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Abstract. In this paper we show how to apply various techniques
and theorems (including Pincherle’s theorem, an extension of Eu-
ler’s formula equating infinite series and continued fractions, an
extension of the corresponding transformation that equates infinite
products and continued fractions, extensions and contractions of
continued fractions and the Bauer-Muir transformation) to derive
infinite families of in-equivalent polynomial continued fractions in
which each continued fraction has the same limit.

This allows us, for example, to construct infinite families of poly-
nomial continued fractions for famous constants like π and e, ζ(k)
(for each positive integer k ≥ 2), various special functions evalu-
ated at integral arguments and various algebraic numbers.

We also pose several questions about the nature of the set of real
numbers which have a polynomial continued fraction expansion.

1. Introduction

A polynomial continued fraction is a continued fraction K∞
n=1an/bn

whose partial numerators and denominators are integers and where,
for some tail of the continued fraction, an = f(n), bn = g(n), for some
polynomials f(x), g(x) ∈ Z[ x ].

One reason polynomial continued fractions are of interest is that
sometimes a famous number whose regular continued fraction expan-
sion does not have a predictable pattern can be expressed as polynomial
continued fractions (so that the partial quotients do have a predictable
pattern). For example the first continued fraction giving values for
π (due to Lord Brouncker, first published in [11]) is of this type:

(1.1)
4

π
= 1 +

∞
K

n=1

(2n− 1)2

2
.

Another reason polynomial continued fractions are interesting is that
the partial quotients are integers and standard theorems can sometimes
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be used to decide if a number is irrational. For example, there is the
following criterion given by Tietze, extending the famous Theorem of
Legendre (see Perron [9], pp. 252-253):

Tietze’s Criterion:
Let { an}∞n=1 be a sequence of integers and { bn}∞n=1 be a sequence

of positive integers, with an 6= 0 for any n. If there exists a positive
integer N0 such that

(1.2)

{
bn ≥ |an|
bn ≥ |an| + 1, for an+1 < 0,

for all n ≥ N0 then K∞
n=1an/bn converges and it’s limit is irrational.

Here we use the standard notations

N

K
n=1

an

bn

:=
a1

b1 +
a2

b2 +
a3

b3 + . . . +
aN

bN

=
a1

b1+

a2

b2+

a3

b3+
. . .

aN

bN

.

We write AN/BN for the above finite continued fraction written as a
rational function of the variables a1, ..., aN , b1, ..., bN . AN is the N-th
canonical numerator and BN is the N-th canonical denominator.

It is elementary that the AN and BN satisfy the following recurrence
relations:

AN = bNAN−1 + aNAN−2,(1.3)

BN = bNBN−1 + aNBN−2.

By K∞
n=1an/bn we mean the limit of the sequence {An/Bn} as n goes

to infinity, if the limit exists.
This type of continued fraction seems to have been studied system-

atically for the first time in Perron [9], where degrees through two for
an and degree one for bn are studied. Lorentzen and Waadeland [7]
also study these cases in detail and they evaluate all such continued
fractions in terms of hypergeometric series. There is presently no such
systematic treatment for cases of higher degree.

Ramanujan also gave several continued fraction identities in which
the free parameters can be specialized to integers to give the values
of polynomial continued fractions. An example of such a continued
fraction is the following entry from Chapter 12 in the second notebook,
(see [2], page 119 ):
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Entry 13. Let a, b and d be complex numbers such that either d 6=
0, b 6= −kd, where k is a nonnegative integer, and Re((a − b)/d) < 0,
1 or d 6= 0 and a = b, or d = 0 and |a| < |b|. Then

a =
ab

a + b + d −
(a + d)(b + d)

a + b + 3d −
(a + 2d)(b + 2d)

a + b + 5d − · · · .

In [4], the first author and Douglas Bowman examined certain classes
of polynomial continued fractions in which the an and bn were of ar-
bitrarily high degree. One phenomenon we observed was the existence
of infinite families of in-equivalent polynomial continued fractions in
which each continued fraction converged to the same limit. To illus-
trates this phenomenon, we cite the following example from [4]:

Example 1. Let fn be a polynomial in n such that fn ≥ 1 for n ≥ 1
and let m be a positive integer. Then

∞
K

n=1

fn((n2 + 3n + 2)nm + 1) + 2mn2 + 6mn + 4m− 1

fn((n2 − 1)nm + 1) + 2(n2 − 1)m− 2
= 6m + 1.

One reason to study infinite families of polynomial continued frac-
tions in which each continued fraction converges to the same limit is
that hopefully one might arrive at a classification of a ”base set” such
that every convergent polynomial continued fraction has the same limit
as one of the continued fractions in the base set. One might further
hope that every convergent polynomial continued fraction could be
shown to have the same limit as some polynomial continued fraction
which is at most quadratic in the numerator and at most linear in the
denominator, since the limits of these types of continued fraction can be
determined as ratios of hypergeometric series. It would be interesting
to see either a proof of this or to produce a counter-example.

