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Abstract

Electrical propagation (action potentials) in excitable tissue, such as nerve cells and cardiac myocytes, is
described by a parabolic diffusion-reaction equation for the transmembrane potential (voltage) V (x, t),
known as the cable equation. It is driven by a rapidly varying, highly nonlinear (and expensive to
evaluate) ionic source term Iion(V, t) representing the total ionic current across the cell membrane, plus
a stimulus current. The ionic term is governed by the Hodgkin-Huxley or some other more complicated
ionic model, appropriate to the tissue; its evaluation requires solving a system of ODEs for the “gates”.

We compare the performance of eleven time-stepping numerical schemes on the 1D cable equation
with Luo-Rudy I (1991) ionic source (the evaluation of which involves seven ODEs). The time-steppers
include Euler, Super-Time-Stepping, DuFort-Frankel, as well as low and high order, explicit and implicit,
non-adaptive and adaptive Runge-Kutta integrators.

Keywords: Explicit schemes, Super-Time-Stepping, Dufort-Frankel, adaptive Runge-Kutta, cardiac
action potential, Luo-Rudy ionic model.

1 THE CABLE EQUATION

The parabolic, diffusion-reaction type PDE

1
Ra

∂2V

∂x2
= Cm

∂V

∂t
+ Iion(V, t) + Istim(t), (1)

is known as the cable equation (Keener & Sneyd, 1998; Plonsey & Barr, 2007). It describes electrical prop-
agation in excitable tissue, such as nerve fibers and cardiac myocytes. In (1), V (x , t) is the transmembrane
potential (voltage), Ra and Cm are the axial resistance and membrane capacitance, Iion represents the total
ionic current, and Istim(t) is an applied stimulus current which instigates an action potential.

The first successful ionic current model was introduced in (Hodgkin & Huxley, 1952). In 1991, Luo and
Rudy published a model appopriate for cardiac myocytes, which consists of several ionic currents generated
by sodium, potassium and calcium ions (Luo & Rudy,1991)

Iion(V, t) = INa(V ) + ISI(V ) + IK1(T )(V ). (2)

These currents depend on seven activation and inactivation “gates”: m, h, j, d, f, X, Cai, each of which
is governed by an ODE of the form

dg

dt
= αg(V )(1− g)− βg(V )g, g = m, h, j, d, f, X, Cai. (3)

The α’s and β’s, taking values between 0 and 1, are specified by (messy) explicit formulas as functions of
voltage V . We used the curated version luo rudy 1991 version06 from cellML ( http://models.cellml.org/ ).
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The stimulus current Istim(t) is the pacemaker that excites the system and instigates an action potential.
In the heart, the stimulus is supplied by the Sino-Atrial Node. To generate a single action potential, we
apply a single stimulus, of duration 1 ms and strength −200 µA/cm2, on a short segment [0, 10µm] at one
end of the cable.

We use the parameter values: Cm = 1.2 µF/cm2, Ra = 300 kΩ. This value of Ra is three orders of
magnitude greater than the cytoplasmic resistance for human myocytes (Keener & Sneyd, 1998), which is
a very low resistance, and applies only within a single cell, whereas we are modeling chains of cells. Gap
junctions between cells present much greater resistance to current flow. The larger value used here speeds
up computations a thousand-fold, so they can be carried out within more reasonable time (and they are still
very long!).

We assume zero voltage gradient at the ends of the cable, and initialize the system from steady state
with initial values: Vinit = −84.547997mV , minit = 0.001665, hinit = 0.983302, jinit = 0.989522, dinit =
0.002977, finit = 0.999981, Xinit = 0.005643 and Caiinit = 0.000178.

The mathematical model consists of the PDE (1), the seven ODEs (3) and the above initial setup.
A typical calculated action potential is shown in Fig.1. Biologically significant quantities computed in

the simulations are:
• Action Potential Duration (APD) = how long the potential V at a fixed location stays above a

certain cut-off value. We set Vcutoff as 90% of the initial equilibrium voltage.

• Conduction Velocity = speed of propagation of action potential = the difference of starting time of
APs at two fixed nodes.

