
(6). Magnesium may participate in enzymatic reactions in
two ways, by binding to a substrate or a protein (6). Among
the noncharged protein ligands that bind Mg, the side chains
of Asn/Gln and the backbone carbonyl groups are the most
common, followed by the Ser/Thr, His, and Tyr side chains.
The preferred coordination number is 6 for Mg (16) and Na
(17), 4–6 for Zn (16), and 6–8 for Ca (18).

The above examples illustrate that knowledge of an ion’s
position is important for understanding various biological
reactions. Ion-binding sites in biological macromolecules
are typically identified through x-ray crystallography or
NMR methods. However, the proper assignment of an
ion’s position in x-ray structures of proteins is not always
trivial. Many ion sites can be easily mislabeled or may be
missing entirely from fully refined crystal structures or
solution structures of proteins, and must be located through
further experiments. For example, identification of Na-
binding sites in protein crystals is complicated by the
comparable electron densities of this monovalent cation
and water (19). Therefore, the development of computa-
tional methods that can predict ion-binding sites and
complement experimental techniques is of great importance.

There are numerous numerical/computational methods
that can be applied to predict the positions of specifically
bound ions. The most common methods are based on the
coordination numbers of ions (8,18), geometries (20–24),
preferences (16,25), and ligands (26–28). A straightforward
and computationally fast algorithm is valence screening for
metal ions (19,29). This method essentially calculates the
valence potential of oxygen atoms within a defined radius
along a fine 3D grid laid over a molecular structure to
predict potential ion-binding sites. However, this approach
requires that the structures be determined with high accu-
racy (resolution R1.5 Å) (1). The most popular geometry-
based ion prediction methods are CHED (30) and its
variances SeqCHED (31), MetSite (32), and MDB3 and
MSDsite (33–37). It was previously pointed out that the
environments of metal ions in proteins share common
features regardless of the ion type and its precise pattern
of ligation to the protein (38). It was shown that the metal
ion is coordinated by an inner sphere of hydrophilic groups
(containing oxygen, nitrogen, or sulfur atoms) embedded in
an outer sphere of hydrophobic groups (containing carbon
atoms), giving rise to a center of substantial hydrophobicity
contrast (38). Thus, it was proposed that the hydrophobicity
contrast function may be useful for locating, characterizing,
and designing metal-binding sites in proteins (38).

Other groups of methods are based on energy calculations
that account for the combination of both short- and long-
range forces to predict the energy of interaction between
the ion and the biomolecule. The short-range forces include
several components, such as the van der Waals (vdW) force
(39), whereas the main component of the long-range forces
is electrostatic interactions (40). One of the first attempts
Biophysical Journal 102(12) 2885–2893
to determine energetically favorable binding sites for
biologically important macromolecules was implemented
in an algorithm called GRID, which calculates the interac-
tion of probes (e.g., water, the methyl group, amine
nitrogen, carboxyl oxygen, and hydroxyl) with the protein
and makes predictions based on the magnitude of the calcu-
lated energy (41). Similarly, another energy-based method,
Q-SiteFinder, uses the interaction energy between the
protein and a simple vdW probe to locate energetically
favorable binding sites (42).

All of these approaches are aimed at predicting specifi-
cally bound ions that typically are buried in the biomolecule
and are not accessible from the water phase. On the other
end of the spectrum are methods that treat the ions as nonin-
teracting mobile point charges present in the surrounding
water phase. These approaches are based on either a numer-
ical solution of the Poisson-Boltzmann (PB) equation (43)
or the generalized Born (GB) model (44). Although GB-
based methods are considered to be the fastest for calcu-
lating the electrostatic potential of proteins in solution,
methods that use the PB equation are believed to be more
accurate (45,46). However, they both can overestimate the
screening by not accounting for mutual repulsion between
ions of the same polarity and the physical inability to build
an extremely high concentration due to volume exclusion
effect (finite size of ions) (47–49). To minimize the errors
originating from ions (noninteracting point charges) and
solution (continuous, homogeneous, and isotropic medium,
characterized solely by a scalar, static dielectric constant)
approximations, investigators have employed a set of
corrections, including alteration of dielectric function (50–
53), surface of macromolecule treatment (51,54–56), atomic
radius adjustment (44,45), and alternative modifications
(44,57).

