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Abstract. The present paper examines the phenomenon of coefficients
that vanish in a class of infinite products related to those first examined
by Hirschhorn, and later by Tang, Baruah and Kaur, and the first author
of the present paper. Several infinite families of vanishing coefficient
phenomena are found.

In particular, it is shown that if p is a prime in one of several arith-
metic progressions modulo 24, then there exist integer values for j, v
and w such that if b is any integer (or in same cases, any odd integer,
or any even integer), then a result of the following type holds:
If the sequence {rn} is defined by

(qjb, q2p−jb; q2p)∞(qb, qp−b; qp)3∞ =:

∞∑
n=0

rnq
n,

then rpn+vb2+wb = 0 for all n.

1. Introduction

Results on the vanishing in arithmetic progressions of coefficients in the
series expansion of various infinite products go back at least as far as the
paper [9] of Richmond and Szekeres, who proved, amongst other results,
that if

F (q) :=
(q3, q5; q8)∞
(q, q7; q8)∞

=:

∞∑
m=0

cmq
m,

then c4n+3 is always zero.
Their results were extended by Andrews and Bressoud [2], who proved

the following general theorem.
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Theorem 1.1. If 1 ≤ r < k are relatively prime integers of opposite parity
and

(1.1)
(qr, q2k−r; q2k)∞

(qk−r, qk+r; q2k)∞
=:

∞∑
n=0

φnq
n,

then φkn+r(k−r+1)/2 is always zero.

Alladi and Gordon [1] proved an even more general theorem.

Theorem 1.2. Let 1 < m < k and let (s, km) = 1 with 1 ≤ s < mk. Let
r∗ = (k − 1)s and r ≡ r∗ (mod mk), with 1 ≤ r < mk.
Put r′ = d r∗mke (mod k) with 1 ≤ r′ < k. Write

(1.2)
(qr, qmk−r; qmk)∞
(qs, qmk−s; qmk)∞

=
∞∑
n=0

anq
n.

Then an = 0 for n ≡ rr′ (mod k).

Alladi and Gordon [1] also proved a companion theorem for odd k, in
which the denominator of the infinite product on the right side of (1.2) was
replaced with (−qs,−qmk−s; qmk)∞.

Similar results were obtained in [7] by the first author of the present
paper, who proved the following result (and a companion result similar the
companion result of Alladi and Gordon [1] mentioned just above).

Theorem 1.3. Let k > 1, m > 1 be positive integers. Let r = sm + t,
for some integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are
relatively prime. Let

(1.3)
(qr−tk, qmk−(r−tk); qmk)∞

(qr, qmk−r; qmk)∞
=:

∞∑
n=0

cnq
n,

then ckn−rs is always zero.

In [5], Hirschhorn introduced a new class of infinite q-products which have
the property that when the product is expanded as a series in q, then the
coefficients in one or more arithmetic progressions vanish. More precisely,
he proved the following.

Let the sequences {an} and {bn} be defined by

∞∑
n=0

anq
n := (−q,−q4; q5)∞(q, q9; q10)3∞,

∞∑
n=0

bnq
n := (−q2,−q3; q5)∞(q3, q7; q10)3∞.

Then a5n+2 = a5n+4 = b5n+1 = b5n+4 = 0.
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Following this, a number of similar results were given in [10] by Tang,
who proved, for example, that if the sequences {a2(n)}, {b2(n)}, {a3(n)}
and {b3(n)} are defined by

∞∑
n=0

a2(n)qn := (−q,−q4; q5)3∞(q2, q8; q10)∞,

∞∑
n=0

b2(n)qn := (−q2,−q3; q5)3∞(q4, q6; q10)∞,

∞∑
n=0

a3(n)qn := (−q,−q4; q5)3∞(q3, q7; q10)∞,

∞∑
n=0

b3(n)qn := (−q2,−q3; q5)3∞(q, q9; q10)∞,

then a2(5n + 4) = b2(5n + 1) = a3(5n + 3) = a3(5n + 4) = b3(5n + 3) =
b3(5n+ 4) = 0.

Baruah and Kaur proved a number of similar results in [3], such as the
following. Let the sequences {kn}, {ln}, {un} and {vn} be defined by

∞∑
n=0

knq
n := (q, q4; q5)∞(q, q9; q10)3∞,(1.4)

∞∑
n=0

lnq
n := (q2, q3; q5)∞(q3, q7; q10)3∞,

∞∑
n=0

unq
n := (q, q4; q5)3∞(q3, q7; q10)∞,

∞∑
n=0

vnq
n := (q2, q3; q5)3∞(q, q9; q10)∞.

Then k5n+4 = l5n+4 = u5n+4 = v5n+3 = 0.
In [8], the first author proved that such results (usually) exist in families.

One such example is contained in the following theorem.

Theorem 1.4. For b ∈ {1, 2, . . . , 9, 10} define the sequence {rn} by

(1.5) (q8b, q11−8b; q11)3∞(q11−b, q11+b; q22)∞ =:
∞∑

n=−756
rnq

n.

(i) For all n, r11n+6b2+b = 0.
(ii) In addition, if b ∈ {1, 3, 5, 7, 9}, then r11n+4b2+b = 0 for all n.

At the end of the paper [10], Tang posed the problem of finding triples
(r, s, t) such that if the sequences {ar,s,t(n)}, {br,s,t(n)} are defined by

∞∑
n=0

ar,s,t(n)qn := (−qr,−qt−r; qt)3∞(qs, q2t−s; q2t)∞,(1.6)
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∞∑
n=0

br,s,t(n)qn := (−qr,−qt−r; qt)∞(qs, q2t−s; q2t)3∞,

then these sequences vanish in one or more arithmetic progressions modulo
t. Tang stated a number of results for t = 7 and t = 11.

In the present paper we further consider the question of coefficients van-
ishing in arithmetic progressions in the series expansion of infinite products
of the form

(1.7)
∏

(q) := (qb, qp−b; qp)3∞(qjb, q2p−jb; q2p)∞.

