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Abstract. Motivated by results of Hirschhorn, Tang, and Baruah and
Kaur on vanishing coefficients (in arithmetic progressions) in a new class
of infinite product which have appeared recently, we further examine
such infinite products, and find that many such results on vanishing
coefficients may be grouped into families.

For example, one result proven in the present paper is that if b ∈
{1, 2, . . . , 9, 10} and the sequence {rn} is defined by

(q8b, q11−8b; q11)3∞(q11−b, q11+b; q22)∞ =:

∞∑
n=−756

rnq
n.

then r11n+6b2+b = 0 for all n. Further, if b ∈ {1, 3, 5, 7, 9}, then
r11n+4b2+b = 0 for all n also. Each particular value of b gives a spe-
cific result, such as the following (for b = 1): if the sequences {an} is
defined by

∞∑
n=0

anq
n := (q3, q8; q11)3∞(q10, q12; q22)∞,

then a11n+5 = a11n+7 = 0.

1. Introduction

In [4], Hirschhorn gave the first examples of a new class of infinite q-
products which have the property that when the product is expanded as
a series in q, then the coefficients in one or more arithmetic progressions
vanish. More precisely, he proved the following.

Let the sequences {an} and {bn} are defined by

∞∑
n=0

anq
n := (−q,−q4; q5)∞(q, q9; q10)3∞,

∞∑
n=0

bnq
n := (−q2,−q3; q5)∞(q3, q7; q10)3∞.

Then a5n+2 = a5n+4 = b5n+1 = b5n+4 = 0.
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Here we are using the standard notation

(a; q)∞ :=
∞∏
n=0

(1− aqn),

(a1, . . . , aj ; q)∞ := (a1; q)∞ · · · (aj ; q)∞.

Similar results were proven in [6] by Tang, who showed, amongst other re-
sults that if the sequences {a2(n)}, {b2(n)}, {a3(n)} and {b3(n)} are defined
by

∞∑
n=0

a2(n)qn := (−q,−q4; q5)3∞(q2, q8; q10)∞,

∞∑
n=0

b2(n)qn := (−q2,−q3; q5)3∞(q4, q6; q10)∞,

∞∑
n=0

a3(n)qn := (−q,−q4; q5)3∞(q3, q7; q10)∞,

∞∑
n=0

b3(n)qn := (−q2,−q3; q5)3∞(q, q9; q10)∞,

then a2(5n + 4) = b2(5n + 1) = a3(5n + 3) = a3(5n + 4) = b3(5n + 3) =
b3(5n + 4) = 0. Tang’s other results concern various infinite products of
a slightly different format, where (infinite product)3 above is replaced with
(infinite product)2, but infinite products in this format are not considered
in the present paper.

In [1], Baruah and Kaur prove a number of similar results, including the
following. Let the sequences {kn}, {ln}, {un} and {vn} be defined by

∞∑
n=0

knq
n := (q, q4; q5)∞(q, q9; q10)3∞,(1.1)

∞∑
n=0

lnq
n := (q2, q3; q5)∞(q3, q7; q10)3∞,

∞∑
n=0

unq
n := (q, q4; q5)3∞(q3, q7; q10)∞,

∞∑
n=0

vnq
n := (q2, q3; q5)3∞(q, q9; q10)∞.

Then k5n+4 = l5n+4 = u5n+4 = v5n+3 = 0. The authors also prove the
results of Tang listed above.

At the end of the paper [6], Tang considers the more general problem of
finding triples (r, s, t) such that if the sequences {ar,s,t(n)}, {br,s,t(n)} are
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defined by

∞∑
n=0

ar,s,t(n)qn := (−qr,−qt−r; qt)3∞(qs, q2t−s; q2t)∞,(1.2)

∞∑
n=0

br,s,t(n)qn := (−qr,−qt−r; qt)∞(qs, q2t−s; q2t)3∞,

then these sequences vanish in one or more arithmetic progressions modulo
t. Tang states a number of results without proof for t = 7 and t = 11, but
remarks that they may be proved by the methods employed to prove the
results in the paper.

In the present paper we consider products like those in (1.2), but with
(qr, qt−r; qt)∞ instead of (−qr,−qt−r; qt)∞, and prove a number of results
for t = 5, 7 and 11 (as Tang remarks, there appears to be no similar results
for t = 13 or t = 17). In a later section we list a number of families of results
like those in (1.2), and similar results in the situation where the negative
sign is in the other infinite product, but do not give the proofs, since they
follow by using the same methods used to prove Theorem 2.1 - Theorem 4.2.

Observe that multiplying the equations (1.2) by infinite products of the
forms (qt; qt)∞ or (q2t; q2t)∞ will not have any effect on coefficients that
vanish in an arithmetic progression modulo t, and our method of proof
involves multiplying the right sides of (1.2) by such products, so as to convert
these right sides in products of Jacobi triple products. For space saving
reasons we will frequently use the notation

〈a; qj〉∞

to represent the triple product (a, qj/a, qj ; qj)∞ more compactly.
The main tool used to deal the part of the product consisting of a Jacobi

triple product cubed is the extended quintuple product formula (see Cao [2,
Eq. (3.2)] or Mc Laughlin [5, Eq. (4.6)])

(1.3)
〈
−qa; q2

〉
∞
〈
−qb; q2

〉
∞
〈
−qc; q2

〉
∞ =

〈
−q2a

c
; q4
〉
∞{〈

−q6ac

b2
; q12

〉
∞

〈
−q3abc; q6

〉
∞ + qb

〈
−q2ac

b2
; q12

〉
∞

〈
−q5abc; q6

〉
∞

+ q4b2
〈
− ac

q2b2
; q12

〉
∞

〈
−q7abc; q6

〉
∞

}
+

q2a

b

〈
−q4a

c
; q4
〉
∞{〈

−q12ac

b2
; q12

〉
∞

〈
−q3abc; q6

〉
∞ +

b

q

〈
−q8ac

b2
; q12

〉
∞

〈
−q5abc; q6

〉
∞

+ b2
〈
−q4ac

b2
; q12

〉
∞

〈
−q7abc; q6

〉
∞

}
.

Observe that this product simplifies considerably when a = b = c.
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For ease of use, we state two equivalent forms of the Jacobi triple product
identity. Both forms are used frequently to expand a Jacobi triple as an
infinite bilateral series or to go in the reverse direction, sometimes one form
is used, sometimes the other, and it is simpler to have both forms available
for easy reference.

(1.4)

∞∑
n=−∞

(−z)nqn
2

= (zq, q/z, q2; q2)∞.

(1.5)
∞∑

n=−∞
(−z)nqn(n−1)/2 = (z, q/z, q; q)∞.

We remark that one difference between the method used in the present
paper and the methods in the papers referenced above is that our method
allows all results in a given family to proved simultaneously (these families
contain up to 10 separate results in the case t = 11, for example). In
contrast, the methods used in [1], [4] and [6] allow just one result to be
proved at a time. It is not clear to the present author how easily the proofs
in these papers may be adapted to deal with the cases t = 7 and t = 11,
while in the present paper the method of proof is uniform for the cases
t = 5, 7 and 11.

