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Abstract. Let (αn(a, k), βn(a, k)) be a WP-Bailey pair. Assuming the
limits exist, let

(α∗
n(a), β

∗
n(a)) = lim

k→1

(
αn(a, k),

βn(a, k)

1− k

)
be the derived WP-Bailey pair. By considering a particular limiting
case of a transformation due to George Andrews, we derive some trans-
formation and summation formulae for derived WP-Bailey pairs.

We then use the formula to derive new identities for various theta se-
ries/products which can be expressed in terms of certain types of Lam-
bert series and various other series-product identities.

1. Introduction

A WP-Bailey pair is a pair of sequences (αn(a, k, q), βn(a, k, q)) satisfying
α0(a, k, q) = β0(a, k, q) = 1 and

βn(a, k, q) =

n∑
j=0

(k/a; q)n−j(k; q)n+j

(q; q)n−j(aq; q)n+j
αj(a, k, q).(1.1)

In what follows, we define, for a WP-Bailey pair (αn(a, k), βn(a, k)) and
n ≥ 1,

α∗
n = α∗

n(a) = α∗
n(a, q) := lim

k→1
αn(a, k),(1.2)

β∗n = β∗n(a) = β∗n(a, q) = lim
k→1

βn(a, k)

1− k
,

assuming the limits exist. For ease of notation we call such a pair of se-
quences (α∗

n, β
∗
n) a derived WP-Bailey pair. The main result of the present
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paper may be described as follows. Define

(1.3) f2(a, q) :=

∞∑
n=1

a2nqnβ∗n(a)−
∞∑
n=1

a2nqnβ∗n(−a)

+

∞∑
n=1

(q; q)2n−1

(qa2; q)2n
a2nqnα∗

n(−a)−
∞∑
n=1

(q; q)2n−1

(qa2; q)2n
a2nqnα∗

n(a).

Theorem 1. Let (αn(a, k), βn(a, k)) be a WP-Bailey pair and a and b com-
plex numbers such that all of the derived WP-Bailey pairs (α∗

n, β
∗
n) below

exist. Let f2(a, q) be as defined at (1.3) and suppose further that each of
series f2(a, q), f2(b, q), f2(1/a, q), f2(1/b, q) converges. Then

(1.4) f2(a, q)− f2(b, q)− f2(1/a, q) + f2(1/b, q)

=
2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

We remark that one reason this result is of interest is that the right side is
independent of the particular WP-Bailey pair (αn(a, k), βn(a, k)) employed
on the left side. We give some explicit examples below.

We apply this identity, and others proved below, to derive new series-
product identities. For example, if a and b are non-zero complex numbers
such that aqn, bqn ̸= ±1, for n ∈ Z, and |q| < max{|a2|, 1/|a2|, |b2|, 1/|b2|},
then

∞∑
n=1

[(
(1/a; q)n
(qa; q)n

− (−1/a; q)n
(−qa; q)n

)
a2nqn

1− qn

−
(

(a; q)n
(q/a; q)n

− (−a; q)n
(−q/a; q)n

)
qn

a2n(1− qn)

−
(
(1/b; q)n
(qb; q)n

− (−1/b; q)n
(−qb; q)n

)
b2nqn

1− qn

+

(
(b; q)n
(q/b; q)n

− (−b; q)n
(−q/b; q)n

)
qn

b2n(1− qn)

]
=

2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

To set these results in perspective, we recall some of the history of WP-
Bailey pairs, which were defined by Andrews in [1], where the concept of
a WP-Bailey chain was also introduced. Andrews showed that if the pair
(αn(a, k), βn(a, k)) satisfies (1.1), then so does (α̂n(a, k), β̂n(a, k)) where

α̂n(a, k) =
(y, z; q)n

(aq/y, aq/z; q)n

(
k

c

)n

αn(a, c),(1.5)