In [4], our results were derived from a theorem of Pincherle (Theorem
1 below) and a variant of the Euler transformation (see Equation 3.2).
In this present paper, we study this phenomenon in greater depth,
considering not only further applications of Pincherle’s theorem and the
Euler formula, but also an extension of Euler’s formula, an extension
of the corresponding transformation that equates infinite products and
continued fractions, extensions and contractions of continued fractions
and the Bauer-Muir transformation.

As special cases of our results, we give the following examples (proofs
are found throughout the paper).

1This condition is incorrectly given as ”Re((a− b)/d) > 0” in [2].
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Example 4. Let cn be any polynomial in n such that cn ≥ 2 for
n ≥ −1. Then

1 =
c0 + c1

2

c1
2 +

c0 (c1 + c2
2)

c2
2 + · · · +

cn−2 (cn−1 + cn
2)

cn
2 + · · · .

Example 5. Let A be a positive integer. Then

π

4
=

1

A
+

1

1 −
4 + A

4− 2A +

K∞
n=3

(2n− 3)(2n− 5)[A(2n− 7) + 4(n− 3)] [A(2n− 3) + 4(n− 1)]

2A(2n− 5) + 4(2n− 3)
.

Example 6. If ζ(n) is the Riemann Zeta function and A is a positive
integer, then

ζ(11) =
1

A
+

2A− 1

2A −
2A(3A− 210)

3A(1 + 211)− 212

+
K∞

n=3

−n(n− 1)21 [A(n− 1)− (n− 2)10] [A(n + 1)− n10]

A(n + 1) [(n− 1)11 + n11]− 2n11(n− 1)10
.

Example 7. If A is any integer different from −7, then

5

√
12

7
=

A + 7

7 +

7(11A− 7)

−4A + 56 +

K∞
n=3

7(5n− 11)(n− 2) [(12n− 37)A− 7] [(12n− 13)A− 7]

−2A(12n2 − 31n + 16) + 14(2 + n)
.

Example 8. For each integer A,

3
√

3

2π
= 1 + A +

−10A− 2

18 +

2736A + 432

−692A− 132 +

∞
K
n=3

9n(1− n)(3n− 2)(3n− 4)
× [(1 + 9A)n + A + 1][(1 + 9A)n− 17A− 1]

−8 (1 + A) + 2 (5 + 9 A) n + 144 A n2 − 18 (1 + 9 A) n3
.

Example 9. If A is a non-negative integer, then

e = 2 +
1

1 + A +

1− 2A(1 + A)

2(1 + A) +

2(1− 3A(1 + A))

3− 5A− 6A2

+
K∞

n=4

(n− 1) [1− nA(1 + A)] [1− (n− 2)A(1 + A)]

n− (n(n− 1)− 1)A− n(n− 1)A2
.

We begin with some applications of Pincherle’s Theorem.
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2. Pincherle’s Theorem

Theorem 1. (Pincherle [10]) Let { an}∞n=1, { bn}∞n=1 and {Gn}∞n=−1 be
sequences of real or complex numbers satisfying an 6= 0 for n ≥ 1 and
for all n ≥ 1,

(2.1) Gn = anGn−2 + bnGn−1.

Let {Bn}∞n=1 denote the denominator convergents of the continued

fraction
∞
K

n=1

an

bn

. If limn→∞Gn/Bn = 0 then
∞
K

n=1

an

bn

converges and its

limit is −G0/G−1.

In [4] we looked for solutions where an and bn were polynomials. We
then showed that the corresponding Bn and Gn in the statement of
the theorem satisfied limn→∞Gn/Bn = 0 by using some easily deduced
facts about the growth of Bn:

(i) Let an and bn be non-constant polynomials in n such that
an ≥ 1, bn ≥ 1, for n ≥ 1 and suppose bn is a polynomial of degree k.
If the leading coefficient of bn is D, then given ε > 0, there exists a
positive constant C1 = C1(ε) such that Bn ≥ C1(|D|/(1 + ε))n(n!)k.

(ii) If an and bn are positive numbers ≥ 1, then there exists a
positive constant C3 such that Bn ≥ C3φ

n for n ≥ 1, where φ is the
golden ratio (1 +

√
5)/2.

The drawbacks to this approach are, firstly, the difficulty if finding
solutions to Equation 2.1 where the an and bn are polynomials in n and,
secondly, showing that Bn and Gn do indeed satisfy limn→∞Gn/Bn =
0.