2. Mod 5

In this section we reprove the results (1.1) of Baruah and Kaur. Our
method of proof is different from theirs, and it also gives an illustration of
how the results are proved in families.

Theorem 2.1. For b ∈ {1, 2} define the sequence {rn} by

(2.1) (qb, q5−b; q5)3∞(q5−2b, q5+2b; q10)∞ =:

∞∑
n=0

rnq
n.

Then r5n+4b = 0 for all n.

Proof. In (1.3), replace q with q5/2 and set a = b = c = −q5/2−b to get that

(2.2)
〈
qb; q5

〉3
∞

=〈
q3b; q15

〉
∞

{〈
−q5; q10

〉
∞
〈
−q15; q30

〉
∞ + q5

〈
−1; q10

〉
∞
〈
−1; q30

〉
∞

}
+
(
q10−2b

〈
q−10+3b; q15

〉
∞
− q5−b

〈
q−5+3b; q15

〉
∞

)
×
{〈
−1; q10

〉
∞
〈
−q10; q30

〉
∞ +

〈
−q5; q10

〉
∞
〈
−q5; q30

〉
∞

}
.

Multiply this equation across by
〈
q5+2b; q10

〉
∞ and isolate those terms in

the series expansion with the powers of q that are congruent to 4b modulo
5.
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Define〈
q5+2b; q10

〉
∞

〈
q3b; q15

〉
∞

=:

∞∑
n=0

unq
n, F1(q) :=

∞∑
n=0

n≡4b (mod 5)

unq
n.

By (1.4) and (1.5),
(2.3)〈

q5+2b; q10
〉
∞

〈
q3b; q15

〉
∞

=

∞∑
m,n=−∞

(−1)n+mq5n
2+2bn+3bm+15m(m−1)/2.

To get the terms in this series that are in F1(q), it is necessary and sufficient
that 2bn + 3bm ≡ 4b mod 5, or that 2n + 3m ≡ 4 mod 5 and thus −3n +
3m ≡ 4 mod 5 also. Set 2n + 3m = 4 + 5r and −3n + 3m = 4 + 5s, from
which it can be seen that s has the form s = 3k + 1 for k an integer. Hence
n = r − 3k − 1 and m = 2 + r + 2k, (−1)n+m = (−1)1+k,

5n2 + 2bn + 3bm +
15m(m− 1)

2
= 20 + 4b + 75k + 75k2 + 5br +

25(r2 + r)

2
,

so that, by (1.4) and (1.5) once again,

F1(q) = −q20+4b
〈
1; q150

〉
∞

〈
−q−5b; q25

〉
∞

= 0.

Similarly, define

q10−2b
〈
q5+2b; q10

〉
∞

〈
q−10+3b; q15

〉
∞

=:
∞∑
n=0

vnq
n,

F2(q) : =

∞∑
n=0

n≡4b (mod 5)

vnq
n.

By (1.4) and (1.5) again,

(2.4)
〈
q5+2b; q10

〉
∞

〈
q−10+3b; q15

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq5n

2+2bn+(−10+3b)m+15m(m−1)/2

Upon taking into consideration the factor q10−2b, to get the terms that are
in F2(q), it is necessary and sufficient that 2bn + 3bm ≡ 6b mod 5, or that
2n + 3m ≡ 6 mod 5. By similar reasoning to that employed for F1(q), it
follows that m and n have the forms m = 2 + 2k + r, n = r− 3k for integers
k and r, (−1)n+m = (−1)k,

5n2 + 2bn + (−10 + 3b)m +
15m(m− 1)

2

= −5 + b + 25k + 75k2 + 5br +
25(r2 − r)

2
,
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so that, by (1.4) and (1.5) once again,

F2(q) = q5−b
〈
q50; q150

〉
∞

〈
q5b; q25

〉
∞
.

Finally, define

−q5−b
〈
q5+2b; q10

〉
∞

〈
q−5+3b; q15

〉
∞

=:
∞∑
n=0

wnq
n,

F3(q) : =

∞∑
n=0

n≡4b (mod 5)

wnq
n.

Once more employing (1.4) and (1.5),

(2.5)
〈
q5+2b; q10

〉
∞

〈
q−5+3b; q15

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq5n

2+2bn+(−5+3b)m+15m(n−1)/2

This time, to get the terms that are in F3(q), it is necessary and sufficient
(after taking account of the q5−b factor) that 2bn+3bm ≡ 5b ≡ 0 mod 5, or
that 2n + 3m ≡ 0 mod 5. By similar reasoning to that employed for F1(q)
and F2(q), it follows that this time m and n have the forms m = 2k + r,
n = r − 3k for integers k and r, (−1)n+m = (−1)k,

5n2 + 2bn + (−5 + 3b)m +
15m(m− 1)

2

= −25k + 75k2 + 5br +
25(r2 − r)

2
,

so that, by (1.4) and (1.5) once again,

F3(q) = −q5−b
〈
q50; q150

〉
∞

〈
q5b; q25

〉
∞

= −F2(q).

Since F1(q) = 0 and F2(q) +F3(q) = 0, then r5n+4b = 0 for all n as claimed,
and the proof is complete. �

Corollary 2.1. If the sequences {an} and {bn} are defined by

∞∑
n=0

anq
n := (q, q4; q5)3∞(q3, q7; q10)∞,(2.6)

∞∑
n=0

bnq
n := (q2, q3; q5)3∞(q, q9; q10)∞,(2.7)

then a5n+4 = b5n+3 = 0.

Proof. These results are respectively, the cases b = 1 and b = 2 of Theorem
2.1. �
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Theorem 2.2. For b ∈ {1, 2} define the sequence {rn} by

(2.8) (q2b, q5−2b; q5)∞(q5−2b, q5+2b; q10)3∞ =:
∞∑
n=0

rnq
n.

Then r5n+3b2+b = 0 for all n.

Proof. In (1.3), replace q with q5 and set a = b = c = −q2b to get that

(2.9)
〈
q5+2b; q10

〉3
∞

=〈
q15+6b; q30

〉
∞

{〈
−q10; q20

〉
∞
〈
−q30; q60

〉
∞ + q10

〈
−1; q20

〉
∞
〈
−1; q60

〉
∞

}
−
(
q5−2b

〈
q5+6b; q30

〉
∞

+ q5+2b
〈
q5−6b; q30

〉
∞

)
×
{〈
−1; q20

〉
∞
〈
−q20; q60

〉
∞ +

〈
−q10; q20

〉
∞
〈
−q10; q60

〉
∞

}
.

The remainder of the proof of Theorem 2.2 after the specialization of
(1.3), like the proof of all of the remaining theorems, is similar to the proof
of Theorem 2.1 after employing (1.3).

Multiply the last equation above across by
〈
q2b; q5

〉
∞ and isolate those

terms in the series expansion with the powers of q that are congruent to
3b2 + b modulo 5.

Define〈
q2b; q5

〉
∞

〈
q15+6b; q30

〉
∞

=:

∞∑
n=0

unq
n, F1(q) :=

∞∑
n=0

n≡3b2+b (mod 5)

unq
n.