However, very little has been done to explicitly model
ions loosely bound to the protein’s surface, which are not
part of the ion atmosphere or specifically bound in the
protein interior. Such surface-exposed ions can be seen in
some experimentally determined 3D structures, providing
the opportunity to examine why such ions are bound to
the protein surface. Here, we investigated the role of electro-
statics in nonspecific surface-bound ions on a set of 529
experimentally determined ion positions involving four
types of ions (Ca, Mg, Zn, and Cl), and show that electro-
statics is the major driving force for the binding. Using
this observation, we developed a method that uses a Del-
Phi-generated potential map in conjunction with a clustering
algorithm to predict ion-binding sites. The method can be
used to place explicit ions into PB solvers and thus to extend
the limits of the PB approach. In addition, the predictions
can be used to place counterions at the beginning of molec-
ular-dynamics (MD) simulations to neutralize the net charge
of the corresponding macromolecule, or simply to predict
loosely bound ions that experimental techniques cannot
easily detect.
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METHODS

Protein structures with experimentally
determined ions

We surveyed the Protein Data Bank (PDB) (58) for x-ray structures contain-

ing Mg, Zn, Ca, or Cl ions. We also explored other types of ions, including

Na, Cu, Fe, and Mn, but after application of the pruning procedure

described in the next section, the corresponding cases were reduced to

<15 and therefore we removed those entries from our data set. The resolu-

tion was required to be >3 Å to avoid artifacts of structural imperfections.

This resulted in a total of 24,455 PDB files, of which 3708 contained Mg,

13,450 contained Ca, 3936 contained Zn, and 3361 contained Cl. Some of

these structures had ions bound inside the corresponding protein and others

contained ions that were clearly involved in chemical contacts. Such

specific ion binding is not the subject of this study, and thus these cases

were removed from the data set.
Fixing missing atoms and generation
of hydrogen atoms

Some of the structures in the experimental database had structural defects,

and thus all of the structures were subjected to the profix program from the

JACKAL package (http://wiki.c2b2.columbia.edu/honiglab_public/index.

php/Software) developed in Honig’s laboratory (59) to add missing atoms

and/or sequence fragments. To protonate proteins in the data set (i.e., to

generate missing hydrogen atoms), we used TINKER software (pdbxyz

and xyzpdb packages) (60) with AMBER force-field parameters (61).

Because the study was aimed at surface-bound ions that are not involved

in specific interactions, the residue charged states were considered to be

standard and no pKa calculations were performed, because surface-exposed

titratable groups are typically fully ionized at neural pH. In addition, it was

almost impossible to determine the pH of the crystallographic experiment at

which the ion positions were obtained. Therefore, to avoid introducing

additional ambiguity, all acids and bases were considered ionized.
Pruning the data set to include only nonspecific
surface-bound ions

In this study, nonspecifically bound ions are considered to be ions that do

not make specific contacts with protein atoms and are accessible from the

water phase. The first criterion was applied by requiring that the shortest

distance between the ion and specific atoms of the protein be larger than

the sum of their vdW radii (this is termed the vdW bond). As discussed

in the Introduction, previous studies indicated that Ca and Mg preferably

bind to oxygen atoms, whereas Zn is frequently found to bind to nitrogen,

and for negatively charged Cl ions, the best binding partners are positively

charged hydrogen atoms. The vdW radii were taken from the Cambridge

Structural Database (http://www.ccdc.cam.ac.uk/products/csd/radii/) and

the above criteria were applied to each ion (the vdW bonds are provided

in Table 1). Proteins with ions at a distance shorter than the corresponding

vdW bond were deleted from the data set. In addition, in some cases, ions

were found quite far away from the protein surface due to the presence of
TABLE 1 vdW bond and SASA for tested ions

Ca Cl Mg Zn

SASA (100%), Å2 151.31 128.68 123.11 97.818

VdW bond, Å 3.52 2.84 3.25 2.94

Typical partner O H O N

100% SASA relates to the case in which the ion is completely exposed to

the solvent molecules.
ligands or surfactants in the PDB file (small molecules were deleted from

the PDB files because they represent specific binding as well). To avoid

such cases, which were a tiny fraction of our data set, we applied an addi-

tional criterion to delete any protein having an ion >5 Å away from the

closest protein atom.