Here we describe a very simple way of using Pincherle’s theorem to
write down infinite families of continued fractions such that each mem-
ber of the family converges to the same limit. Moreover, limn→∞Gn/Bn

= 0 is satisfied automatically and it is not necessary to have an and bn

polynomials in n (Initially the an’s and bn’s are rational functions but
K∞

n=1an/bn can be converted to a polynomial continued fraction by a
similarity transformation.

We first need some notation. If fn = gn/hn is a rational function in
n, where gn and hn are polynomials in n, we define the degree of fn to
be the degree of gn minus the degree of hn and we define the leading
coefficient of fn to be quotient of the leading coefficient of gn and the
leading coefficient of hn.

Proposition 1. Let Hn and bn be rational functions in n such that
Hn > 0 for n ≥ −1 and bn > 0 for n ≥ 1. We further assume that
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bn has degree greater than 0 or, if it has degree 0, then its leading
coefficient is greater than 1. Then the continued fraction

(2.2) K∞
n=1

(Hn + bnHn−1)/Hn−2

bn

converges and its limit is H0/H−1.

Proof. Let Gn = (−1)nHn and an = (Hn + bnHn−1)/Hn−2. The se-
quences {Gn}∞n=−1, {an}∞n=−1 and {bn}∞n=−1 are easily seen to satisfy
Equation 2.1. Furthermore, the recurrence relations at (1.3) and the
conditions on the bn give that Bn grows at least as fast as either Dn,
for some fixed D > 1 or (n!)δ, for some fixed δ > 0. Since Gn is of poly-
nomial growth, it follows that limn→∞Gn/Bn = 0. Thus the continued
fraction at (2.2) converges and its limit is −G0/G−1 = H0/H−1. �

As an illustration, we have the following example.

Example 2. Let Hn = n + 2 and let bn be any polynomial in n such
that bn ≥ 2 for n ≥ 1. Then

2 =
3 + 2b1

b1 +

4 + 3b2

2b2 +

2(5 + 4b3)

3b3 + · · ·

· · · +

(n− 1)(n + 2 + (n + 1)bn)

nbn + · · · .

This follows from Proposition 1, after a similarity transformation to
clear denominators.

Remarks: 1) The restrictions that Hn > 0 and bn > 0 are not so
severe since, if we restrict to polynomial continued fractions K∞

n=1an/bn

in which the polynomials an and bn have leading positive coefficients,
then some tail of the continued fraction will have all an, bn > 0 so that,
if one can find the limit of the tail, the continued fraction K∞

n=1an/bn

reduces to a finite continued fraction.
2) The limit of the continued fraction is independent of bn so that

one has an infinite class of continued fractions converging to the same
limit.

3) Although we restrict Hn and bn to be rational functions of n,
the result can easily be seen to be true for more general sequences of
positive numbers, {Hn} and {bn}, provided the bn satisfy certain size
or growth conditions.

4) Convergence to the stated limit may also hold for other polynomial
sequences {bn} which do not satisfy the conditions of the proposition
(For example, the continued fraction in Example 2 converges when bn

is the constant polynomial 1).
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We next write the rational functions Hn and bn in terms of the poly-
nomials defining them to obtain a result about polynomial continued
fractions. This allows greater flexibility in deriving the limits of infinite
families of polynomial continued fractions.

Corollary 1. Let fn, gn, cn and dn be polynomials in n such that fn,
gn 6= 0 for n ≥ −1, fn and gn have the same sign for each n ≥ −1, cn,
dn 6= 0 for n ≥ 0 and cn and dn have the same sign for each n ≥ 0.
Suppose further that the degree of cn is greater than the degree of dn

or, if the degrees are equal, that the leading coefficient of cn is greater
than the leading coefficient of dn. Then the continued fraction

(2.3)
g−1 (d1 f1 g0 + c1 f0 g1)

c1 f−1 g0 g1 +

d1 f−1 g0
2 (d2 f2 g1 + c2 f1 g2)

c2 f0 g2 +

d2 f0 g1 (d3 f3 g2 + c3 f2 g3)

c3 f1 g3 +

d3 f1 g2 (d4 f4 g3 + c4 f3 g4)

c4 f2 g4

+ · · ·
dn−1 fn−3 gn−2 (dn fn gn−1 + cn fn−1 gn)

cn fn−2 gn + · · ·
converges and its limit is f0 g−1/(g0 f−1).

Proof. In Proposition 1, let Hn = fn/gn and bn = cn/dn. The continued
fraction at 2.2 is equivalent to the continued fraction at 2.3, after a
similarity transformation. The conditions of Proposition 1 are satisfied
and the result follows. �

Remark: The limit is independent of the polynomials cn and dn,
provided they satisfy the conditions of the corollary.

If we let fn = n2 + 1 and dn = gn = 1 we get the following example.