By employing (1.4) and (1.5),〈
q2b; q5

〉
∞

〈
q15+6b; q30

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq15n

2+6bn+2bm+5m(m−1)/2.

To get the terms in this series that are in F1(q), it is necessary and sufficient
that 6bn + 2bm ≡ 3b2 + b mod 5, or that 6n + 2m ≡ 3b + 1 mod 5 and
thus 6n − 3m ≡ 3b + 1 mod 5 also. Set 6n + 2m = 3b + 1 + 5r and
6n− 3m = 3b+ 1 + 5s. From the first of these equations it can be seen that
r has the form r = 2j + 1 + b, and from the second equation that s has the
form s = 3k + 1 where j and k are integers. Thus m = r − s = 2j − 3k + b,
n = 1 + b + j + k, (−1)n+m = (−1)1+j ,

15n2 + 6bn + 2bm +
5m(m− 1)

2

= 15 +
51b2

2
+

67b

2
+ 25j + 50bj + 25j2 + 15bk +

75(k2 + k)

2
,
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so that, by (1.4) and (1.5) once again,

F1(q) = −q15+51b2/2+67b/2
〈
q−50b; q50

〉
∞

〈
−q−15b; q75

〉
∞
,

and F1(q) = 0 for b a positive integer.
Similarly, define

q5−2b
〈
q2b; q5

〉
∞

〈
q5+6b; q30

〉
∞

=:
∞∑
n=0

vnq
n,

F2(q) : =

∞∑
n=0

n≡3b2+b (mod 5)

vnq
n.

By (1.4) and (1.5) again,〈
q2b; q5

〉
∞

〈
q5+6b; q30

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq15n

2−10n+6bn+2bm+5m(m−1)/2

Upon taking into consideration the factor q5−2b, to get the terms that are
in F2(q), it is necessary and sufficient that 6bn + 2bm ≡ 3b2 + 3b mod 5,
or that 6n + 2m ≡ 3b + 3 mod 5 and thus 6n − 3m ≡ 3b + 3 mod 5 also.
Set 6n + 2m = 3b + 3 + 5r and 6n − 3m = 3b + 3 + 5s. From the first of
these equations it can be seen that r has the form r = 2j + 1 + b, and from
the second equation that s has the form s = 3k where j and k are integers.
Thus m = r − s = 2j + 1 + b− 3k, n = 1 + b + j + k, (−1)n+m = (−1)j ,

15n2 − 10n + 6bn + 2bm +
5m(m− 1)

2

= 5 +
51b2

2
+

61b

2
+ 25j + 50bj + 25j2 + 15bk +

75k2 + 25k

2
,

so that, by (1.4) and (1.5) once again,

F2(q) = q10+51b2/2+57b/2
〈
q−50b; q50

〉
∞

〈
−q25−15b; q75

〉
∞
.

Here also F2(q) = 0 when b is a positive integer.
Finally, define

q5+2b
〈
q2b; q5

〉
∞

〈
q5−6b; q30

〉
∞

=:

∞∑
n=0

wnq
n,

F3(q) : =

∞∑
n=0

n≡3b2+b (mod 5)

wnq
n.
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Once more employing (1.4) and (1.5),〈
q2b; q5

〉
∞

〈
q5−6b; q30

〉
∞

=

∞∑
m,n=−∞

(−1)n+mq15n
2+10n+6bn+2bm+5m(n−1)/2

This time, to get the terms that are in F3(q), it is necessary and sufficient
that 6bn + 2bm ≡ 3b2 − b mod 5, or that 6n + 2m ≡ 3b − 1 mod 5 and
thus 6n − 3m ≡ 3b − 1 mod 5 also. Set 6n + 2m = 3b − 1 + 5r and
6n− 3m = 3b− 1 + 5s. From the first of these equations it can be seen that
r has the form r = 2j + 1 + b, and from the second equation that s has the
form s = 3k+2 where j and k are integers. Thus m = r−s = 2j−1+b−3k,
n = 1 + b + j + k, (−1)n+m = (−1)j ,

15n2 + 10n + 6bn + 2bm +
5m(m− 1)

2

= 30 +
51b2

2
+

73b

2
+ 25j + 50bj + 25j2 + 15bk +

75k2 + 125k

2
,

so that, by (1.4) and (1.5) once again,

F3(q) = q35+51b2/2+77b/2
〈
q−50b; q50

〉
∞

〈
q−25−15b; q75

〉
∞

= −F2(q),

and F3(q) = 0 when b is a positive integer.
Since F1(q) = F2(q) = F3(q) = 0, then r5n+3b2+b = 0 for all n as claimed,

and the proof is complete. �

Corollary 2.2. If the sequences {an} and {bn} are defined by
∞∑
n=0

anq
n := (q2, q3; q5)∞(q3, q7; q10)3∞,(2.10)

∞∑
n=0

bnq
n := (q, q4; q5)∞(q, q9; q10)3∞,(2.11)

then a5n+4 = b5n+4 = 0.

Proof. These results are respectively, the cases b = 1 and b = 2 of Theorem
2.2. �

3. Mod 7

It is believed that the results in this section are new. It contains a total
of six individual results, three following from Theorem 3.1, and three from
Theorem 3.2.

Theorem 3.1. For b ∈ {1, 2, 3} define the sequence {rn} by

(3.1) (qb, q7−b; q7)∞(q7−2b, q7+2b; q14)3∞ =:

∞∑
n=0

rnq
n.
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Then r7n+4b = 0 for all n.

Remark: For b = 1, “all n” means n ≥ 0, while for b = 2 or b = 3 “all n”
means n ≥ −1.

Proof. In the extended quintuple product formula (1.3) replace q with q7 and
set a = b = c = −q2b to get, after some elementary q-product manipulations,
that

(3.2)
〈
q7+2b; q14

〉3
∞

=〈
q21−6b; q42

〉
∞

{〈
−q14; q28

〉
∞
〈
−q42; q84

〉
∞ + q14

〈
−1; q28

〉
∞
〈
−1; q84

〉
∞

}
−
(
q7−2b

〈
q7+6b; q42

〉
∞

+ q7+2b
〈
q7−6b; q42

〉
∞

)
×
{〈
−1; q28

〉
∞
〈
−q28; q84

〉
∞ +

〈
−q14; q28

〉
∞
〈
−q14; q84

〉
∞

}
.

Next, multiply both sides by
〈
qb; q7

〉
∞ and isolate those terms in the series

expansion with the powers of q that are congruent to 4b modulo 7.
Define〈
qb; q7

〉
∞

〈
q21−6b; q42

〉
∞

=:
∞∑
n=0

unq
n, F1(q) :=

∞∑
n=0

n≡4b (mod 7)

unq
n.