Here p is taken to be an odd prime, so as to ensure it is relatively prime to
the parameter b, thus making solving certain congruences more straightfor-
ward. It is shown that there are infinite families of primes p for which the
coefficients in the series expansion of

∏
(q) vanish in one or more arithmetic

progressions modulo p.
An example of a result from the present paper is the following:

Theorem 1.5. Let p be a prime of the form p = 24t + 11, so that p =
2U2 + 3V 2 for positive integers U and V , and 2|U . Let h and g be any
integers such that

(1.8) hU + 3gV = 1,

and set x = 3g + U and y = 3(h− V ). Let

j = 2x(x− 3g)− y
(
h− y

3

)
= 2xU − yV.

(i) Let v and w (0 ≤ v, w ≤ p− 1) be defined by

v ≡ −xV −1 (mod p),(1.9)

w ≡ j + χp+ 3

2
(mod p), where χ =

{
0, j is odd,

1, j is even.

Let b be any integer and let the sequence {rn} be defined by

(1.10) (qb, qp−b; qp)3∞(qjb, q2p−jb; q2p)∞ =

∞∑
n=0

rnq
n,

then rpn+vb2+wb = 0 for all integers n.
(ii) Let w be as above and let v (0 ≤ v ≤ p− 1) be defined by

v ≡ −y(2U)−1 (mod p).

If y is even, then rpn+vb2+wb = 0 for all integers n and any integer b. If y
is odd, then rpn+vb2+wb = 0 for all integers n and any even integer b.

Similar theorems are proved for primes p, where p (mod 24) ∈ {5, 7, 11}.
Remark: Equation (1.8) has infinitely many solutions in integers (h, g)

since gcd(U, 3V ) = 1. Each will lead to a different formulation of the con-
clusions at (i) and (ii) in the theorem. However, each such statement, where
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b is some integer and j, v and w are derived from the particular solution
(h, g) chosen for (1.8), may be shown to be equivalent to one of p “funda-
mental solutions”, where b, j, v, w ∈ {0, 1, 2, . . . , p− 1}.

2. Preliminaries

Observe that multiplying the quantities in (1.7) by infinite products of
the forms (qp; qp)∞ or (q2p; q2p)∞ will not have any effect on coefficients
that vanish in an arithmetic progression modulo p, and our method of proof
involves multiplying the quantities in (1.7) by such infinite products, so as
to convert these products into products of Jacobi triple products.

For space saving reasons we will frequently use the notation

〈a; qj〉∞
to represent the triple product (a, qj/a, qj ; qj)∞ more compactly.

The main tool used to deal the part of the product consisting of a Jacobi
triple product cubed is the extended quintuple product formula (see Cao [4,
Eq. (3.2)] or Mc Laughlin [6, Eq. (4.6)]):

(2.1)
〈
−qa; q2

〉
∞
〈
−qb; q2

〉
∞
〈
−qc; q2

〉
∞ =

〈
−q

2a

c
; q4
〉
∞{〈

−q
6ac

b2
; q12

〉
∞

〈
−q3abc; q6

〉
∞ + qb

〈
−q

2ac

b2
; q12

〉
∞

〈
−q5abc; q6

〉
∞

+ q4b2
〈
− ac

q2b2
; q12

〉
∞

〈
−q7abc; q6

〉
∞

}
+
q2a

b

〈
−q

4a

c
; q4
〉
∞{〈

−q
12ac

b2
; q12

〉
∞

〈
−q3abc; q6

〉
∞ +

b

q

〈
−q

8ac

b2
; q12

〉
∞

〈
−q5abc; q6

〉
∞

+ b2
〈
−q

4ac

b2
; q12

〉
∞

〈
−q7abc; q6

〉
∞

}
.

To obtain the special case useful for the present purpose, replace q with
qp/2 and replace a, b and c with −qp/2−b, to get (after some elementary
q-product manipulations) that

(2.2)
〈
qb; qp

〉3
∞

=〈
q3b; q3p

〉
∞

{〈
−qp; q2p

〉
∞
〈
−q3p; q6p

〉
∞ + qp

〈
−1; q2p

〉
∞
〈
−1; q6p

〉
∞

}
+

{
− qb

〈
qp+3b; q3p

〉
∞

+ q2b
〈
qp−3b; q3p

〉
∞

}
×
{〈
−1; q2p

〉
∞
〈
−q2p; q6p

〉
∞ +

〈
−qp; q2p

〉
∞
〈
−qp; q6p

〉
∞

}
.
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For ease of use, we state two equivalent forms of the Jacobi triple product
identity as

(2.3)
∞∑

n=−∞
(−z)nqn2

= (zq, q/z, q2; q2)∞,

(2.4)
∞∑

n=−∞
(−z)nqn(n−1)/2 = (z, q/z, q; q)∞.

Both forms are used frequently to expand a Jacobi triple as an infinite
bilateral series or to go in the reverse direction; sometimes one form is used,
sometimes the other, and it is simpler to have both forms available for easy
reference.

3. Idea behind the proofs

The results in this section were derived firstly as a consequence of brute-
force searches. These in turn provided sufficient data to enable conjectures
to be made, conjectures which were then subsequently proved.

Suppose that it is desired that a prime p > 3 and integers j, w and v may
be found so that if the sequence {rn} is defined by

(3.1) (qb, qp−b; qp)3∞(qjb, q2p−jb; q2p)∞ =
∞∑
n=0

rnq
n,

then rpn+vb2+wb = 0, for all n and all integers b, or possibly all even/odd

integers b. Observe that this is trivially true if p|b, since (qb, qp−b; qp)∞ = 0
in this case, so in what follows it is assumed that gcd(b, p) = 1. The situation
where j is a multiple of p is also ignored, as then the problem of coefficients
vanishing in a progression modulo p devolves to that for the simpler product
(qb, qp−b; qp)3∞.