Example 3. Let cn be any polynomials in n such that cn ≥ 2 for n ≥ 0.
Then

1

2
=

c1 + 2

2 c1 +

2 (2 c2 + 5 )

c2 +

(5 c3 + 10)

2 c3 +

2 (10 c4 + 17)

5 c4 +

5 (17 c5 + 26)

10 c5

+ · · ·

(
1 + (−3 + n)2) ((

1 + (−1 + n)2) cn + (1 + n2)
)(

1 + (−2 + n)2) cn
+ · · · .

If we let fn = dn = 1 and gn = cn and cancel a factor of c−1/c0 from
the continued fraction and its limit, we get the following result.

Example 4. Let cn be any polynomial in n such that cn ≥ 2 for n ≥
−1. Then
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1 =
c0 + c1

2

c1
2 +

c0 (c1 + c2
2)

c2
2 + · · · +

c−2+n (c−1+n + cn
2)

cn
2 + · · · .

We next study a generalization of Euler’s transformation of a series
into a continued fraction.

3. The Euler Transformation of an Infinite Series

In 1775, Daniel Bernoulli [3] proved the following result (see, for
example, [6], pp. 11–12).

Proposition 2. Let {K0, K1, K2, . . .} be a sequence of complex num-
bers such that Ki 6= Ki−1, for i = 1, 2, . . .. Then {K0, K1, K2, . . .} is
the sequence of approximants of the continued fraction

(3.1) K0 +
K1 −K0

1 +

K1 −K2

K2 −K0 +

(K1 −K0)(K2 −K3)

K3 −K1 +

. . .
+

(Kn−2 −Kn−3)(Kn−1 −Kn)

Kn −Kn−2 +
. . . .

In particular, if {Kn} is a convergent sequence, one gets a convergent
continued fraction.

If one lets Kn =
∑n

k=0 ak, one gets Euler’s transformation of a series
into a continued fraction [5]:

(3.2)
n∑

k=0

ak = a0+
a1

1 +

−a2

a1 + a2 +

−a1a3

a2 + a3 + · · · +

−an−2an

an−1 + an + · · · .

For example, applying Euler’s transformation to the well-known series
for π/4,

(3.3)
π

4
=

1

1
− 1

3
+

1

5
+ · · ·+ (−1)n−1

2n− 1
+ · · · ,

gives Lord Brouncker’s continued fraction (1.1) (after inversion and
some similarity transformations to clear fractions).

We now give a generalization of the Euler transformation.

Proposition 3. Let
∑∞

k=0 ak be a convergent series and let {bn} be any
sequence whose limit is zero such that an + bn − bn−1 6= 0, for n ≥ 1.
Then

(3.4)
∞∑
i=0

ai = a0 + b0 +
a1 + b1 − b0

1 +

−a2 + b1 − b2

a2 + a1 + b2 − b0

+
K∞

n=3

−(an−2 + bn−2 − bn−3)(an + bn − bn−1)

an + an−1 + bn − bn−2

.
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Proof. This follows immediately from Proposition 2, upon letting Kn =∑n
k=0 ak + bn, noting that limn→∞Kn =

∑∞
i=0 ai. �

For our first example, we consider the series for π/4 above (3.3).

Example 5. Let fn be any polynomial which is positive for n ≥ 1 and,
for ease of notation, define gn := fnfn−1 + (2n− 1)(fn + fn−1). Then

π

4
=
−1

f0

+
g1

f1f0 +

f 2
0 g2

2f2f0 + 3(f2 − f0)

+
K∞

n=3

(2n− 3)2gn−2gn

2fnfn−2 + (2n− 1)(2n− 3)(fn − fn−2)
.

This follows from setting bn = (−1)n−1/fn in Proposition 3 and
simplifying the continued fraction. If we let fn = A(2n − 1), where A
is a positive integer, we get, after some further simplification, that

π

4
=

1

A
+

1

1 −
4 + A

4− 2A +

K∞
n=3

(2n− 3)(2n− 5)[A(2n− 7) + 4(n− 3)] [A(2n− 3) + 4(n− 1)]

2A(2n− 5) + 4(2n− 3)
.

As a second example, we consider the series representation for ζ(k),
k an integer greater than 1:

ζ(k) =
∞∑

n=1

1

nk
.

If the Euler transformation is applied to this series (letting a0 = 0 and
ai = 1/ik, for i ≥ 1), one easily gets that

ζ(k) =
1

1 −
1

2k + 1 −
22k

3k + 2k −
32k

4k + 3k − · · · −
(n− 1)2k

nk + (n− 1)k − · · · .