The second criterion was to select ions that are solvent-exposed and to

avoid buried cases. For this purpose, we calculated the solvent-accessible

surface area (SASA) for each tested ion in the protein using NACCESS

software (http://www.bioinf.manchester.ac.uk/naccess/) (62) and a probe

radius of 1.4 Å. The calculations were performed using atomic radii for

protein atoms taken from the AMBER force field (61). At the same

time, the SASA for isolated ions was also calculated, and these reference

values are shown in Table 1 (first row). To reinforce the requirement that

ions should be solvent-accessible, we required that in the corresponding

protein they retain at least 50% of their accessibility in the free state. At

the same time, to avoid unwanted cases of ions being separated from the

protein by water shell, we also deleted ions that retained >75% of their

free-state accessibility from the data set. As a result, our database

comprised 446 proteins in total, including 47, 29, 153, and 224 proteins

and 51, 35, 161, and 267 ions for Ca, Zn, Cl, and Mg, respectively (this

purged data set and the corresponding PDB files of fixed and protonated

proteins structures can be downloaded from http://compbio.clemson.edu/

downloadableData.php).
Electrostatic potential calculations

We subjected all proteins in the data set to continuum electrostatic potential

calculations using DelPhi (63). The following parameters were used:

scale¼ 1 grid/Å; percentage of protein filling of the cube¼ 70%; dielectric

constant ¼ 2 for the protein and 80 for the solvent; ionic strength ¼ 0.5 M;

water probe radius¼ 1.4 Å; and Stern ion exclusion layer¼ 2.0 Å (for opti-

mization purposes, the internal dielectric constant and ionic strength were

varied). Ions and all heteroatoms were deleted from the corresponding

PDB files.

We performed two types of calculations. The first one used the protein

structure file in conjunction with the above parameters and the FRC module

of DelPhi. The FRC module allows users to output the calculated electro-

static potential at desired point(s) (see the DelPhi manual at http://

compbio.clemson.edu/downloadDir/delphi/delphi_manual.pdf). For our

purposes, the point at which the potential was collected was the position

of the corresponding ion. The coordinates of the ion were taken from the

corresponding PDB file. This procedure allowed us to probe the potential

at the position of ion without the ion being present in the calculations.

For the second type of calculations, we outputted the DelPhi-calculated

potential map into a file in CUBE format (http://compbio.clemson.edu/

delphi.php). The CUBE potential map provides the electrostatic potential

at each grid point within the grid. The difference between these two types

of calculations is that the usage of the FRC module requires prior knowl-

edge of the position of the ion and thus is used for testing purposes only,

whereas the potential in the CUBE potential map is outputted at each

grid point and can be used to make predictions.
Analyzing the potential map and clustering
algorithm

A potential map calculated with the above parameters with DelPhi could

result in a grid size of hundreds of points or more, which in turn could result

in more than a million grid points where the potential is calculated. A direct

analysis of such a large array could result in ranking on the top of the list

grid points close in space and neglecting other potentially important sites.

A particular example is shown in Fig. S1, a and b, in the Supporting

Material, in which a case with a sharp potential well is contrasted with

another case with a very shallow potential valley. To avoid such cases,

we applied a clustering algorithm.
Biophysical Journal 102(12) 2885–2893
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As mentioned above, the CUBE potential map contains the potential at

each grid point, including grid points inside the protein. However, our

aim in this study was to use the potential map to predict surface-bound

ions, and to exclude any ion bound in the protein interior. Therefore, the

points analyzed by the potential map were those located on the surface of

the protein. A grid point was considered to be at the surface of the protein

if the shortest distance between the grid point and the atoms of the protein

was larger than the ion-specific vdW bond. At the same time, to avoid

predicting ion-binding sites unrealistically far away from the protein

surface, we required that the grid point be located within a 5 Å distance

from the protein atoms (the cutoff distance is shown with a dashed line

in Fig. 1 A). Then these surface grid points were clustered beginning

with the point with the smallest X-coordinate and forming a cluster with

a radius of 5 Å (Fig. 1 A). Clusters were not intersected. The point with

the highest absolute potential was chosen to represent the cluster (Fig. 1,

where the representative point for each cluster is shown in black). It can

be seen that at this initial clustering, some representative grid points could

be quite close to each other (open circles in Fig. 1 B). To avoid such a case,

secondary clustering was performed within nonintersecting spheres of

10 Å. For each sphere, we calculated the geometrical center of all represen-

tative points within the sphere, and all representative points that happened

to be within 5 Å away from this center were merged, leaving the point with

largest potential only (Fig. 1 B, where remaining representative points are

shown in black). This procedure also resulted in a few cases in which these

representative points were still close to each other (Fig. 1 C). Thus, a final

purging was performed such that if two representative points were situated

within 5 Å from each other, they were merged to the point with the highest

absolute potential (Fig. 1 C, solid black circles). Then, all remaining repre-
FIGURE 1 Schematic representation of the clustering algorithm. The left