By (2.2), rpn+vb2+wb = 0 for all integers n and some integer b, if the

coefficients in the series expansions of
〈
qjb; q2p

〉
∞
〈
q3b; q3p

〉
∞ and〈

qjb; q2p
〉
∞

{
− qb

〈
qp+3b; q3p

〉
∞

+ q2b
〈
qp−3b; q3p

〉
∞

}
also vanish in the arithmetic progression vb2 + wb (mod p). Note that it
may happen that the coefficients in the series expansions of

−qb
〈
qp+3b; q3p

〉
∞

〈
qjb; q2p

〉
∞

and q2b
〈
qp−3b; q3p

〉
∞

〈
qjb; q2p

〉
∞

vanish separately in the arithmetic progression vb2 + wb (mod p).
By the Jacobi triple product identity (2.4),

(3.2)〈
qjb; q2p

〉
∞

〈
q3b; q3p

〉
∞

=

∞∑
m,n=−∞

(−1)m+nqpn(n−1)+jbn+3bm+3pm(m−1)/2.
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From the exponent of q it may be seen that to get powers of q in the pro-
gression vb2 + wb (mod p), it is necessary and sufficient that m and n be
restricted so that

jbn+ 3bm ≡ vb2 + wb (mod p),(3.3)

=⇒ jn+ 3m ≡ vb+ w (mod p).

The second congruence implies a pair of equations involving m and n:

jn+ 3m = vb+ w + pr,(3.4)

(j − p)n+ 3m = vb+ w + ps,

for some integers r and s. It is necessary to solve the last pair of equations
for m and n, and while it is clear that n = r− s, solving for m introduces a
factor of 1/3:

m =
1

3
(pr + j(−r + s) + bv + w),(3.5)

n = r − s.
If r is unrestricted, then it is necessary to restrict s to a particular arithmetic
progression modulo 3 (to get integral m), so we write s = 3k + u, where
u ∈ {−1, 0, 1} to get

m =
1

3
(pr + j(3k − r + u) + bv + w),(3.6)

n = −3k + r − u
Subsequent calculations are best performed using a computer algebra system
such as Mathematica.

When these substitutions are made in the right side of (3.2), one gets
an unrestricted bilateral double sum over the integer variables r and k.
However, there is now an additional complication in that the exponent now
contains a “cross-term” involving the product rk, namely, p(−6−j2+jp)rk,
which inhibits the separation of the double sum into a product of single sums,
one over r and the other over k (one of which, for our purposes, we would
like to sum to zero).

The next task is to look for an invertible transformation of the form

k → gk + hr,(3.7)

r → xk + yr,

which will remove the cross terms. Note that the condition gy − hx = ±1
ensures invertibility. Further, since k and r range over all the integers, so
that k (respectively r) may be replaced with −k (respectively −r), it is
sufficient to restrict to transformations with either gy−hx = 1 or gy−hx =
−1, so here we make the latter choice.

Suppose that after the transformations at (3.6) and (3.7) are made, the
exponent of q on the right side of (3.2) becomes

(3.8) α0 + αkk + αrr + αkrkr + αk2k
2 + αr2r

2,
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where each of the α’s are polynomials in p, j, g, h, u, v, w, x and y (although
it may be seen from (3.6) that the expressions for αk2 and αr2 do not involve
u, v and w).

Then one can check (once again, most easily by performing the operations
using a computer algebra system such as Mathematica) that

(3.9) αkr = αkr(p, j, g, h, x, y)

=
p

3

{
(6 + j2)(3g − x)(3h− y) + p(3j(hx+ gy) + (p− 2j)xy)

}
,

so that if αkr(p, j, g, h, x, y) = 0 for particular values of g, h, x and y, then
αkr(p, j,−h, g,−y, x) = 0 also. These two solutions may be termed “in-
equivalent”, as it will be seen that they may lead to vanishing coefficients
in different arithmetic progressions (solutions arising from replacing all of
g, h, x and y (or various pairs of them) by their negatives may be ignored as
these correspond to replacing k and/or r by their negatives).

One also finds that

αk2 =
p

6
((6 + j2)(3g − x)2 + 2jp(3g − x)x+ p2x2),(3.10)

αr2 =
p

6
((6 + j2)(3h− y)2 + 2jp(3h− y)y + p2y2).

At this point it is not obvious how to solve αkr(p, j, g, h, x, y) = 0 gener-
ally, or even to find an infinite family of solutions, so a search for specific solu-
tions was performed experimentally instead, to try to see some patterns.This
involved searching over primes p ≤ 2400 and integers j, 1 ≤ j ≤ p − 1 and
checking if there was a quadruple of integers g, h, x and y with hx− gy = 1
such that αkr(p, j, g, h, x, y) = 0

In all of the cases found for which αkr(p, j, g, h, x, y) = 0, it was found
that αk2 and αr2 were rational multiples of p2. More precisely, it appeared
that (αk2 , αr2)/p2 is one of the pairs

(3.11) (1/2, 3), (1, 3/2), (3/2, 1), (3, 1/2).

In fact, it can be shown that these are the only possibilities for (αk2 , αr2)/p2

under the circumstances described above. More precisely, the following is
true.

Proposition 3.1. Suppose that the transformations (3.6) and (3.7) are ap-
plied to the right side of (3.2), so that the exponent of q becomes as described
at (3.8) above. Suppose, in addition to αkr = 0, that αk2 = zp2, for some
rational z. Then αr2 = 3p2/(2z), and

(3.12) z ∈
{

1

2
, 1,

3

2
, 3

}
.

Proof. With αkr and αk2 as at (3.9) and (3.10), one can check (possibly with
the aid of a computer algebra system and using the fact that hx− gy = 1)
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that solving the pair of equations αkr = 0, that αk2 = zp2 for j and p leads
to

p =
1

z
(x− 3g)2 +

2z

3
(3h− y)2,(3.13)

j =
x

z
(x− 3g)− 2zy

3
(3h− y).

(Note that the “trivial” solutions involving p = 0 are ignored, since p is as-
sumed here to be a prime.) If these values are substituted into the expression
for αr2 at (3.10), it is found that αr2 = 3p2/(2z), as claimed.

Since the coefficients of m, m2, n and n2 in the exponent of q at (3.2)
are integers or half integers, the same must be true of the coefficients of k2

(αk2 = zp2) and r2 (αr2 = 3p2/(2z)), and these facts limit the possibilities
for z.

Firstly, the situation where either of x − 3g or y − 3h is equal to zero is
ignored, since it is easily seen to imply that j is then an integer multiple of
p, a case not being considered by the remark following Equation (3.1).

We set the rational number z = N/D for relatively prime integers N and
D. It is a fact that p - N , since the integrality or half-integrality of αk2 = zp2

and αr2 = 3p2/(2z) then imply that D ∈ {1, 2} and N ∈ {p, 3p, p2, 3p2} and
substituting z = N/D with each of these possibilities into the expression for
p at (3.13) at leads to a contradiction. A similar argument shows p - D.