• Maximum voltage (Vmax) and maximum rate of change of voltage ({dV/dt}max) at the nodes
(excluding nodes directly stimulated by Istim).

These quantities are characteristic of the cell and Iion, and independent of Istim, cable length, and nodes
used for measurement. Thus they also serve as accuracy indicators on the numerical schemes.
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Figure 1: Single action potential propagating along a 10 mm cable. The cable is discretized into M =
10mm/4µm = 2500 nodes. Voltage histories at five nodes are shown.
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2 NUMERICAL SCHEMES

We discretize the cable into M control volumes of uniform length ∆x. A cable contains many cells, and
each cell contains several control volumes. By standard Finite Volume discretization of the PDE (1), and
applying the 7 ODEs (3) on each control volume yields a system of 8×M ODEs,

dVk

dt
=

1
Cm

[
Fk− 1

2
− Fk+ 1

2

∆x
− Iion(Vk, tn)− Istim(tn)

]
, (4)

dgk

dt
= αgk

(Vk)(1− gk)− βgk
(Vk)gk, k = 1, ...,M, (5)

where Vk is the voltage, gk = mk, hk, jk, dk, fk, Xk, Caik are the corresponding values of gates in the kth

control volume, and Fk− 1
2

are the diffusion fluxes,

F 1
2

= 0, Fk− 1
2

= − 1
Rak− 1

2

Vk − Vk−1

∆x
, k = 2, ...,M, FM+ 1

2
= 0. (6)

We apply the following time-stepping schemes to solve the ODE system (4-5).

2.1 Super-Time-Stepping (STS) Scheme

Super time-stepping is a simple-to-implement method to accelerate existing explicit schemes for parabolic
problems (Alexiades et al.,1996). One superstep ∆T consists of N substeps ∆τ1,...,∆τN , with optimal
substeps ∆τj given explicitly by

∆τj = ∆texpl

[
(−1 + ν) cos

(
2j − 1
N

π

2

)
+ 1 + ν

]−1

j = 1, ..., N, (7)

where ∆texpl is the time step satisfying the CFL stability condition for the explicit scheme. Thus, we choose
an integer N and a small damping parameter ν > 0, and instead of executing N uniform steps ∆texpl we
execute N Chebyshev steps ∆τ1,...,∆τN . It turns out that ∆T → N2∆texpl as ν → 0. Thus, executing a
superstep consisting of N substeps covers a time interval N times longer than N explicit steps ∆texpl (when
ν ≈ 0). Thus, superstepping is (up to) N times faster than the standard explicit scheme. Note that the
method ensures stability only at the end of each superstep. Only values at the end of a superstep should be
printed out.

In the simulations we used N = 4, ν = 0.1, denoted as STS4 in the plots. STS with N = 1, ν = 0
reduces to forward Euler, denoted Eu in the plots.

2.2 DuFort-Frankel (DF) Scheme

The DuFort-Frankel scheme is explicit, 2-step, 2nd order in space and time, and theoretically unconditionally
stable (Mayers & Morton,1994). It can be obtained by applying Forward Euler to (4) and then replacing
V n

k by the centered time average (V n+1
k + V n−1

k )/2.
To avoid small oscillations near the steady state, and keep the scheme explicit, the average of voltage at

two previous time steps is used to evaluate the ionic current Iion(V, t),

V n+1
k =

1

1 + ∆t
Cm∆x2

(
1

Rak− 1
2

+ 1
Rak+ 1

2

) [ 2∆t
Cm∆x2

(
1

Rak− 1
2

V n
k−1 +

1
Rak+ 1

2

V n
k+1

)

+

(
1− ∆t

Cm∆x2
(

1
Rak− 1

2

+
1

Rak+ 1
2

)V n−1
k

)
− 2∆t
Cm

(
Iion(

V n
k + V n−1

k

2
, tn) + Istim(tn)

)]
. (8)

On the other hand, the ODEs (5) for the gates are discretized by forward Euler, and again evaluated at the
average of the two previous voltage values,

gn+1
k = gn

k + ∆t
[
αgn

k

(
V n

k + V n−1
k

2

)
(1− gn

k )− βgn
k

(
V n

k + V n−1
k

2

)
gn

k

]
. (9)
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2.3 RKSUITE Runge-Kutta Schemes