β̂n(a, k) =
(ky/a, kz/a; q)n
(aq/y, aq/z; q)n
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×
n∑

j=0

(1− cq2j)(y, z; q)j(k/c; q)n−j(k; q)n+j

(1− c)(ky/a, kz/a; q)n(q; q)n−j(qc; q)n+j

(
k

c

)j

βj(a, c),

with c = kyz/aq. Andrews also described a second method for deriving new
WP-Bailey pairs from existing pairs. If (αn(a, k), βn(a, k)) satisfy (1.1),

then so does (α̃n(a, k), β̃n(a, k)),

α̃n(a, k) =
(qa2/k)2n
(k)2n

(
k2

qa2

)n

αn

(
a,
qa2

k

)
,(1.6)

β̃n(a, k) =

n∑
j=0

(k2/qa2)n−j

(q)n−j

(
k2

qa2

)j

βj

(
a,
qa2

k

)
.

Each of these processes may be iterated, so that a single WP-Bailey pair
gives rises to a chain of pairs, and all WP-Bailey chains together give rise
to the WP-Bailey tree or lattice.

WP-Bailey chains were further investigated by Andrews and Berkovich
[2], Spiridonov [13], Warnaar [14], Liu and Ma [8] and Mc Laughlin and
Zimmer [10]. Previous work on WP-Bailey chains had appeared in the
papers of Bressoud [7] and Singh [12] (although of course not using the
terminology introduced by Andrews [1]).

In a recent paper [9], the present author investigated the implications of
letting y → 1 in the WP-Bailey chain at (1.5), and found, amongst other
results, a number of new transformations relating WP-Bailey pairs, some
similar transformations for standard Bailey pairs, and new expansions in
terms of basic hypergeometric series for several theta products described by
Ramanujan.

It is not difficult to show that (1.6) implies (see Corollary 1 in [11], for
example) that if (αn(a, k), βn(a, k)) satisfy (1.1), then subject to suitable
convergence conditions,

(1.7)

∞∑
n=0

(
qa2

k2

)n

βn(a, k)

=
(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

∞∑
n=0

(k; q)2n
(qa2/k; q)2n

(
qa2

k2

)n

αn(a, k).

The results in the present paper are derived as consequences of letting
k → 1 in (1.7).

We employ the usual notations:

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a1, a2, . . . , aj ; q)n := (a1; q)n(a2; q)n · · · (aj ; q)n,
(a; q)∞ := (1− a)(1− aq)(1− aq2) · · · , and

(a1, a2, . . . , aj ; q)∞ := (a1; q)∞(a2; q)∞ · · · (aj ; q)∞,
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We also make use of the q-Gauss sum

(1.8)
∞∑
n=0

(A,B; q)n
(C, q; q)n

(
C

AB

)n

=
(C/A,C/B; q)∞
(C,C/AB; q)∞

.

Unless stated otherwise, we assume throughout that |q| < 1.

2. Proof of the Main Identities

We now prove the main results.

Lemma 1. Let (αn(a, k), βn(a, k)) be a WP-Bailey pair and (α∗
n, β

∗
n) the

derived pair. For |q|, |qa|, |qa2| < 1 and assuming suitable convergence
conditions,

(2.1)
∞∑
n=1

a2nqnβ∗n(a)−
∞∑
n=1

(q; q)2n−1

(qa2; q)2n
a2nqnα∗

n(a) = f1(a, q),

where

f1(a, q) =

∞∑
n=1

(1/a; q)na
2nqn

(aq; q)n(1− qn)
(2.2)

= −
∞∑
n=1

(1− aq2n)(a, a; q)n(q; q)2n−1a
nqn

(1− a)(q, q; q)n(qa2; q)2n

=
∞∑
n=1

a2qn

1− a2qn
−

∞∑
n=1

aqn

1− aqn
.

We remark that the right side in the above identity is independent of the
particular derived pair (α∗

n, β
∗
n) inserted on the left side. Also, for later use

we note that

(2.3) f2(a, q) = f1(a, q)− f1(−a, q) = −
∞∑
n=1

2aqn

1− a2q2n
,

where f2(a, q) is as defined at (1.3).