Finally, once again considering the integrality or half-integrality of αk2 =
zp2 and αr2 = 3p2/(2z), this time using the facts that p - N and p - D, one
gets that D ∈ {1, 2} and N ∈ {1, 3}, giving the claimed values for z. �

For later use, we record the following identities.

Proposition 3.2. Let z = N/D be as in the previous proposition. Then

6 + j2 = p

(
Dx2

N
+

2Ny2

3D

)
,(3.14)

p− j =
3Dg(3g − x)

N
+

2hN(3h− y)

D
,

(3g − x)j + px =
2N(3h− y)

D
,

(3h− y)j + py = −3D(3g − x)

N
.

Proof. These all follow from substituting for p and j from (3.13), possibly
using the fact that hx− gy = 1. �

Suppose that the cross-terms involving rk have been eliminated (αkr = 0).
Then the next task is to check if integers w and v may be found so that
the coefficients in the series expansions of

〈
qjb; q2p

〉
∞
〈
q3b; q3p

〉
∞ vanish in

the arithmetic progression vb2 + wb (mod p). With our previous notation,
suppose that after the transformations at (3.6) and (3.7) are made and the
pair of equations αkr = 0, αk2 = zp2 are solved for j and p, the sum that
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contains only powers of q in the arithmetic progression vb2 +wb (mod p) is
represented formally by

(3.15) F1(q) := (−1)ψ1qα0
∑
k∈Z

(−1)β1kqαkk+αk2k
2
∑
r∈Z

(−1)ρ1rqαrr+αr2r
2
.

It may be seen from (2.3) that if β1 is odd and αk is an odd integer
multiple of αk2 (or ρ1 is odd and αr is an odd integer multiple of αr2), then
F1(q) = 0, so that all coefficients of

〈
qjb; q2p

〉
∞
〈
q3b; q3p

〉
∞ vanish in the

arithmetic progression vb2 +wb (mod p). The idea is to try to make choices
for v and w so that one of these two pairs of conditions are satisfied.

For the above reasons, we examine the values taken by αk and αr at this
stage, and also consider how m+ n has transformed (since the (−1)β1k and
(−1)ρ1r terms derive from the original (−1)m+n term).

Proposition 3.3. With the notation of (3.15) and with the additional sub-
stitution w = (j + 3 + χp)/2, where χ = (j + 1) (mod 2), one has

αk
p

= b

(
2

3
vz(3h− y) + x

)
+

1

3
pχz(3h− y)− 2

3
puyz − 1

3
pyz,(3.16)

αr
p

= b

(
v(x− 3g)

z
+ y

)
− pχ(3g − x)

2z
+
pux

z
+
px

2z
,

β1 = x− 3g +
2

3
z(3h− y),(3.17)

ρ1 =
x− 3g

z
+ y − 3h.

Proof. At this stage,

(3.18)
αk
p

= b

(
gjv − jvx

3
+
pvx

3
+ x

)
+ u

(
1

3
(j2 + 6)(3g − x) +

jpx

3

)
+

1

6
(3g − x)(j(2w − 3) + 6) +

1

6
p(2w − 3)x.

Since it is desired that αk be an odd-integer multiple of αk2 = zp2, then the
right side of (3.18) should be a rational multiple of p. The term involving u
actually is a rational multiple of p in disguised form, as may be seen from
the first equation at (3.14). It can also be seen that the j(2w− 3) + 6 factor
in the third term becomes j2 + 6 (a rational multiple of p, again by the first
equation at (3.14)), if 2w − 3 = j. However, this is not solvable for integral
w if j is even, so we set w = (j + 3 + χp)/2, where χ = (j + 1) (mod 2).

After making this substitution and also substituting for p and j from
(3.13) at particular places on the right side, and/or employing some of the
transformations at (3.14) (in particular, using the first of these to replace
any occurrence of j2, but replacing the N/D on the right sides by z), this
equation becomes the expression on the right side of the first equation at
(3.16). This expression will be a rational multiple of p if v can be chosen so
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that 2v(3h − y)z/3 ≡ −x (mod p). By a similar analysis, it is found that
αr is as stated at the second equation at (3.16).

Finally, after all the transformations described, m + n has been trans-
formed as shown:

(3.19) m+ n→ 1

3
(bv + ju− 3u+ w) + k

(
gj − 3g − jx

3
+
px

3
+ x

)
+ r

(
hj − 3h− jy

3
+
py

3
+ y

)
=

1

6
(2bv + 2ju+ j + pχ− 6u+ 3) + k

(
x− 3g +

2

3
z(3h− y)

)
+ r

(
x− 3g

z
+ y − 3h

)
,

so that β1 and ρ1 are as described at (3.17).
Note that the third and fourth equations at (3.14) were employed to go

from the first expression for m+ n at (3.19) to the second. �

The next task is to consider the series expansions

−qb
〈
qp+3b; q3p

〉
∞

〈
qjb; q2p

〉
∞

(3.20)

= −qb
∞∑

m,n=−∞
(−1)m+nqpn(n−1)+jbn+(p+3b)m+3pm(m−1)/2,

q2b
〈
qp−3b; q3p

〉
∞

〈
qjb; q2p

〉
∞

= q2b
∞∑

m,n=−∞
(−1)m+nqpn(n−1)+jbn+(p−3b)m+3pm(m−1)/2.

As above, replacements are made for m and n so as to obtain just the
powers of q in the arithmetic progression vb2 + wb (mod p). By reasoning
similarly (and taking account of the qb and q2b terms multiplying the series),
this can be seen to entail solving the pairs of equations

jn+ 3m = wb+ v − 1 + pr,(3.21)

(j − p)n+ 3m = wb+ v − 1 + ps,

and

jn− 3m = wb+ v − 2 + pr,(3.22)

(j − p)n− 3m = wb+ v − 2 + ps,

for m and n. By continuing to follow similar reasoning to that used above,
the first pair of equations leads to

m =
1

3
(−1 + pr + j(3k − r + u′) + bv + w),(3.23)
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n = −3k + r − u′,
and the second pair to

m =
1

3
(2− pr + j(−3k + r − u′′)− bv − w),(3.24)

n = −3k + r − u′′.