By (1.4) and (1.5),〈
qb; q7

〉
∞

〈
q21−6b; q42

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq7n(n−1)/2+bn+6bm+21m2

To get the terms in this series that are in F1(q), it is necessary and sufficient
that bn+ 6bm ≡ 4b mod 7, or that n+ 6m ≡ 4 mod 7 and thus n−m ≡ 4
mod 7. Set n + 6m = 4 + 7r and n − m = 4 + 7s. Then m = r − s,
n = 4 + r + 6s, (−1)n+m = (−1)s,

7n(n− 1)

2
+ bn+ 6bm+ 21m2 = 42 + 4b+

49r

2
+ 7br +

49r2

2
+ 147s+ 147s2

and, again using (1.4) and (1.5),

F1(q) = q42+4b
〈
−q−7b; q49

〉
∞

〈
1; q294

〉
∞ = 0.

Similarly, define

q7−2b
〈
qb; q7

〉
∞

〈
q7+6b; q42

〉
∞

=:
∞∑
n=0

vnq
n, F2(q) :=

∞∑
n=0

n≡4b (mod 7)

vnq
n.
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By (1.4) and (1.5),

〈
qb; q7

〉
∞

〈
q7+6b; q42

〉
∞

=

∞∑
m,n=−∞

(−1)n+mq7n(n−1)/2+bn+(14−6b)m+21m2

This time, to get the terms that are in F2(q), it is necessary and sufficient
that bn − 6bm ≡ 6b mod 7, or that n − 6m ≡ 6 ≡ −1 mod 7 and thus
n + m ≡ −1 mod 7 also. This time, set n − 6m = −1 + 7r and n + m =
−1 + 7s. Then m = s− r, n = −1 + r + 6s, (−1)n+m = −(−1)s,

7n(n− 1)

2
+bn+(14−6b)m+21m2 = 7−b− 49r

2
+7br+

49r2

2
−49s+147s2

and

F2(q) = −q14−3b
〈
−q7b; q49

〉
∞

〈
q98; q294

〉
∞ .

Finally, define

q7+2b
〈
qb; q7

〉
∞

〈
q7−6b; q42

〉
∞

=:

∞∑
n=0

wnq
n, F3(q) :=

∞∑
n=0

n≡4b (mod 7)

wnq
n.

Once again, by (1.4) and (1.5),

〈
qb; q7

〉
∞

〈
q7−6b; q42

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq7n(n−1)/2+bn+(14+6b)m+21m2

This time, to get the terms that are in F3(q), it is necessary and sufficient
that bn+ 6bm ≡ 2b mod 7, or that n−m ≡ 2 mod 7 and thus n+ 6m ≡ 2
mod 7 also. This time, set n − m = 2 + 7s and n + 6m = 2 + 7r. Then
m = r − s, n = 2 + r + 6s, (−1)n+m = (−1)s,

7n(n− 1)

2
+bn+(14+6b)m+21m2 = 7+2b+

49r

2
+7br+

49r2

2
+49s+147s2

and

F3(q) = q14+4b
〈
−q−7b; q49

〉
∞

〈
q98; q294

〉
∞

= q14−3b
〈
−q7b; q49

〉
∞

〈
q98; q294

〉
∞ = −F2(q).

Since F1(q) = 0 and F2(q) +F3(q) = 0, then r7n+4b = 0 for all n as claimed,
and the proof is complete. �
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Corollary 3.1. If the sequences {an}, {bn} and {cn} are defined by
∞∑
n=0

anq
n := (q, q6; q7)∞(q5, q9; q14)3∞,

∞∑
n=0

bnq
n := (q2, q5; q7)∞(q3, q11; q14)3∞,

∞∑
n=0

cnq
n := (q3, q4; q7)∞(q, q13; q14)3∞,

then a7n+4 = b7n+1 = c7n+5 = 0.

Proof. Set, in turn, b = 1, 2, 3 in Theorem 3.1. �

Theorem 3.2. For b ∈ {1, 2, 3} define the sequence {rn} by

(3.3) (q2b, q7−2b; q7)3∞(q7−2b, q7+2b; q14)∞ =:
∞∑
n=0

rnq
n.

Then r7n+5b2+3b = 0 for all n.

Proof. In (1.3), replace q with q7/2 and set a = b = c = −q7/2−2b to get that

(3.4)
〈
q2b; q7

〉3
∞

=〈
q6b; q21

〉
∞

{〈
−q7; q14

〉
∞
〈
−q21; q42

〉
∞ + q7

〈
−1; q14

〉
∞
〈
−1; q42

〉
∞

}
+
(
q14−4b

〈
q−14+6b; q21

〉
∞
− q7−2b

〈
q−7+6b; q21

〉
∞

)
×
{〈
−1; q14

〉
∞
〈
−q14; q42

〉
∞ +

〈
−q7; q14

〉
∞
〈
−q7; q42

〉
∞

}
.

The rest of the proof now follows what is becoming a familiar pattern.
Multiply both sides by

〈
q7+2b; q14

〉
∞ and isolate those terms in the series

expansion with the powers of q that are congruent to 5b2 + 3b modulo 7.
Define〈
q7+2b; q14

〉
∞

〈
q6b; q21

〉
∞

=:
∞∑
n=0

unq
n, F1(q) :=

∞∑
n=0

n≡5b2+3b (mod 7)

unq
n.

Once again applying (1.4) and (1.5),〈
q7+2b; q14

〉
∞

〈
q6b; q21

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq7n

2+2bn+6bm+21m(m−1)/2.

For terms in this series that are in F1(q), it is necessary and sufficient that
2bn + 6bm ≡ 5b2 + 3b mod 7, or that 2n + 6m ≡ 5b + 3 mod 7 and thus
2n −m ≡ 5b + 3 mod 7 also. Set 2n + 6m = 5b + 3 + 7r and 2n −m =
5b + 3 + 7s, and from the first of these it can be seen that r has to have
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the form r = 2k − b + 1. Hence m = 1 − b + 2k − s, n = 2 + 2b + k + 3s,
(−1)n+m = (−1)b+1+k,

7n2 + 2bn + 6bm + 21
m(m− 1)

2

= 28 +
(73b + 111)b

2
+ 49k + 49k2 + 105bs +

147(s2 + s)

2
,

so that, by (1.4) and (1.5) once again,

F1(q) = (−1)b+1q28+(73b+111)b/2
〈
1; q98

〉
∞

〈
−q−105b; q147

〉
∞

= 0.

In similar fashion, define

q14−4b
〈
q−14+6b; q21

〉
∞

〈
q7+2b; q14

〉
∞

=:
∞∑
n=0

vnq
n,

F2(q) : =

∞∑
n=0

n≡5b2+3b (mod 7)

vnq
n.

By (1.4) and (1.5),〈
q−14+6b; q21

〉
∞

〈
q7+2b; q14

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq7n

2+2bn+(−14+6b)m+21m(m−1)/2.