If we set bn = 1/dn in Proposition 3, where dn is a polynomial of degree
at least 1 such that gn := dndn−1 + nk(dn−1 − dn) 6= 0 for n ≥ 1, then

ζ(k) =
1

d0

+
g1

d0d1 −
d2

0g2

d2d0(1 + 2k) + 2k(d0 − d2)

+
K∞

n=3

−(n− 1)2kgn−2gn

dndn−2((n− 1)k + nk) + (n− 1)knk(dn−2 − dn)
.

We can specialize further to get the following continued fraction.

Example 6. If A is a positive integer, then
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ζ(k) =
1

A
+

2A− 1

2A −
2A(3A− 2k−1)

3A(1 + 2k)− 2k+1

+
K∞

n=3

−n(n− 1)2k−1
[
A(n− 1)− (n− 2)k−1

] [
A(n + 1)− nk−1

]
A(n + 1) [(n− 1)k + nk]− 2nk(n− 1)k−1

.

This follows from defining dn := A(n + 1) and simplifying the con-
tinued fraction.

For our third example, we consider the binomial series. Let |x| < 1
and α ∈ R. Then

(1 + x)α = 1 + α x +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·(3.5)

=
∞∑

n=0

(α)n

n!
xn,

where (α)n = α(α− 1) · · · (α− n + 1) denotes the falling factorial. If
we let bn = rnx

n(α)n/n!, where rn is any rational function such that

gn := (α− n + 1) x (1 + rn)− nrn−1 6= 0, n ≥ 1,

then Proposition 3 gives that

(3.6) (1 + x)α = 1 + r0 +
g1

1 −
α x g2

α x [(α− 1)x(1 + r2) + 2]− 2r0 +

K∞
n=3

−(n− 1) x (α− n + 2)gn−2gn

(α− n + 2) x [(α− n + 1)x(1 + rn) + n]− n(n− 1)rn−2

.

If we specialize by letting α = 1/5, x = 5/7 and rn = A n−1, (A 6= −7)
and then simplifying the continued fraction, we get that

Example 7. If A is any integer different from −7, then

5

√
12

7
=

A + 7

7 +

7(11A− 7)

−4A + 56 +

K∞
n=3

7(5n− 11)(n− 2) [(12n− 37)A− 7] [(12n− 13)A− 7]

−2A(12n2 − 31n + 16) + 14(2 + n)
.

Remark: It follows from Equation 3.6 that every real number of the
form (p/q)r/s, where p, q, r and s are integers can be expanded in
infinitely many ways as a polynomial continued fraction.

We next consider a generalization of the formula transforming an
infinite product to a continued fraction.
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4. The Transformation of Infinite Products to
Continued Fractions

In Equation 3.1, if Ki 6= 0 for i ≥ 1, then the continued fraction on
the left side can be re-written as

(4.1) K0 +
K1 −K0

1 −
K1/K0(K2/K1 − 1)

K2/K0 − 1

−
K2/K1(K1/K0 − 1)(K3/K2 − 1)

K3/K1 − 1 −

· · · −
Kn−1/Kn−2(Kn−2/Kn−3 − 1)(Kn/Kn−1 − 1)

Kn/Kn−2 − 1 − · · · .

In particular, if K0 = 1 and Kn =
∏n

i=1 ai for n ≥ 1, where
∏∞

i=1 ai

is a convergent infinite product with no ai = 0 or 1 , one has that

(4.2)
∞∏
i=1

ai = 1+
a1 − 1

1 −
a1(a2 − 1)

a2a1 − 1 +
K∞

n=3

−an−1(an−2 − 1)(an − 1)

anan−1 − 1
.

This transformation is not so well known as Euler’s transformation of
an infinite series to a continued fraction. As with the Euler transfor-
mation, it is easy to generalize the transformation at (4.2).

Proposition 4. Let
∏∞

i=1 ai be a convergent infinite product with ai 6= 0
for i ≥ 1 and let {bn}∞n=0 be any sequence whose limit is 1 such that
aibi − bi−1 6= 0, for i ≥ 1. Then

(4.3)
∞∏
i=1

ai = b0 +
a1b1 − b0

1 −
a1(a2b2 − b1)

a2a1b2 − b0

+
K∞

n=3

−an−1(an−2bn−2 − bn−3)(anbn − bn−1)

anan−1bn − bn−2

.

Proof. This follows from Proposition 2 upon setting K0 = b0 and, for
n ≥ 1, setting Kn = bn

∏n
i=1 ai and then simplifying the continued

fraction. �

As an example, we consider the following infinite product identity.

sin πx

πx
=

∞∏
n=1

(
1− x2

n2

)
.

Set x = 1/m, where m is a positive integer, and bn = 1 + A/(n + 1),
where A is an integer. For ease of notation, let

gn = (m2n + 1)A + (n + 1),
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hn = (m2n2 − 1)(m2(n− 1)2 − 1)(A + n + 1)

−m4n2(n2 − 1)(A + n− 1).