The RKSUITE package (Brankin et al. 1991), available from Netlib, is a suite of explicit Runge-Kutta
methods for first order ODE systems. It provides three adaptive methods, RK23, RK45 and RK78, of
orders 2, 4, and 7, respectively. We refer to (Li & Alexiades, 2010a) for their performance. Here we employ
only RK23, the most efficient of the three. The adaptive time step ∆t is controlled by two user-provided
parameters: relative tolerance tol and threshold thres, which we set as tol = 10−3 and thres = 10−5.

2.4 GSL Runge-Kutta Schemes

The GNU Scientific Library (GSL 1.10) from GNU provides several explicit and implicit, non-adaptive and
adaptive, low and high order Runge-Kutta schemes for first order systems of ODEs. Of these, we employ
three non-adaptive (fixed time-step) integrators: rk4, rk2imp, rk4imp, and four adaptive integrators:
rk2, rkck, rkf45, rk8pd. Their names suggest their order. They are all explicit except rk2imp, rk4imp.
rk4 is the classical 4th order RK, and rkf45 the embedded Runge-Kutta-Fehlberg(4,5). rkck is the embed-
ded Runge-Kutta Cash-Karp(4,5) method, and rk8pd the embedded Runge-Kutta Prince-Dormand(8,9)
method.

3 NUMERICAL SIMULATIONS

Our code is written in C, and the simulations were performed on AMD Opteron 2378 2.4 GHz processors
(single cores of a multicore, multinode linux cluster), with Intel C 11.1 compiler. All schemes were run with
∆x = 4 µm on cables of various lengths. Timings (in minutes of CPU time) are shown in Fig.2 for 10 mm
and Fig.3 for 50 mm cables.

It turns out that evaluating the ionic currents is very expensive and, worse, it requires time-steps no
larger than 0.01ms. This penalizes all schemes, especially implicit and high order ones. In an attempt to
reduce run times, we pre-compute all the α(V ), β(V ) coefficients in the range [−100, 200] with ∆V = 0.0001,
and store them in a direct access, binary file (367 MB size), which is loaded into memory at run time. Then,
values of α(V n

k ), β(V n
k ) at any V n

k are found by interpolation. This approach is known as the library
method (Sun et al., 2009). Fig.2 shows that it has high payoff, reducing CPU time to almost half with no
loss of accuracy (same propagation speed, Vmax, {dV/dt}max, and almost same APD). All other computa-
tions discussed here use the pre-computed library.

All non-adaptive schemes used ∆t = 0.01 ms. Comparison with adaptive solvers is shown in Fig.3 on
50 mm cable.

Our numerical experiments so far lead to the following conclusions about the eleven solvers we tested:
• All the high order schemes produce identical voltage history (action potentials, as in Fig.1), and

identical values for the biological quantities. Among them, the explicit adaptive 4th order solver rkck
is the most efficient, and the implicit non-adaptive 4th order solver rk4imp is by far the worst, with
no redeeming features.

• The low order schemes (STS, Eu, DF ) are much faster than the high order ones, by factors of 10
to 25! and STS4 (i.e. STS with N = 4, ν = 0.1) is the most efficient of all. However, they produce
upstrokes somewhat delayed (by 20 - 50 ms at the end of 50 mm cable), and slightly lower propagation
speed. When such high accuracy is important, high order solvers should be used.

• Among high order solvers, the adaptive ones outperform the non-adaptive by a factor of 2 or more,
and rkck is best among them (Fig.3). When adaptivity cannot be used, as is the case for parallel
computations (Li & Alexiades, 2010b), then rk4 would be best among high order solvers.

• In view of the fact that evaluation of the source restricts the time-step to ∆t ≤ 0.01, the implicit
2nd order solver rk2imp performs surprisingly well, being competitive with rk4, whereas rk4imp is
hopelessly slow.
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Figure 2: Timings of all eleven schemes on 10mm cable, without (red) and with precomputed library (cyan).
Precomputing achieves almost 100% speedup on most schemes.
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