Upon noting the factor q14−4b, to get the terms that are in F2(q), it is
necessary and sufficient that 2bn + 6bm ≡ 5b2 + 7b ≡ 5b2 mod 7, or that
2n + 6m ≡ 5b mod 7 and thus 2n −m ≡ 5b mod 7 also. Set 2n + 6m =
5b+ 7r and 2n−m = 5b+ 7s, and from the first of these it can be seen that
r has to have the form r = 2k − b. Hence m = 2k − b− s, n = 2b + k + 3s,
(−1)n+m = (−1)b+k,

7n2 + 2bn + (−14 + 6b)m + 21
m(m− 1)

2

=
(73b + 49)b

2
− 49k + 49k2 + 105bs +

(147s2 + 49s)

2
,

so that, by (1.4) and (1.5) once again,

F2(q) = (−1)bq14+(73b+41)b/2
〈
1; q98

〉
∞

〈
−q98−105b; q147

〉
∞

= 0.
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Lastly, define

−q7−2b
〈
q−7+6b; q21

〉
∞

〈
q7+2b; q14

〉
∞

=:
∞∑
n=0

wnq
n,

F3(q) : =

∞∑
n=0

n≡6b2+b (mod 7)

wnq
n.

Once again, by (1.4) and (1.5),〈
q−7+6b; q21

〉
∞

〈
q7+2b; q14

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq7n

2+2bn+(−14+6b)m+21m(m−1)/2.

Upon taking account of the factor q7−2b, to get the terms that are in F3(q),
it is necessary and sufficient that 2bn + 6bm ≡ 5b2 + 5b mod 7, or that
2n + 6m ≡ 5b + 5 mod 7 and thus 2n − m ≡ 5b + 5 mod 7 also. Set
2n + 6m = 5b + 5 + 7r and 2n − m = 5b + 5 + 7s, and from the first of
these it can be seen that r has to have the form r = 2k − b − 1. Hence
m = 2k − b− 1− s, n = 2b + k + 3s + 2, (−1)n+m = (−1)b+k+1,

7n2 + 2bn + (−14 + 6b)m + 21
m(m− 1)

2

= 56 +
(73b + 185)b

2
− 49k + 49k2 + 105bs +

(147s2 + 245s)

2
,

so that, by (1.4) and (1.5) once again,

F3(q) = (−1)b+1q63+(73b+181)b/2
〈
1; q98

〉
∞

〈
−q−98−105b; q147

〉
∞

= 0.

Since F1(q) = F2(q) = F3(q) = 0, then r7n+5b2+3b = 0 for all n as claimed,
and the proof is complete. �

Corollary 3.2. If the sequences {an}, {bn} and {cn} are defined by

∞∑
n=0

anq
n := (q2, q5; q7)3∞(q5, q9; q14)∞,

∞∑
n=0

bnq
n := (q3, q4; q7)3∞(q3, q11; q14)∞,

∞∑
n=0

cnq
n := (q, q6; q7)3∞(q, q13; q14)∞,

then a7n+1 = b7n+5 = c7n+5 = 0.

Proof. This follows directly from Theorem 3.2, upon setting b, in turn, equal
to 1,2,3. �
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4. Mod 11

It is believed that the results in this section are also new. It contains a
total of thirty individual results, fifteen following from Theorem 4.1, and
fifteen from Theorem 4.2.

Remark: When the product (q11−2b; q11)∞ is expanded in powers of q,
there will be negative powers for b > 5, and thus the summation variable (n
below) will start at a negative integer. Here, and later in the paper where
similar situations occur, we make the lower limit of summation the most
negative exponent that occurs in the series expansion of the infinite product
with the largest value of b in its stated range. This lower limit will then be
sufficient for all b.

Theorem 4.1. For b ∈ {1, 2, . . . , 9, 10} define the sequence {rn} by

(4.1) (q2b, q11−2b; q11)∞(q11−b, q11+b; q22)3∞ =:
∞∑

n=−9
rnq

n.

(i) For all n, r11n+b = 0.
(ii) In addition, if b ∈ {1, 3, 5, 7, 9}, then r11n+5b2+b = 0 for all n.

Proof. The proof is similar to that of Theorem 3.1. In (1.3) replace q with
q11 and set a = b = c = −qb to get, after some elementary q-product
manipulations, that

(4.2)
〈
q11+b; q22

〉3
∞

=〈
q33+3b; q66

〉
∞

{〈
−q22; q44

〉
∞
〈
−q66; q132

〉
∞+q22

〈
−1; q44

〉
∞
〈
−1; q132

〉
∞

}
−
(
q11−b

〈
q11+3b; q66

〉
∞

+ q11+b
〈
q11−3b; q66

〉
∞

)
×
{〈
−1; q44

〉
∞
〈
−q44; q132

〉
∞ +

〈
−q22; q44

〉
∞
〈
−q22; q132

〉
∞

}
.

(i) Multiply both sides of (4.2) by
〈
q2b; q11

〉
∞ and isolate those terms in

the series expansion with the powers of q that are congruent to b modulo
11.

Define〈
q2b; q11

〉
∞

〈
q33+3b; q66

〉
∞

=:

∞∑
n=0

unq
n, F1(q) :=

∞∑
n=0

n≡b (mod 11)

unq
n.

Once again applying (1.4) and (1.5),〈
q2b; q11

〉
∞

〈
q33−3b; q66

〉
∞

=

∞∑
m,n=−∞

(−1)n+mq33n
2+3bn+2bm+11m(m−1)/2.

To get the terms in this series that are in F1(q), it is necessary and sufficient
that 3bn+ 2bm ≡ b mod 11, or that 3n+ 2m ≡ 1 mod 11 and thus −8n+
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2m ≡ 1 mod 11 also. Set 3n+ 2m = 1 + 11r and −8n+ 2m = 1 + 11s, from
which it can be seen that s is odd, say s = 2k + 1. Hence n = r − 2k − 1
and m = 4r + 3k + 2, (−1)n+m = (−1)r+k+1,

33n2 + 3bn + 2bm +
11m(m− 1)

2
= 44 + b +

363(k2 + k)

2
+ 11br + 121r2,

so that, by (1.4) and (1.5) once again,

F1(q) = −q44+b
〈
1; q363

〉
∞

〈
q11b+121; q242

〉
∞

= 0.

Similarly, define

q11−b
〈
q2b; q11

〉
∞

〈
q11+3b; q66

〉
∞

=:

∞∑
n=0

vnq
n,

F2(q) : =
∞∑
n=0

n≡b (mod 11)

vnq
n.

By (1.4) and (1.5),〈
q2b; q11

〉
∞

〈
q11+3b; q66

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq33n

2+(−22+3b)n+2bm+11m(m−1)/2

Upon taking into consideration the factor q11−b, to get the terms in this
series that are in F2(q), it is necessary and sufficient that 3bn + 2bm ≡ 2b
mod 11, or that 3n + 2m ≡ 2 mod 11 and thus −8n + 2m ≡ 2 mod 11
also. Set 3n + 2m = 2 + 11r and −8n + 2m = 2 + 11s, from which it can
be seen that s is even, say s = 2k. Hence n = r − 2k and m = 4r + 3k + 1,
(−1)n+m = (−1)r+k+1,

33n2+(−22+3b)n+2bm+
11m(m− 1)

2
= 2b+

(363k + 121)k

2
+11br+121r2,

so that, by (1.4) and (1.5) once again,

F2(q) = −q11+b
〈
q121; q363

〉
∞

〈
q121+11b; q242

〉
∞
.