Proposition 4.3 then gives, after simplifying the continued fraction,
that

m sin π/m

π
= 1 + A +

(m2 − 1)(A + 2)− 2m2(A + 1)

2m2

+

2m2(m2 − 1)g2

h2 +
K∞

n=3

−n(n− 1)m2(m2(n− 1)2 − 1)gn−2gn

hn

.

If we specialize further and let m = 3, we have that

Example 8. For each integer A,

3
√

3

2π
= 1 + A +

−10A− 2

18 +

2736A + 432

−692A− 132 +

∞
K
n=3

9n(1− n)(3n− 2)(3n− 4)
× [(1 + 9A)n + A + 1] [(1 + 9A)n− 17A− 1]

(9n2 − 1)(9(n− 1)2 − 1)(A + n + 1)− 81n2(n2 − 1)(A + n− 1)
.

5. Extensions, Contractions and the Bauer-Muir
Transformation

We start with the concepts of extensions and contractions of con-
tinued fractions. Before coming to details, we borrow some notation
from [7] (page 83). A continued fraction d0 +K∞

n=1cn/dn is said to be a
contraction of the continued fraction b0 + K∞

n=1an/bn if its classical ap-
proximants {gn} form a subsequence of the classical approximants {fn}
of b0 + K∞

n=1an/bn. In this case b0 + K∞
n=1an/bn is called an extension

of d0 + K∞
n=1cn/dn.

We call d0 + K∞
n=1cn/dn a canonical contraction of b0 + K∞

n=1an/bn if

Ck = Ank
, Dk = Bnk

for k = 0, 1, 2, 3, . . . ,

where Cn, Dn, An and Bn are canonical numerators and denominators
of d0 + K∞

n=1cn/dn and b0 + K∞
n=1an/bn respectively.

From [7] (page 83 and page 85)we also have the following theorems.

Theorem 2. The canonical contraction of b0 + K∞
n=1an/bn with

Ck = A2k Dk = B2k for k = 0, 1, 2, 3, . . . ,

exists if and only if b2k 6= 0forK = 1, 2, 3, . . ., and in this case is given
by
(5.1)

b0 +
b2a1

b2b1 + a2 −
a2a3b4/b2

a4 + b3b4 + a3b4/b2 −
a4a5b6/b4

a6 + b5b6 + a5b6/b4 + · · · .
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The continued fraction (5.1) is called the even part of b0+K∞
n=1an/bn.

Theorem 3. The canonical contraction of b0 + K∞
n=1an/bn with C0 =

A1/B1

Ck = A2k+1 Dk = B2k+1 for k = 1, 2, 3, . . . ,

exists if and only if b2k+1 6= 0forK = 0, 1, 2, 3, . . ., and in this case is
given by

(5.2)
b0b1 + a1

b1

− a1a2b3/b1

b1(a3 + b2b3) + a2b3 −
a3a4b5b1/b3

a5 + b4b5 + a4b5/b3

−
a5a6b7/b5

a7 + b6b7 + a6b7/b5 −
a7a8b9/b7

a9 + b8b9 + a8b9/b7 + · · · .

The continued fraction (5.2) is called the odd part of b0+K∞
n=1an/bn.

One might expect that if a continued fraction is constructed whose
even part is the convergent continued fraction K∞

n=1an/bn, that one
might have some flexibility in the choice of the partial quotients of
the extended continued fraction. This is indeed the case and if, in
addition, the extended continued fraction can be constructed so that it
too converges, an infinite family of continued fractions with the same
limit as K∞

n=1an/bn can be found.
However, before discussing this we first consider another way of

transforming a continued fraction so as to produce an infinite family of
continued fractions with the same limit.

Definition ([7], page 76) The Bauer-Muir transform of a continued
fraction b0 + K(an/bn) with respect to a sequence {wn} from C is the
continued fraction d0 + K(cn/dn) whose canonical numerators Cn and
denominators Dn are given by

C−1 = 1, D−1 = 0,(5.3)

Cn = An + wnAn−1, Dn = Bn + wnBn−1

for n = 0, 1, 2 . . ., where {An} and {Bn} are the canonical numerators
and denominators of b0 + K(an/bn).

This transformation dates back to the 1870’s and the work of Bauer
[1] and Muir [8]. From [7], page 76, there is the following theorem:

Theorem 4. The Bauer-Muir transform of b0 +K(an/bn) with respect
to {wn} from C exists if and only if

(5.4) an − wn−1(bn + wn) 6= 0 for n = 1, 2, 3, . . . .