upper panel shows a protein mapped onto a grid. A small region (shown

with dashed square) is zoomed and shown in panel A. Large circles

symbolize the border of clusters, small open circles represent all points

in a cluster, and solid dark circles represent points with the highest absolute

potential. In panel A the radius of each cluster was 5 Å (the dashed line

shows a cutoff distance of 5 Å away from the protein surface). (B) A

more rigorous condition for cluster determination was applied (radius of

clustering¼ 10 Å, and distance between the geometric average of all points

in the cluster and farthest to its point in the cluster%5 Å. (C) The final step

of clustering is to search for all resultant points <5 Å from each other and

leave only those with greater absolute potential.
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sentative points were checked with respect to their accessibility to the water

phase. To that end, we explicitly placed ions at each representative point

and then applied the procedure for SASA calculation as described in

Methods. Only representative points for which the ion retained 50–75%

of the maximum SASA typical for the given type of ion were kept in the

final representative set of grid points. This was done to ensure that the repre-

sentative points would be neither too close to the protein surface nor too far

away from it, and would be consistent with our selection of experimentally

selected ion-binding sites.
Benchmarking parameters

Dmin

Dmin is defined as the shortest distance between representative grid points

and the experimentally determined ion’s position.

Rank

The representative grid points for each tested type of ion were sorted in de-

scending order (by absolute value) of the potential (positive for Cl, and

negative for Ca, Mg, and Zn). The position of a given point within this

list is termed the Rank. Thus, a representative grid point in the third position

within the ordered list of N representative points is considered to have

Rank ¼ 3.

Receiver operating characteristic curves

We analyzed the ability to predict the experimental ion’s position and accu-

racy of the described method by plotting receiver operating characteristic

(ROC) curves. The x axis represents the Rank of the closest representative

grid point to the experimentally determined ion position, and the y axis

represents the number of successful predictions (true predictions) in

percentage of all predictions. Two definitions of true positive prediction

were adopted: 1), a prediction is considered to be true if the representative

point situated at the shortest distance from the ion experimental position

(Dmin) is predicted; and 2), a prediction is considered to be true if the

distance between the predicted representative grid point and the actual

experimental ion position is <10 Å. We chose this criterion because the

parameters of the clustering algorithm result in the shortest distance

between representative grid points being R10 Å.
RESULTS

Distribution of the potential at the experimentally
determined ion positions

For each experimentally determined ion position, we used
the FRC procedure of DelPhi (see Methods) to deliver the
potential at the ion’s position in the absence of the ion. We
did this to investigate the role of electrostatic potential in
ion binding. Because these ions are not expected to be
involved in chemical interactions with the corresponding
protein, the driving force should be nonspecific, and natu-
rally the electrostatics is presumed to be a dominant factor.
The potentials for each type of ion were collected and
found to not follow the normal distribution (Fig. 2). This
indicates that ions are situated at positions where the elec-
trostatic potential is not randomly distributed, but rather
shows a preference for the presence of ions of a given
polarity. It can be seen that the potential collected at the
positions of positively charged ions is always negative,



FIGURE 2 Distribution of the electrostatic potential at experimental ion

positions grouped with respect to ion type.
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whereas the potential at the positions of negatively charged
Cl ions is always positive. This observation indicates that
both types of ions in our data set are nonspecifically bound
ions, and that the electrostatics favors their binding.
Analysis of the electrostatic potential map

For each protein in the data set, the electrostatic potential
map was analyzed and the grid points were clustered as
described in Methods. The corresponding representative
grid points were ranked by descending absolute value of
the potential, so that the point with highest absolute poten-
tial had Rank ¼ 1. Depending on the size, shape, and net
charge of the investigated protein and in general the distri-
bution of the charges inside it, the corresponding electro-
static potential clustering resulted in a different number of
representative grid points. Fig. 3 shows the distribution
of the number of representative grid points for each type
of ion in the proteins from the examined data set (dark
bars). A significant difference is observed among cases
involving Ca, Zn, and Mg ions (which has a broad distribu-
tion) versus Cl ions (which has a narrow distribution, with
a mean of ~20–30 representative points). This may reflect
the differences in the biophysical properties (e.g., number
of residues, shape, and charges) of the corresponding
proteins in our data set, which hold different types of
ions. The same figure (Fig. 3, light bars) shows the Rank
distribution of the closest to the actual ion’s position repre-
sentative grid point. It should be clarified that due to the
clustering procedure and the GRID algorithm, the represen-
tative grid points do not necessary have to match the ion’s
position. It can be seen that in all cases, for both positively
and negatively charged ions, the representative grid point
FIGURE 3 Distribution of all representative grid