Finally, define

q11+b
〈
q2b; q11

〉
∞

〈
q11−3b; q66

〉
∞

=:

∞∑
n=0

wnq
n,

F3(q) : =
∞∑
n=0

n≡b (mod 11)

wnq
n.
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By (1.4) and (1.5),〈
q2b; q11

〉
∞

〈
q11−3b; q66

〉
∞

=

∞∑
m,n=−∞

(−1)n+mq33n
2+(22+3b)n+2bm+11m(m−1)/2

Upon taking into consideration the factor q11+b, to get the terms in this
series that are in F3(q), it is necessary and sufficient that 3bn + 2bm ≡ 0
mod 11, or that 3n+2m ≡ 0 mod 11 and thus −8n+2m ≡ 0 mod 11 also.
Set 3n+ 2m = 11r and −8n+ 2m = 11s, from which it can be seen that s is
even, say s = 2k. Hence n = r − 2k and m = 4r + 3k, (−1)n+m = (−1)r+k,

33n2 + (22 + 3b)n + 2bm +
11m(m− 1)

2
=

(363k − 121)k

2
+ 11br + 121r2,

so that, by (1.4) and (1.5) once again,

F3(q) = q11+b
〈
q121; q363

〉
∞

〈
q121+11b; q242

〉
∞

= −F2(q).

Since F1(q) = 0 and F2(q) +F3(q) = 0, then r11n+b = 0 for all n as claimed,
and the proof of (i) is complete.

For (ii), the analysis is very similar, except the arithmetic progression
examined is 11n + 5b2 + b, instead of 11n + b. Upon employing the same
notation, it is found that the conditions m and n need to satisfy to obtain
F1(q), F2(q) and F3(q), are as shown in the following table:

F1(q) : 2m + 3n ≡ 5b + 1 (mod 11)

F2(q) : 2m + 3n ≡ 5b + 2 (mod 11)

F3(q) : 2m + 3n ≡ 5b (mod 11)

These congruence conditions lead in turn to the following expressions:

F1(q) = (−1)1+bq44+133b+126b2
〈
q−264b; q363

〉
∞

〈
q121(1−b); q242

〉
∞
,

F2(q) = (−1)1+bq11+45b+126b2
〈
q121−264b; q363

〉
∞

〈
q121(1−b); q242

〉
∞
,

F3(q) = (−1)bq11−43b+126b2
〈
q121−264b; q363

〉
∞

〈
q121(1−b); q242

〉
∞
.

It can be seen that F1(q) = F2(q) = F3(q) = 0 when b is an odd positive
integer. Thus r11n+5b2+b = 0 for all n as claimed, and the proof of (ii) is
also complete. �

Corollary 4.1. If the sequences {an}, {bn}, {cn}, {dn}, {en}, {fn}, {gn},
{hn}, {in} and {jn} are defined by

∞∑
n=0

anq
n := (q2, q9; q11)∞(q10, q12; q22)3∞,
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∞∑
n=0

bnq
n := (q4, q7; q11)∞(q9, q13; q22)3∞,

∞∑
n=0

cnq
n := (q5, q6; q11)∞(q8, q14; q22)3∞,

∞∑
n=0

dnq
n := (q3, q8; q11)∞(q7, q15; q22)3∞,

∞∑
n=0

enq
n := (q, q10; q11)∞(q6, q16; q22)3∞,

∞∑
n=0

fnq
n := (q, q10; q11)∞(q5, q17; q22)3∞,

∞∑
n=0

gnq
n := (q3, q8; q11)∞(q4, q18; q22)3∞,

∞∑
n=0

hnq
n := (q5, q6; q11)∞(q3, q19; q22)3∞,

∞∑
n=0

inq
n := (q4, q7; q11)∞(q2, q20; q22)3∞,

∞∑
n=0

jnq
n := (q2, q9; q11)∞(q, q21; q22)3∞,

then a11n+1 = a11n+6 = b11n+2 = c11n+3 = c11n+4 = d11n+4 = e11n+5 =
e11n+9 = f11n+7 = g11n+2 = g11n+10 = h11n+2 = i11n+3 = i11n+5 = j11n+8 =
0.

Proof. These results follow from Theorem 4.1, upon letting b assume, in
turn, the values 1, . . . 10. Note that for b ≥ 6, it is necessary to slightly
modify the infinite product at (4.1) (by performing elementary q-product
manipulations and then multiplying both sides by some power of q) to make
them have the form of the infinite products in the corollary. This will cause
a shift in the arithmetic progression predicted by the theorem. �

Theorem 4.2. For b ∈ {1, 2, . . . , 9, 10} define the sequence {rn} by

(4.3) (q8b, q11−8b; q11)3∞(q11−b, q11+b; q22)∞ =:
∞∑

n=−756
rnq

n.

(i) For all n, r11n+6b2+b = 0.
(ii) In addition, if b ∈ {1, 3, 5, 7, 9}, then r11n+4b2+b = 0 for all n.

Remark: In (i), “for all n” means all n for which 11n+ 6b2 + b ≥ 0, while
in (ii) it means all n for which 11n + 4b2 + b ≥ 0
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Proof. We first prove the claim in (i). In (1.3), replace q with q11/2 and set

a = b = c = −q11/2−8b to get that

(4.4)
〈
q8b; q11

〉3
∞

=〈
q24b; q33

〉
∞

{〈
−q11; q22

〉
∞
〈
−q33; q66

〉
∞ + q11

〈
−1; q22

〉
∞
〈
−1; q66

〉
∞

}
+
(
q22−16b

〈
q−22+24b; q33

〉
∞
− q11−8b

〈
q−11+24b; q33

〉
∞

)
×
{〈
−1; q22

〉
∞
〈
−q22; q66

〉
∞ +

〈
−q11; q22

〉
∞
〈
−q11; q66

〉
∞

}
.

The remainder of the proof follows the familiar pattern of previous proofs.
Multiply both sides by

〈
q11+b; q22

〉
∞ and isolate those terms in the series

expansion with the powers of q that are congruent to 6b2 + b modulo 11.
Define〈
q11+b; q22

〉
∞

〈
q24b; q33

〉
∞

=:
∞∑
n=0

unq
n, F1(q) :=

∞∑
n=0

n≡6b2+b (mod 11)

unq
n.

Once again applying (1.4) and (1.5),

〈
q11+b; q22

〉
∞

〈
q24b; q33

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq11n

2+bn+24bm+33m(m−1)/2.