As above, replacements of the form s→ 3k + u′ (respectively, s→ 3k + u′′)
have been made.

These substitutions are then made on the right sides respectively of (3.20).
Since the coefficients of n2 and m2 in the exponent of q in these series is
the same as those in the exponent of q in the series at (3.2), and since it
is the n2 and m2 terms that produce the cross-terms rk, then the same
transformation (3.7) will remove the rk terms in the two series that are
derived from (3.20).

Hence we proceed as follows: substitutions for m and n are made in the
first series on the right at (3.20) using the values at (3.23), and likewise
in the second series at (3.20) using the values at (3.24). Next, the same
linear transformation (3.7) that was applied (in theory) to remove the kr
terms in the series deriving from the expansion of

〈
qjb; q2p

〉
∞
〈
q3b; q3p

〉
∞ is

applied to each of the two resulting series (to remove the terms in kr from
these series also, and permit each double series to be factored into a series
over k and a series over r). The same substitutions for p and j as at (3.13)
are applied to actually make the kr terms disappear (recall that these were
derived by solving the pair of equations αkr = 0, αk2 = zp2). In each case
the same values that were previously assigned to w and v (which caused all
terms in the arithmetic progression vb2+wb (mod p) in the series expansion
of
〈
qjb; q2p

〉
∞
〈
q3b; q3p

〉
∞ to vanish) are also assigned in each of these two

series.
For reference purposes, the exponent of q in each of the two series at

(3.20), after all of these changes have been made, are denoted by

(3.25) α′0 + α′kk + α′rr + αk2k
2 + αr2r

2

and

(3.26) α′′0 + α′′kk + α′′rr + αk2k
2 + αr2r

2,

respectively. Let

F2(q) := (−1)ψ2(b)qα
′
0

∑
k∈Z

(−1)β2kqα
′
kk+αk2k

2
∑
r∈Z

(−1)ρ2rqα
′
rr+αr2r

2
,(3.27)

F3(q) := (−1)ψ3(b)qα
′′
0

∑
k∈Z

(−1)β3kqα
′′
kk+αk2k

2
∑
r∈Z

(−1)ρ3rqα
′′
r r+αr2r

2
,

be the series derived respectively from the right sides of (3.20) after applying
all of the stated transformations and substitutions. Note that all of the
powers of q in the series F2(q) and F3(q) are, by construction, congruent to
vb2 + wb (mod p).
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Next one can check for either of two possibilities. The first possibility
is that in each case either the series over k or the series over r vanishes
identically (for similar reasons to those described after (3.15)).

The second possibility that leads to all coefficients vanishing in the arith-
metic progression vb2 + wb (mod p) in the series expansion of the infinite
product at (3.1) is if F2(q) 6= 0 but F2(q)+F3(q) = 0 (this second possibility
does not occur in the cases examined in the theorems in the next section).

Other relevant results are summarized in the next proposition.

Proposition 3.4. With the notation of equations (3.15), (3.16), (3.17) and
(3.27), we have

αk = α′k = α′′k,(3.28)

αr = α′r = α′′r ,

β2 = β1,

ρ2 = ρ1,

β3 = x− 3g − 2

3
z(3h− y),

ρ3 = −x− 3g

z
+ y − 3h.

Proof. These all follow as a consequence of the same kind of analysis as was
employed in the proof of Proposition 3.4, perhaps assisted by a computer
algebra system such as Mathematica. �

Remarks: (i) What these results mean is that to apply Propositions 3.1
3.4 in any particular situation so as to get F1(q) = F2(q) = F3(q) = 0, all
that is necessary is to show that β1 and β3 are odd, and that αk is an odd
integer multiple of αk2 .

(ii) In some of the theorems below, it will be seen that the result holds
for just odd b or just even b. The reasons will be explained when the phe-
nomenon is encountered.

4. Main Results

The results in this section follow from investigating the possibilities im-
plied by the observation at (3.11).

As mentioned earlier, some of the assertions in this and later proofs are
most easily checked with a computer algebra system like Mathematica. Most
rely on the fact that hx− gy = 1 for simplification. We first prove Theorem
1.5 from the introduction.

Proof of Theorem 1.5. Set z = 1/2 in Proposition 3.1, so that by (3.13),

p = 2(x− 3g)2 + 3
(
h− y

3

)2
,(4.1)

j = 2x(x− 3g)− y
(
h− y

3

)
,
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in agreement with the statements of the theorem, if g and x are both odd.
Further, from the proof of Proposition 3.1,

(αkr, αk2 , αr2) =

(
0,

1

2
p2, 3p2

)
.

From (3.17) and (3.28) (and the comment preceding the latter) it follows
that

(4.2) β1 = β2 = x−3g+(h−y/3) = U+V, β3 = x−3g−(h−y/3) = U−V,

and thus are all odd (recall U is even and V is odd), as required.
One can also check that

αk
p

= b
(
v
(
h− y

3

)
+ x
)

+
1

2
pχ
(
h− y

3

)
− puy

3
− 1

2
p
y

3
(4.3)

= b (vV + x) +
1

2
pχV − puy

3
− 1

2
p
y

3
.

With the choice for v stated in the theorem, b(vV + x) is a multiple of
p, as is puy/3, since 3|y. Since j = 2xU − yV and V is odd, then j and y
have the same parity. If y is odd then j is odd and χ = 0, and py/6 is an
odd integer multiple of p/2. If y is even, then j is even, so that χ = 1, py/6
is an integer multiple of p and pχV/2 = pV/2 is an odd integer multiple of
p/2. Thus in either case, αk is an odd integer multiple of p2/2. Thus αk is
an odd integer multiple of αk2 and so F1(q) = 0.

Upon turning to F2(q), since β2 = β1 (so also odd), and α′k = αk (and
hence also an odd integer multiple of αk2), F2(q) = 0.

Since β3 = U − V (again odd), and α′′k = αk (and hence also an odd
integer multiple of αk2), then F3(q) = 0. This completes the proof of (i).