points found by the clustering method with Rank¼
1 (dark bars) and the Rank of the closest represen-

tative grid point with respect to the original ion’s

position (light bars).

Biophysical Journal 102(12) 2885–2893



2890 Petukh et al.
closest to the ion’s position is ranked among the top 10
points in 20–60% of the cases (Fig. 3). The best results
were obtained for Mg ions, which showed a sharp peak at
Rank < 10. These results indicate that the representative
point closest to the actual ion’s position is within the top
10 representative points with the highest electrostatic poten-
tial in ~60% of the cases in the data set. The results for
other types of ions (Ca, Zn, and Cl) are less impressive
but still indicate a clear trend that the position of the ion
binding is within the vicinity of the strongest electrostatic
potential.

To investigate how accurate (in principle) the described
method can be in detecting the original position of tested
ions, we examined the distribution of the distances of the
closest representative grid points. The results are shown in
Fig. S2 (light bars). According to our data, in the vast
majority of the cases, the representative grid point is located
within 10 Å from the actual ion’s position that is equal to the
uncertainty that is determined by the clustering method.
This ensures that the clustering algorithm does not eliminate
potentially good representative candidate points. It should
be pointed out that although cases with the Zn ion show
the worst ranking results (see Fig. 3, light bars), they
show the best results in terms of distribution of the closest
representative grid point (100%). This indicates that the
proximity of the representative grid point to the actual posi-
tion of an ion is not a crucial factor in the obtained ranking
(Fig. 3 and Fig. S2, light bars).
Biophysical Journal 102(12) 2885–2893
The next question to address was the distribution of the
distance between the ion’s actual position and the represen-
tative grid point with highest absolute value of the potential
(Rank ¼ 1; positive for Cl (D(Pmax)) and negative for Ca,
Mg, and Zn (D(Pmin)). The results are shown in Fig. S3
(dark bars). It can be seen that the maxima of the corre-
sponding distributions are within 30–40 Å for all types of
ions. Replacing the DelPhi calculations with a less compu-
tationally demanding screened Coulomb law resulted in
much worse predictions, as shown in Fig. S3. In addition,
in a small number of cases, the first-ranked representative
point is located >80 Å from the actual position of the ion,
which may be on the other side of the protein. Some plau-
sible explanations for these prominent failures are presented
in Fig. S4, Fig. S5, Fig. S6, and Fig. S7, and it is suggested
that the geometry of the surface and the curvature of the
potential may contribute to the preference of a given ion
to bind at a particular position.

Two parameters of the protocol are the internal dielectric
constant of the protein and the ionic strength in the water
phase. To test the sensitivity of the method and to find
the optimal values of these parameters, we constructed
ROC curves (as described in Methods) for each case in
our data set, choosing two different values for the parame-
ters (internal dielectric constant ¼ 2 and 4, and ionic
strength ¼ 0.15 M and 0.5 M). We generated the ROC
curves by varying the Rank, which essentially means
varying the number of predictions (Fig. 4). It can be seen
FIGURE 4 ROC curves for Ca, Mg, Zn, and Cl

ions containing proteins data set, calculated with

respect to different parameters. The first number

corresponds to the dielectric constant of the solu-

tion, and the second one corresponds to the ionic

strength in moles/l. The x axis represents the

Rank of the closest representative grid point to

the experimentally determined ion position. The

y axis is the number of successful predictions

(true predictions) in percentage of all predictions.