To get the terms in this series that are in F1(q), it is necessary and sufficient
that bn + 2bm ≡ 6b2 + b mod 11, or that n + 2m ≡ 6b + 1 mod 11 and
thus −10n + 2m ≡ 6b + 1 mod 11 also. Set n + 2m = 6b + 1 + 11r and
−10n + 2m = 6b + 1 + 11s, from which it can be seen that s is odd, say
s = 2k + 1. Hence n = r − 2k − 1 and m = 3b + 5r + k + 1. However,
this results in the double series for F1(q) having 121kr in the exponent of q,
and a further change of variable, k → k− r− b is necessary to remove these
“cross terms”. Thus finally m = 1 + 2b + k + 4r, n = −1 + 2b − 2k + 3r,
(−1)n+m = (−1)r+k,

11n2 + bn + 24bm +
33m(m− 1)

2

= 11 + 12b + 160b2 +
121(k2 + k)

2
+ 495br + 363r2,

so that, by (1.4) and (1.5) once again,

F1(q) = q11+12b+160b2
〈
1; q121

〉
∞

〈
q495b+363; q726

〉
∞

= 0.
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Similarly, define

q22−16b
〈
q11+b; q22

〉
∞

〈
q−22+24b; q33

〉
∞

=:
∞∑
n=0

vnq
n,

F2(q) : =
∞∑
n=0

n≡6b2+b (mod 11)

vnq
n.

By (1.4) and (1.5),

〈
q11+b; q22

〉
∞

〈
q−22+24b; q33

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq11n

2+bn+(−22+24b)m+33m(n−1)/2

Upon taking into consideration the factor q22−16b, to get the terms that are
in F2(q), it is necessary and sufficient that bn + 2bm ≡ 6b2 + 6b mod 11,
or that n + 2m ≡ 6b + 6 mod 11 and thus −10n + 2m ≡ 6b + 6 mod 11
also. This time, set n + 2m = 6b + 6 + 11r and −10n + 2m = 6b + 6 + 11s.
From the last equation it can be seen that s is even, say s = 2k. Hence
n = r − 2k and m = 3b + 5r + k + 3. However, as above, this results in
the double series for F2(q) having 121kr in the exponent of q, and the same
further change of variable, k → k − r − b, is necessary. This gives finally
that m = 3 + 2b + k + 4r, n = 2b− 2k + 3r, (−1)n+m = (−1)r+k+1,

11n2 + bn + (−22 + 24b)m +
33m(m− 1)

2

= 33 + 193b + 160b2 +
121(k2 + k)

2
+ 242r + 495br + 363r2,

so that, by (1.4) and (1.5) once again,

F2(q) = −q55+177b+160b2
〈
1; q121

〉
∞

〈
q121−495b; q726

〉
∞

= 0.

Finally, define

−q11−8b
〈
q11+b; q22

〉
∞

〈
q−11+24b; q33

〉
∞

=:
∞∑
n=0

wnq
n,

F3(q) : =

∞∑
n=0

n≡6b2+b (mod 11)

wnq
n.
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Once again, by (1.4) and (1.5),〈
q11+b; q22

〉
∞

〈
q−11+24b; q33

〉
∞

=
∞∑

m,n=−∞
(−1)n+mq11n

2+bn+(−11+24b)m+33m(n−1)/2

This time, to get the terms that are in F3(q), it is necessary and sufficient
(after taking account of the q11−8b factor) that bn+2bm ≡ 6b2+9b mod 11,
or that n + 2m ≡ 6b + 9 mod 11 and thus −10n + 2m ≡ 6b + 9 mod 11
also. This time, set n + 2m = 6b + 9 + 11r and −10n + 2m = 6b + 9 + 11s.
From the last equation it can be seen that s is odd, say s = 2k + 1. Hence
n = r − 2k − 1 and m = 3b + 5r + k + 5. However, as above, this results in
the double series for F3(q) having 121kr in the exponent of q, and a further
change of variable, this time k → k−r−b−1, is necessary. This gives finally
that m = 4 + 2b + k + 4r, n = 1 + 2b− 2k + 3r, (−1)n+m = (−1)r+k+1,

11n2 + bn + (−11 + 24b)m +
33m(m− 1)

2

= 165 + 350b + 160b2 +
121(k2 + k)

2
+ 484r + 495br + 363r2,

so that, by (1.4) and (1.5) once again,

F3(q) = q176+342b+160b2
〈
1; q121

〉
∞

〈
q−121−495b; q726

〉
∞

= 0.

Since F1(q) = F2(q) = F3(q) = 0, then r11n+6b2+b = 0 for all n as claimed,
and the proof of (i) is complete.

For (ii), the analysis is very similar, except that 6b2 + b is replaced every-
where with 4b2 + b. Upon employing the same notation, it is found that

F1(q) = q11+56b+114b2
〈
q−88b; q121

〉
∞

〈
q363−363b; q726

〉
∞
,

and the second infinite product is equal to 0 for b odd.
Likewise, it is found that

F2(q) = −q55+177b+160b2
〈
q−88b; q121

〉
∞

〈
q121−363b; q726

〉
∞
,

F3(q) = −q55−65b+160b2
〈
q−88b; q121

〉
∞

〈
q121+363b; q726

〉
∞
.

A simple induction argument shows that F2(q)+F3(q) = 0 when b is an odd
positive integer. Thus r11n+4b2+b = 0 for all n as claimed, and the proof of
(ii) is also complete. �

Corollary 4.2. Let the sequences {an}, {bn}, {cn}, {dn}, {en}, {fn}, {gn},
{hn}, {in} and {jn} are defined by

∞∑
n=0

anq
n := (q3, q8; q11)3∞(q10, q12; q22)∞,
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∞∑
n=0

bnq
n := (q5, q6; q11)3∞(q9, q13; q22)∞,

∞∑
n=0

cnq
n := (q2, q9; q11)3∞(q8, q14; q22)∞,

∞∑
n=0

dnq
n := (q, q10; q11)3∞(q7, q15; q22)∞,

∞∑
n=0

enq
n := (q4, q7; q11)3∞(q6, q16; q22)∞,

∞∑
n=0

fnq
n := (q4, q7; q11)3∞(q5, q17; q22)∞,

∞∑
n=0

gnq
n := (q, q10; q11)3∞(q4, q18; q22)∞,

∞∑
n=0

hnq
n := (q2, q9; q11)3∞(q3, q19; q22)∞,

∞∑
n=0

inq
n := (q5, q6; q11)3∞(q2, q20; q22)∞,

∞∑
n=0

jnq
n := (q3, q8; q11)3∞(q, q21; q22)∞,

then a11n+5 = a11n+7 = b11n+8 = c11n+3 = c11n+7 = d11n+6 = e11n+3 =
e11n+9 = f11n+6 = g11n+8 = g11n+9 = h11n+10 = i11n+1 = i11n+9 = j11n+2 =
0.

Proof. These results follow directly from Theorem 4.2, upon letting b as-
sume, in turn, the values 1, . . . 10. Note that for b ≥ 2, it is necessary to
slightly modify the infinite product at (4.3) (by performing elementary q-
product manipulations and then multiplying both sides by some power of q)
to make it have the form of the infinite product in each case after the first
in the corollary. This in turn leads to a shift in the predicted arithmetic
progression. �

5. Infinite Products with Negative Signs

The following results may be proved by using the same methods which
were used above. Some particular instances of these results may also be
found in the papers of Baruah and Kaur [1], Hirschhorn [4] and Tang [6]
mentioned in the introduction.
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Theorem 5.1. Let b ∈ {1, 2, 3, 4}.
(i) Define the sequence {rn} by

(5.1) (−q2b,−q5−2b; q5)3∞(q5−b, q5+b; q10)∞ =:

∞∑
n=−9

rnq
n.