For (ii), we start by setting z = 3 in Proposition 3.1 and its proof. This
gives

p =
1

3
(x′ − 3g′)2 + 2(3h′ − y′)2,(4.4)

j =
x′

3
(x′ − 3g′)− 2y′(3h′ − y′),

β1 = x′ − 3g′ + 2(3h′ − y′),
β3 = x′ − 3g′ − 2(3h′ − y′),
αk
p

= b(2v(3h′ − y′) + x′) + pχ(3h′ − y′)− 2puy′ − py′.

The ′ marks are used to distinguish the values that appear here from those
in part (i). To get the values for p and j that appear in part (i), the following
substitutions are made:

g′ → h, h′ → −g, x′ → y, y′ → −x.
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With these changes, p and j take the forms stated at (4.1),

β1 = 2(x− 3g)− 3
(
h− y

3

)
= 2U − 3V,(4.5)

β3 = −2(x− 3g)− 3
(
h− y

3

)
= −2U − 3V,

αk
p

= b(2v(x− 3g) + y) + pχ(x− 3g) + 2pux+ px,

= b(2vU + y) + pχU + 2pux+ px.

Once again, β1 = β2 and β3 are odd (recall that U is even and V is odd),
and it remains to show that αk is an odd-integer multiple of αk2 = 3p2, and
that the stated dependence on the parity of y holds. The proof this time
is slightly more technical than the proof of (i). It may be seen from the
second equation at (3.14) that 3|(p − j), since 3|y (y = 3(h − V )). Since p
has the form 24t + 11, then j ≡ 2 (mod 3). Hence from the first equation
at (3.6), 3|(2u+ bv + w), or u = −2w + bv + 3T , for some integer T . Upon
substituting for w from (1.9),

u = −j − 3− χp+ bv + 3T,(4.6)

=⇒ αk
p

= b(2v(px+ U) + y)− (2j + 5)px+ 6pTx+ pχ(U − 2px).

With the value stated for v in the theorem, p|(2vU + y). From the stated
values for U and p,

px+ U ≡ (2x3 + x) = x(2x2 + 1) ≡ 0 (mod 3).

Thus 6p|(2v(px + U) + y) if y is even, while 2v(px + U) + y is odd if y is
odd and hence is divisible by just 3p in that case. Since x is odd and j ≡ 2
(mod 3), (2j + 5)px is an odd multiple of 3p. Since U is even, U − 2px
is even, and since 3|U + px from above, then 3|U − 2px, and pχ(U − 2px)
is a multiple of 6p, as is of course 6pTx. Hence αk is an odd multiple of
3p2 = αk2 for all b if y is even, and for all even b if y is odd, and the proof
of (ii) is complete. �

As an example we consider p = 59. We ignore 11, since vanishing coeffi-
cient results for this prime have been given elsewhere (see the introduction).

Example 1. Let p = 59 = 24(2) + 11 = 2(42) + 3(32). So (U, V ) = (4, 3).
Let (h, g) = (−2, 1) be a solution to

hU + 3gV = h(4) + 3g(3) = 1.

Then x = U + 3g = 4 + 3(1) = 7, and y = 3(h − V ) = 3(−2 − 3) = −15.
Next, j = 2xU − yV = 2(7)(4) − (−15)(3) = 101. Since j is odd, w =
(j + 3)/2 = 52. Since V −1 (mod 59) = 20, then −xV −1 = −(7)(20) ≡ 37
(mod 59), so v = 37. Hence, by the theorem, if the sequence {rn} is defined
by

(qb, q59−b; q59)3∞(q101b, q118−101b; q118)∞ =

∞∑
n=0

rnq
n,
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then r59n+37b2+52b = 0, for all integers n and b.
Upon turning to part (ii), y = −15 (odd) and U = 4,

−y(2U)−1 = 15(8)−1 ≡ 24 (mod 59),

and r59n+24b2+52b = 0, for all integers n and all even integers b.

Remark: In the theorem, p was restricted to be a prime since all primes
p in the arithmetic progressions 11 (mod 24) have the representation p =
2U2 + 3V 2 (a key requirement of the proof), and also to allow a factor of
b to be dropped from the congruence (3.3), but in fact this restriction may
be relaxed to non-prime p with the representation p = 2U2 + 3V 2, with U
even, and b is restricted so that gcd(b, p) = 1.

It should be noted that there may not be any solutions to

2U2 + 3V 2 = 24t+ 11

with U even when 24t+ 11 is composite (there is no solution for t = 12 and
24(12) + 11 = 299, for example).

Example 2. Let p = 35 = 2(22) + 3(32). So (U, V ) = (2, 3). Let (h, g) =
(−4, 1) be a solution to

hU + 3gV = h(2) + 3g(3) = 1.

Then x = U+3g = 2+3(1) = 5, and y = 3(h−V ) = 3(−4−3) = −21. Next,
j = 2xU − yV = 2(5)(2)− (−21)(3) = 83. Since j is odd, w = (j + 3)/2 =
43 ≡ 8 (mod 35). Since V −1 (mod 35) = 12, then −xV −1 = −(5)(12) ≡ 10
(mod 35), so v = 10. Thus if gcd(b, 35) = 1 and the sequence {rn} is defined
by

(qb, q35−b; q35)3∞(q83b, q70−83b; q70)∞ =
∞∑
n=0

rnq
n,

then r35n+10b2+8b = 0, for all integers n and any integer b relatively prime
to 35.

For the arithmetic progression predicted by part (ii) of the theorem, y =
−21 (odd), U = 2,

−y(2U)−1 = 21(4)−1 ≡ 14 (mod 35),

and r35n+14b2+8b = 0, for all integers n and any even integer b that is rela-
tively prime to 35.

Remark: There is another solution to 2U2 + 3V 2 = 35, namely U = 4
and V = 1. By following the same steps as in the previous example (with
h = −2 and g = 3), one gets the following result.

Example 3. If gcd(b, 35) = 1 and the sequence {rn} is defined by

(qb, q35−b; q35)3∞(q113b, q70−113b; q70)∞ =
∞∑
n=0

rnq
n,
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then r35n+22b2+23b = 0, for all integers n and any integer b relatively prime to
35, and r35n+23b2+23b = 0, for all integers n and any even integer b relatively
prime to 35.

By similar reasoning the following theorem holds.