If it exists, then it is given by

(5.5) b0 + w0 +
a1 − w0(b1 + w1)

b1 + w1 +

c2

d2 +

c3

d3 + · · ·
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where

cn = an−1
an − wn−1(bn + wn)

an−1 − wn−2(bn−1 + wn−1)
,(5.6)

dn = bn + wn − wn−2
an − wn−1(bn + wn)

an−1 − wn−2(bn−1 + wn−1)
.

We have changed the notation found in [7] slightly. One might expect
that, by choosing the sequence {wn} appropriately, one could construct
an infinite family of continued fractions with the same limit as the
convergent continued fraction K(an/bn).

Curiously, these two methods (extensions and contractions and the
Bauer - Muir transform) of producing infinite families of continued
fractions in which each continued fraction has the same limit as the
convergent continued fraction K(an/bn) are related. We believe the
following observation to be new.

Theorem 5. Let {wn}∞n=0 be a sequence from C such that w0 = 0 and
wn 6= 0 for n ≥ 1. We suppose further that {an}∞n=1 and {bn}∞n=1 are
sequences from C such that an −wn−1(bn + wn) 6= 0 for n = 1, 2, 3, . . ..
Then the even part of the continued fraction

(5.7)
a1

b1 + w1 +

−w1

1 +

a2/w1

b2 + w2 − a2/w1 +

−w2

1 +

a3/w2

b3 + w3 − a3/w2 +

· · · +

−wn−1

1 +

an/wn−1

bn + wn − an/wn−1 +

−wn

1 + · · ·
is K∞

n=1an/bn and its odd part is equal to the Bauer-Muir transform of
K∞

n=1an/bn with respect to the sequence {wn}∞n=0.

Remark: The theorem says that the odd part of the continued frac-
tion at 5.7 ” is equal to” the Bauer-Muir transform of K∞

n=1an/bn with
respect to the sequence {wn}∞n=0 rather than saying that it ”is” this
Bauer-Muir transform, since some transformations need to be applied
to the odd part to make it equal the stated Bauer-Muir transform of
K∞

n=1an/bn.

Proof. That the even part of (5.7) is K∞
n=1an/bn follows immediately

from Theorem 2. From Theorem 3, the odd part of (5.7) is

a1

b1 + w1

−
a1(−w1)

b2 + w2 − a2/w1

b1 + w1

(b1 + w1)

[
a2

w1

+

(
b2 + w2 −

a2

w1

)]
− w1(b2 + w2 − a2/w1)
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−

a2/w1(−w2)
b3 + w3 − a3/w2

b2 + w2 − a2/w1

(b1 + w1)

a3/w2 + (b3 + w3 − a3/w2)− w2
b3 + w3 − a3/w2

b2 + w2 − a2/w1

−

a3/w2(−w3)
b4 + w4 − a4/w3

b3 + w3 − a3/w2

a4/w3 + (b4 + w4 − a4/w3)− w3
b4 + w4 − a4/w3

b3 + w3 − a3/w2

−

· · ·

−

an−1/wn−2(−wn−1)
bn + wn − an/wn−1

bn−1 + wn−1 − an−1/wn−2

an

wn−1

+

(
bn + wn −

an

wn−1

)
− wn−1

bn + wn − an/wn−1

bn−1 + wn−1 − an−1/wn−2

− · · ·

=
a1

b1 + w1

−
a1

a2 − w1(b2 + w2)

(b1 + w1)2

a2 + b1(b2 + w2)

b1 + w1

+

a2
a3 − w2(b3 + w3)

a2 − w1(b2 + w2)

b3 + w3 − w1
a3 − w2(b3 + w3)

a2 − w1(b2 + w2)

+

a3
a4 − w3(b4 + w4)

a3 − w2(b3 + w3)

b4 + w4 − w2
a4 − w3(b4 + w4)

a3 − w2(b3 + w3)

+

· · · +

an−1
an − wn−1(bn + wn)

an−1 − wn−2(bn−1 + wn−1)

bn + wn − wn−2
an − wn−1(bn + wn)

an−1 − wn−2(bn−1 + wn−1)

+ · · · .

Since b0 = w0 = 0, all that is necessary to complete the proof is to
show that, for α arbitrary,

a1

b1 + w1 +

a2 − w1(b2 + w2)

b2 + w2 + α
=

a1

b1 + w1

−
a1

a2 − w1(b2 + w2)

(b1 + w1)2

a2 + b1(b2 + w2)

b1 + w1

+ α

.

This is immediate from the identity

E

F +

G

H + α
=

E

F
− EG/F 2

(FH + G)/F + α
.
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�

We next consider the question of when a continued fraction and its
Bauer-Muir transform converge to the same limit. One approach is
to apply general convergence theorems to the continued fraction at
(5.7). If this continued fraction converges, then its odd and even parts
converge to the same limit. Alternatively, we have the following propo-
sition.