A prediction is considered to be true if the repre-

sentative point situated at the shortest distance

from the ion experimental position (Dmin) is pre-

dicted.
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that the method is not sensitive to the values of the param-
eters in the cases of Ca, Cl, and Mg ions, but is quite sensi-
tive in the case of Zn ions. The best results were obtained
with internal dielectric constant ¼ 2 and ionic strength ¼
0.5 M. In terms of percentiles, for 62% of the cases for
Mg, 47% of the cases for Ca, 23% of the cases for Zn,
and 50% of the cases for Cl based on the experimental
data set, the closest representative point was found within
the first 10 ranked points. We made similar observations
by using the second definition of true predictions (see
Methods). The results are shown in Fig. S8.
DISCUSSION

In this work, we sought to investigate the role of electro-
statics in nonspecific surface ion binding. To that end, we
created a purged data set to include PDB structures with
experimentally determined ions that are located on the
protein surface and are not involved in chemical interac-
tions. However, we note that some of these entries may still
have ions involved in specific interactions or may be arti-
facts of the crystallographic procedure. We attempted to
delete all ions with crystallographic constants, but not all
entries were manually screened for such cases. In addition,
it is possible that some other factors, not revealed in the
x-ray experiment, could also contribute to the binding.
Despite the requirement for relatively high resolution of
the structures in the data set, it is still possible that the crys-
tallographic ion position is within fractions of angstroms or
more away from its actual position. Therefore, it is plausible
that some of the ion positions in our data set are not nonspe-
cifically surface-bound ions. Such ions cannot be predicted
by means of electrostatics alone.

It is quite possible that some of the top Rank predicted ion-
binding sites are away from the experimental ion’s actual
position. Examples and analysis of the worst predictions
for each type of ions are presented in Fig. S4, Fig. S5,
Fig. S6, and Fig. S7, a and b. In all cases, the representative
grid point with Rank¼ 1 had an absolute electrostatic poten-
tial much higher than the potential of the experimentally
determined ion. This clearly indicates that electrostatic inter-
actions alone cannot predict such cases. We conducted our
investigation without using surface curvature, structural flex-
ibility, and other factors that may contribute to the binding.
It can be expected that the binding and immobilization of
an ion are easier achieve in the cavity point, surrounded by
relatively rigid amino acids. However, this would require
a different approach that would combine the clustering algo-
rithm with geometrical and structural information. On the
other hand, it can be speculated that the predicted ion posi-
tions reflect additional possible ion-binding sites that were
not revealed in this particular x-ray experiment due to
thermal fluctuations, the resolution of the x-ray structure,
or other details of the experimental procedure. Thus, some
of the ‘‘false’’ predictions may not be false after all.
CONCLUSIONS

This study shows that electrostatics plays a dominant
role in ion binding, and ions are always situated at a
potential opposite to their polarity. Because nonspecific
ion binding is electrostatically driven, one can use this
observation to extend the limits of PB approaches. It
was mentioned that the limitation of the PB method
stems from the treatment of ions as mean-field interacting
point charges. Obviously, such an assumption will not be
valid in the water phase exposed to a strong potential,
because it will result in overprediction of an ion’s con-
centration. Such a high potential would occur close to
the macromolecule charges, and thus near the macromole-
cule surface. One can explicitly position an ion in such
a surface electrostatic valley and treat it explicitly in the PB
calculations. The presence of the ion will greatly reduce
the potential, and thus the validity of the PB approach
will be retained.

One can use the method presented here in conjunction
with a standard MD package to place ions before conduct-
ing MD simulations. This would simply require one to
know the net charge of the macromolecule (either by per-
forming pKa calculations or assuming standard protonation
states) and what type of ion should be placed. Once these
are decided, the number of ions (N) that one needs to place
is the ratio between the next charge and the valence of the
type of ion. Then, one should use the ranking list provided
by our procedure and place ions at the top N ranked posi-
tions. Because the method accounts for electrostatic inter-
actions only, it supposedly is not sensitive to structural
variations and fine details of the structure. Therefore, one
does not have to minimize a structure before using it to
place the ions.

Our method uses DelPhi in conjunction with a clustering
algorithm to predict nonspecifically bound ions on the
surface of proteins. Such ions are very difficult to deter-
mine experimentally because their mobility is not restricted
by special constraints. A typical example is provided by
ion transport proteins. It was previously shown that binding
a beryllium ion on the surface of HLA class II histocom-
patibility antigen (ID 3lqz, a-chain) induces the fibrotic
lung disorder called chronic beryllium disease (64).
Although investigators have proposed several beryllium-
binding sites on the basis of experimental investigations,
the problem is far from solved. Thus, this approach can
be used to predict these positions and guide further exper-
imental investigations.
SUPPORTING MATERIAL
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