Theorem 4.1. Let p be a prime of the form p = 24t + 5, so that p =
2U2 + 3V 2 for positive integers U and V , both odd. Let h and g be integers
such that

(4.7) hU + 3gV = 1,

with h even and g odd, and set x = 3g + U and y = 3(h− V ). Let

j = 2x(x− 3g)− y
(
h− y

3

)
= 2xU − yV.

Let v and w (0 ≤ v, w ≤ p− 1) be defined by

v ≡ −y(2U)−1 (mod p),(4.8)

w ≡ j + 3

2
(mod p).

Let b be any odd integer and let the sequence {rn} be defined by

(4.9) (qb, qp−b; qp)3∞(qjb, q2p−jb; q2p)∞ =
∞∑
n=0

rnq
n.

Then rpn+vb2+wb = 0 for all integers n.

Remarks: (i) Note that x is even and y is odd, and thus that j is odd.
This is the reason for the simplified definition of w in Theorem 4.1, compared
with that in Theorem 1.5.

(ii) Note that setting z = 1/2 in Proposition 3.1 does produce any results
in this case, since from (4.2), each of β1, β2 and β3 is even.

Proof. The proof very closely follows that of part (ii) of Theorem 1.5, in
that the z = 3 case of Proposition 3.1 is used. The differences in this case
are that U is odd and that the parity of g, h, x and y is fixed. Note from
(4.5) that β1, β2 and β3 are odd, as needed.

To get that αk is an odd integer multiple of αk2 = 3p2, most of the
argument is the same as before. In (4.6), χ = 0 since j is odd. The term
(2j + 5)px is a multiple of 6p since, as noted earlier, j ≡ p (mod 3) and in
this case p ≡ 2 (mod 3). Thus it is necessary that b(2v(px+ U) + y) be an
odd multiple of 3p, and from what has been shown earlier, it is necessary
and sufficient that b be odd. �

Example 4. Let p = 53 = 24(2) + 5 = 2(52) + 3(12). So (U, V ) = (5, 1).
Let (h, g) = (2,−3) be a solution to

hU + 3gV = h(5) + 3g(1) = 1.
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Then x = U+3g = 5+3(−3) = −4, and y = 3(h−V ) = 3(2−1) = 3. Next,
j = 2xU − yV = 2(−4)(5)− (3)(1) = −43. Since j is odd, w = (j + 3)/2 =
−20. Since y = 3 and U = 5,

−y(2U)−1 = −3(10)−1 ≡ 5 (mod 53),

so v = 5. Thus if the sequence {rn} is defined by

(4.10) (qb, q53−b; q53)3∞(q−43b, q106+43b; q106)∞ =
∞∑
n=0

rnq
n,

then r53n+5b2−20b = 0, for all integers n and all odd integers b.

Remark: In the theorem it was specified that v, w ∈ {0, 1, . . . , p− 1}, but
since they are just relevant to the arithmetic progression pn + vb2 + wb, it
is clear that any value for v or w in the same residue class (mod p), will
work, so we chose −20 (the direct output from (j + 3)/2 = −20) for w in
the example instead of 33.

We next turn to primes p ≡ 1 (mod 24).

Theorem 4.2. Let p be a prime of the form p = 24t+1, so that p = U2+6V 2

for integers U (odd) and V (even). Let h and g be integers such that

(4.11) hU + 3gV = 1,

and set x = 3g + U and y = 3(h− V ). Let

j = x(x− 3g)− 2y
(
h− y

3

)
= xU − 2yV.

(i) Let v and w (0 ≤ v, w ≤ p− 1) be defined by

v ≡ −x(2V )−1 (mod p),(4.12)

w ≡ j + χp+ 3

2
(mod p), where χ =

{
0, j is odd,

1, j is even.

Let b be an integer and let the sequence {rn} be defined by

(4.13) (qb, qp−b; qp)3∞(qjb, q2p−jb; q2p)∞ =
∞∑
n=0

rnq
n.

If x is even then rpn+vb2+wb = 0 for all integers n and all integers b, while
if x is odd, then rpn+vb2+wb = 0 for all integers n and all even integers b.

(ii) Let w be as above and let v (0 ≤ v ≤ p− 1) be defined by

v ≡ −y(U)−1 (mod p)).

Then rpn+vb2+wb = 0 for all integers n and any integer b.

Proof. Set z = 1 in Proposition 3.1, so that by (3.13),

p = (x− 3g)2 + 6
(
h− y

3

)2
,(4.14)

j = x(x− 3g)− 2y
(
h− y

3

)
,



FURTHER RESULTS ON VANISHING COEFFICIENTS IN INFINITE PRODUCTS 19

giving the values for p and j in the statements of the theorem. Further,
from the proof of the proposition,

(αkr, αk2 , αr2) =

(
0, p2,

3

2
p2
)
.

From (3.17) and (3.28) (and the comment preceding the latter) it follows
that
(4.15)
β1 = β2 = x−3g+2(h−y/3) = U +2V, β3 = x−3g−2(h−y/3) = U −2V,

and thus are all odd (since U is odd and V is even), as required.
One can also check that

αk
p

= b
(

2v
(
h− y

3

)
+ x
)

+ pχ
(
h− y

3

)
− py

3
− 2pu

y

3
(4.16)

= b (2vV + x) + pχV − py
3
− 2pu

y

3
.

With the choice for v stated in the theorem, b(2vV +x) is a multiple of p.
It is clear from (4.11) that h is odd, and thus, from its definition above, that
y is also odd, and so py/3 is an odd multiple of p. It can also be seen that
2puy3 and pχV are even multiples of p. Hence if x is even, then (2vV +x) is
an even multiple of p, and thus αk/p is an odd multiple of p for all b, and so
αk is an odd multiple of αk2 = p2 for all b. Likewise, it can be seen that αk
is an odd multiple of αk2 = p2 only for even b in the case x is odd. As with
the proof of Theorem 1.5, what has been shown is enough to guarantee that
F1(q) = F2(q) = F3(q) = 0, thus completing the proof of (i).

As with Theorem 1.5, the proof of part (ii) is a little more technical. First
set z = 3/2 in Proposition 3.1 and its proof. Also as in the proof of part (ii)
of Theorem 1.5, make the replacements

g → h, h→ −g, x→ y, y → −x,
to recover the values for p and j that appear in part (i).