Then r5n+3b2+3b = 0 for all n. In addition, if b is even, then r5n+2b2+3b = 0
for all n.
(ii) Define the sequence {rn} by

(5.2) (q2b, q5−2b; q5)3∞(−q5−b,−q5+b; q10)∞ =:

∞∑
n=−9

rnq
n.

Then r5n+3b2+3b = 0 for all n.
(iii) Define the sequence {rn} by

(5.3) (−qb,−q5−b; q5)∞(q5−b, q5+b; q10)3∞ =:
∞∑
n=0

rnq
n.

Then r5n+3b = 0 for all n. In addition, if b is even, then r5n+2b2+3b = 0 for
all n.
(iv) Define the sequence {rn} by

(5.4) (qb, q5−b; q5)∞(−q5−b,−q5+b; q10)3∞ =:
∞∑
n=0

rnq
n.

Then r5n+3b = 0 for all n.

There are four similar families of results for arithmetic progressions mod-
ulo 7.

Theorem 5.2. Let b ∈ {1, 2, 3, 4, 5, 6}.
(i) Define the sequence {rn} by

(5.5) (−qb,−q7−b; q7)3∞(q7−b, q7+b; q14)∞ =:
∞∑
n=0

rnq
n.

Then r7n+5b = 0 for all n. In addition, if b is even, then r7n+3b2+5b = 0 for
all n.
(ii) Define the sequence {rn} by

(5.6) (qb, q7−b; q7)3∞(−q7−b,−q7+b; q14)∞ =:
∞∑
n=0

rnq
n.

Then r7n+5b = 0 for all n.
(iii) Define the sequence {rn} by

(5.7) (−q3b,−q7−3b; q7)∞(q7−b, q7+b; q14)3∞ =:
∞∑

n=−15
rnq

n.



24 JAMES MC LAUGHLIN

Then r7n+5b = 0 for all n. In addition, if b is even, then r7n+2b2+5b = 0 for
all n.
(iv) Define the sequence {rn} by

(5.8) (q4b, q7−4b; q7)∞(−q7−b,−q7+b; q14)3∞ =:
∞∑

n=−30
rnq

n.

Then r7n+3b2+b = 0 for all n.

Finally, here are the results for arithmetic progressions modulo 11.

Theorem 5.3. Let b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
(i) Define the sequence {rn} by

(5.9) (−q3b,−q11−3b; q11)3∞(q11−b, q11+b; q22)∞ =:

∞∑
n=−81

rnq
n.

Then r11n+6b2+10b = 0 for all n.
(ii) Define the sequence {rn} by

(5.10) (q3b, q11−3b; q11)3∞(−q11−b,−q11+b; q22)∞ =:
∞∑

n=−81
rnq

n.

Then r11n+8b2+10b = 0 for all n.
(iii) Define the sequence {rn} by

(5.11) (−q2b,−q11−2b; q11)∞(q11−b, q11+b; q22)3∞ =:

∞∑
n=−9

rnq
n.

Then r11n+5b2+b = 0 for all n.
(iv) Define the sequence {rn} by

(5.12) (q2b, q11−2b; q11)∞(−q11−b,−q11+b; q22)3∞ =:
∞∑

n=−9
rnq

n.

Then r11n+b = 0 for all n.

6. m-dissections

By the m-dissections of an infinite product f(q) is meant a representation
of the form

f(q) = f0(q
m) + qf1(q

m) + q2f2(q
m) + · · ·+ qm−1fm−1(q

m),

where each fi(q
m) consists of a finite sum of products/quotients of infinite

q-products such that the series expansions contains only powers of qm.
In a recent paper [7], Tang and Xia give 5-dissections for the infinite prod-

ucts (−q,−q4; q5)2∞(q4, q6; q10)∞ and (−q2,−q3; q5)2∞(q2, q8; q10)∞ (amongst
other results). Dou and Xiao in [3] similarly treated the infinite products
(q, q4; q5)∞(q3, q7; q10)2∞ and (q2, q3; q5)∞(q, q9; q10)2∞.

The methods in the present paper also result in similar dissections of the
infinite products considered here. We give just one example (this being the
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case b = 1 of (2.1)) as a full treatment of the results would add too much
to the length of the present paper (these dissections will be discussed in full
in a future paper).

It may be seen from the b = 1 case of (2.2) that a 5-dissection of〈
q; q5

〉3
∞
〈
q3; q10

〉
∞ may be produced if the 5-dissections of the products〈

q3; q15
〉
∞
〈
q3; q10

〉
∞,
〈
q−7; q15

〉
∞
〈
q3; q10

〉
∞ and

〈
q−2; q15

〉
∞
〈
q3; q10

〉
∞ can

be found.
Firstly, by considering the b = 1 case of (2.3) and slightly generalizing

the discussion following, it can be seen that, for a ∈ {0, 1, 2, 3, 4}, that all
powers of q with exponent congruent to a mod5 may be grouped together
by restricting to those m and n such that 2n + 3m ≡ a mod 5 and thus
−3n + 3m ≡ a mod 5 also. Set 2n + 3m = a + 5r and −3n + 3m = a + 5s,
from which it can be seen that s has the form s = 3k + a for k an integer.
Hence n = r − 3k − a and m = a + r + 2k, (−1)n+m = (−1)k,

5n2 + 2n + 3m +
15m(m− 1)

2

=
a (25a− 13)

2
+ 15(4a− 1)k + 75k2 +

5(2a− 1)r + 25r2

2
,

so that, by summing over all a ∈ {0, 1, 2, 3, 4} and using (1.4) and (1.5) once
again,〈

q3; q15
〉
∞
〈
q3; q10

〉
∞

=

5∑
a=0

qa(25a−13)/2
〈
q75+15(4a−1); q150

〉
∞

〈
−q5a+10; q25

〉
∞ ,

thus providing the first of the three required 5-dissections.
By applying similar reasoning to the b = 1 case of, respectively, (2.4) and

(2.5), one gets that〈
q−7; q15

〉
∞
〈
q3; q10

〉
∞

=
5∑

a=0

qa(25a−33)/2
〈
q75+60a−35); q150

〉
∞

〈
−q5a; q25

〉
∞

and〈
q−2; q15

〉
∞
〈
q3; q10

〉
∞

=
5∑

a=0

qa(25a−23)/2
〈
q75+60a−25); q150

〉
∞

〈
−q5a+5; q25

〉
∞ .

As noted above, these three 5-dissections my be inserted into the b = 1 case

of (2.2) to produce a 5-dissection of
〈
q; q5

〉3
∞
〈
q3; q10

〉
∞. Similar arguments

may be used to produce dissections of other infinite products in the paper.
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7. Concluding Remarks

As Tang remarks, there seems to be no vanishing coefficient results for
t = 13 or t = 17 for the infinite products at (1.2), and the same seems to
hold for the other kinds of infinite product examined in the present paper.
However, it would be interesting to see if these formats may be modified in
any way so as to produce new classes of infinite products with coefficients
vanishing in arithmetic progressions.
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