Proposition 5. Let {wn}∞n=0 be any rational function sequence taking
only positive values for n ≥ 1 and suppose w0 = 0. Suppose further
that the polynomial sequences {an}∞n=1 and {bn}∞n=1 take only positive
values for n ≥ 1, that an − wn−1(bn + wn) 6= 0 for n = 1, 2, 3, . . . and
that the continued fraction Kn=1an/bn converges. Then the Bauer-Muir
transform of Kn=1an/bn with respect to {wn}∞n=0 converges to the same
limit.

Proof. Suppose K∞
n=1an/bn = L. Then

lim
n→∞

L− An

Bn

= lim
n→∞

An+1

Bn+1

− An

Bn

= 0.

and∣∣∣∣L− An+1 + wnAn

Bn+1 + wnBn

∣∣∣∣ ≤ ∣∣∣∣L− An

Bn

∣∣∣∣ +

∣∣∣∣An+1 + wnAn

Bn+1 + wnBn

− An

Bn

∣∣∣∣
=

∣∣∣∣L− An

Bn

∣∣∣∣ +

∣∣∣∣An+1

Bn+1

− An

Bn

∣∣∣∣ 1

1 + wnBn/Bn+1

≤
∣∣∣∣L− An

Bn

∣∣∣∣ +

∣∣∣∣An+1

Bn+1

− An

Bn

∣∣∣∣ .

The last inequality follows since wnBn/Bn+1 ≥ 0. Finally, let n →∞
to get the result. �

This can be restated as follows: If an and bn are polynomials taking
only positive values for n ≥ 1 and wn is a rational function taking only
positive values for n ≥ 1 and w0 is defined to be 0, then

K∞
n=1

an

bn

=
a1

b1 + w1 +

a1(a2 − w1(b2 + w2))

a1(b2 + w2)

+
K∞

n=3

an−1 [an − wn−1(bn + wn)] [an−2 − wn−3(bn−2 + wn−2)]

an−1(bn + wn)− wn−2(an + bn−1(bn + wn))
.

As an example, we consider the well known continued fraction expan-
sion for e:

e = 2 +
2

2 +

3

3 +

4

4 + · · · +

n

n + · · · .
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If we let A be a non-negative integer and define w0 := 0 and wn :=
A(n + 1) for n ≥ 1, we get the example below.

Example 9. If A is a non-negative integer, then

e = 2 +
1

1 + A +

1− 2A(1 + A)

2(1 + A) +

2(1− 3A(1 + A))

3− 5A− 6A2

+
K∞

n=4

(n− 1) [1− nA(1 + A)] [1− (n− 2)A(1 + A)]

n− (n(n− 1)− 1)A− n(n− 1)A2
.

6. Conclusion

Let P denote the set of all polynomial continued fractions.2 It is
not difficult to construct an injective map from P to N so that P is
a countable set and thus that almost all real numbers do not have a
polynomial continued fraction expansion. Let P′ denote the set of real
numbers which are the limits of convergent continued fractions in P.
Trivially, Q ∈ P′ and, as is shown by examples from the literature,
many algebraic- and transcendental numbers also have a polynomial
continued fraction expansion. We conclude with a number of questions
about polynomial continued fractions which we consider interesting.

1) Is there an equivalent classification of the set P′, perhaps in terms
of the partial quotients in the regular continued fraction expansion of
its elements or in terms of irrationality measure?

2) Does every real algebraic number belong to P′? If not, exhibit a
counter-example. Note that the answer to this second question is yes
if every real algebraic number α can be expanded as a hypergeometric
series α =

∑∞
i=0 bi, where each bi ∈ Q and bn+1/bn = r(n), where

r(x) ∈ Q(x). We are not aware if this question has been answered in
the literature.

3) Since almost all real numbers do not belong to P′, exhibit an ex-
ample of such a number, or perhaps an infinite family of such numbers.

4) With a little more effort, Proposition 5 can be extended to show
that, given any convergent polynomial continued fraction, there is an
infinite family of convergent polynomial continued fractions with the
same limit. Let Pn,d denote the set of all polynomial continued fractions
of degree at most n in the numerator and degree at most d in the
denominator. Does there exist a pair of non-negative integers n and d

2Of course not every element of P converges to a real number.
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such that every element of P that converges has the same limit as some
element of Pn,d? Is this true for n = 2 and d = 1? 3

5) Trivially, if α 6= 0 and α ∈ P′, then 1/α ∈ P′. Does P′ have any
further algebraic structure? Is it true that if α, β ∈ P′, then α+β ∈ P′?
Is it true that if α, β ∈ P′, then α× β ∈ P′? Even negative answers to
these questions would be of interest but it would probably not be easy
to find counter-examples.
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