With these changes, it also follows that β1 = β2 = U − 3V , and β3 =
−U − 3V , and so all are odd, as needed, and

αk
p

= b(v(x− 3g) + y) +
p

2
χ(x− 3g) + pux+

p

2
x,(4.17)

= b(vU + y) +
p

2
χU + pux+

p

2
x.

As previously, it may be seen from the second equation at (3.14) that 3|(p−
j) (after making the substitution/transformations above). Since p has the
form 24t + 1, then j ≡ 1 (mod 3). Hence from the first equation at (3.6),
3|(u+ bv+w), or u = 2w+ 2bv+ 3T , for some integer T . Upon substituting
for w from (1.9),

u = j + 3 + χp+ 2bv + 3T,(4.18)

=⇒ αk
p

= b(v(U + 2px) + y) +
1

2
(2j + 7)px+ 3pTx+

p

2
χ(U + 2px).
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With the value stated for v in the theorem, p|(vU + y). From the stated
values for U and p,

2px+ U ≡ (2x3 + x) = x(2x2 + 1) ≡ 0 (mod 3).

Thus 3p|(v(U + 2px) + y) (recall 3|y) and of course 3p|3pTx. If x is odd,
then j is odd and χ = 0, and since j ≡ p ≡ 1 (mod 3), then (2j + 7)px/2
is an odd multiple of 3p/2. If x is even, then j is even and χ = 1, so that
(2j + 7)px/2 is a multiple of 3p and pχ(U + 2px)/2 is an odd multiple of
3p/2. Hence αk is an odd multiple of 3p2/2 = αk2 for all b, and the proof of
(ii) is complete. �

Example 5. Let p = 73 = 24(3) + 1 = (72) + 6(22). So (U, V ) = (7, 2). Let
(h, g) = (1,−1) be a solution to

hU + 3gV = h(7) + 3g(2) = 1.

Then x = U+3g = 7+3(−1) = 4, and y = 3(h−V ) = 3(1−2) = −3. Next,
j = xU−2yV = (4)(7)−2(−3)(2) = 40. Since j is even, w = (j+3+p)/2 =
58. Next −x(2V )−1 = −(4)(4)−1 = −1 ≡ 72 (mod 73), so v = 72. Hence,
by the theorem, if the sequence {rn} is defined by

(qb, q73−b; q73)3∞(q40b, q146−40b; q146)∞ =
∞∑
n=0

rnq
n,

then r73n+72b2+58b = 0, for all integers n and b.
From part (ii) of Theorem 4.2, with y = −3 and U = 7,

−y(U)−1 = 3(7)−1 ≡ 63 (mod 73),

and r73n+63b2+58b = 0, for all integers n and all integers b.

Finally, we have the following theorem for primes p of the form p = 24t+7.

Theorem 4.3. Let p be a prime of the form p = 24t+7, so that p = U2+6V 2

for integers U and V , both odd. Let h (odd) and g (even) be integers such
that

(4.19) hU + 3gV = 1,

and set x = 3g + U and y = 3(h− V ). Let

j = x(x− 3g)− 2y
(
h− y

3

)
= xU − 2yV.

Let v and w (0 ≤ v, w ≤ p− 1) be defined by

v ≡ −x(2V )−1 (mod p),(4.20)

w ≡ j + 3

2
(mod p).

Let b be an odd integer and let the sequence {rn} be defined by

(4.21) (qb, qp−b; qp)3∞(qjb, q2p−jb; q2p)∞ =

∞∑
n=0

rnq
n.
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Then rpn+vb2+wb = 0 for all integers n.

Proof. As with the proof of part (i) of Theorem 4.3, the proof here also
follows from the z = 1 case of Proposition 3.1. From (4.15) it may be seen
that β1 = β2 and β3 are odd. Upon considering (4.16), αk/p is given once
again by

(4.22)
αk
p

= b (2vV + x) + pχV − py
3
− 2pu

y

3
,

except that j is odd (since x and U are odd) so χ = 0. It is also clear from
the statement of the theorem that since x is odd, then y is even, and thus
py/3 and 2puy/3 are even multiples p. The conditions given for b, v and x
give that b (2vV + x) is an odd multiple of p. Hence αk is an odd multiple
of p2 = αk2 , completing the proof of Theorem 4.3.

�

Example 6. Let p = 103 = 24(4) + 7 = (72) + 6(32). So (U, V ) = (7, 3).
Let (h, g) = (−5, 4) be a solution to

hU + 3gV = h(7) + 3g(3) = 1.

Then x = U + 3g = 7 + 3(4) = 19, and y = 3(h − V ) = 3(−5 − 3) = −24.
Next, j = xU − 2yV = (19)(7) − 2(−24)(3) = 277. Since j is odd, w ≡
(j + 3)/2 = 140 ≡ 37 (mod 103). Since x = 19 and V = 3,

−x(2V )−1 = −19(6)−1 ≡ 14 (mod 103),

so v = 14. Thus if the sequence {rn} is defined by

(4.23) (qb, q103−b; q103)3∞(q277b, q206−277b; q206)∞ =
∞∑
n=0

rnq
n,

then r103n+14b2+37b = 0, for all integers n and all odd integers b.

5. Concluding Remarks

There are a number of obvious questions that may be asked about van-
ishing coefficients in infinite products similar to

(5.1) (qjb, q2p−jb, q2p; q2p)∞(qb, qp−b, qp; qp)3∞,

the topic of the present paper. Specifically, one could ask if there are there
any vanishing coefficient results in any of the following situations:

1) products of the form (where the exponent 3 is switched to the first
triple product)

(5.2) (qjb, q2p−jb, q2p; q2p)3∞(qb, qp−b, qp; qp)∞;

2) products like (5.1) or (5.2), but with the first two powers of q in either
or both of the triple product replaced with their negatives;

3) products like (5.1) or (5.2) or those described in 2), but with the 2p in
the exponents replaced with kp, for some positive integer k 6= 2.
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More generally, one could look at the product

(5.3) (±qjb,±qkp−jb, qkp; qkp)r∞(±qb,±qp−b, qp; qp)s∞,
where all of k, r and s are positive integers, and ask for a complete descrip-
tion of all the situations in which there are vanishing coefficient results.

We hope to provide at least partial answers to some of these questions in
subsequent papers.
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