Proof of Lemma 1. Rewrite (1.7) as

(2.4)

∞∑
n=1

(
qa2

k2

)n
βn(a, k)

1− k
−

(
qa
k ,

qa2

k ; q
)
∞

(qa, qa2/k2; q)∞

∞∑
n=1

(kq; q)2n−1

(qa2/k; q)2n

(
qa2

k2

)n

αn(a, k)

=
1

1− k

(
(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

− 1

)
.

The left side of (2.1) now follows upon letting k → 1. To get the first
expression for f1(a, q), use (1.8) to expand the infinite product on the right
side as an infinite series (set A = k, B = k/a and C = qa) and then once
again let k → 1.
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The second expression for f1(a, q) follows upon substituting the unit WP-
Bailey pair

αn(a, k) =
(q
√
a,−q

√
a, a, a/k; q)n

(
√
a,−

√
a, q, kq; q)n

(
k

a

)n

,(2.5)

βn(a, k) =

{
1 n = 0,

0, n > 0,

into (1.2) and then inserting the resulting pair

αn(a, k) =
1− aq2n

1− a

(a, a; q)n
(q, q; q)n

(
1

a

)n

,(2.6)

βn(a, k) = 0

on the left side of (2.1).
For the third representation of f1(a, q) define

G(k) :=
(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

and then

lim
k→1

1

1− k

(
(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

− 1

)
= lim

k→1

G(k)−G(1)

1− k
= −G′(1),

and logarithmic differentiation now easily gives the result. �

Remark: The first expression for f1(a, q) above also follows from inserting
the “trivial” WP-Bailey pair

αn(a, k) =

{
1 n = 0,

0, n > 0,
(2.7)

βn(a, k) =
(k, k/a; q)n
(q, aq; q)n

,

into (1.2) and then inserting the resulting derived pair

α∗
n(a) = 0,(2.8)

β∗n(a) =
(1/a; q)n

(aq; q)n(1− qn)

on the left side of (2.1).
One way of viewing Lemma 1 is as supplying a large number of represen-

tations of the difference of Lambert Series
∞∑
n=1

a2qn

1− a2qn
−

∞∑
n=1

aqn

1− aqn
.

Indeed, such a representation arises if any pair (α∗
n, β

∗
n) deriving from a

WP-Bailey is inserted in (2.1), assuming the limits exist and the resulting
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series converge. We give two example below. The first arises from Singh’s
WP-Bailey pair [12]:

αn(a, k) =
(q
√
a,−q

√
a, a, ρ1, ρ2, a

2q/kρ1ρ2; q)n
(
√
a,−

√
a, q, aq/ρ1, aq/ρ2, kρ1ρ2/a; q)n

(
k

a

)n

,(2.9)

βn(a, k) =
(kρ1/a, kρ2/a, k, aq/ρ1ρ2; q)n
(aq/ρ1, aq/ρ2, kρ1ρ2/a, q; q)n

.

This gives the derived pair

α∗
n(a) =

(q
√
a,−q

√
a, a, ρ1, ρ2, a

2q/ρ1ρ2; q)n
(
√
a,−

√
a, q, aq/ρ1, aq/ρ2, ρ1ρ2/a; q)n

(
1

a

)n

,(2.10)

β∗n(a) =
(ρ1/a, ρ2/a, aq/ρ1ρ2; q)n

(aq/ρ1, aq/ρ2, ρ1ρ2/a; q)n(1− qn)
.

The parameters ρ1 and ρ2 are free, but for simplicity we let ρ1, ρ2 → ∞ to
get the derived WP-Bailey pair

α∗
n(a) =

1− aq2n

1− a

(a; q)n
(q; q)n

(−1)nqn(n−1)/2,(2.11)

β∗n(a) =
(−1)nqn(n−1)/2

an
.

The WP-Bailey pair

αn(a, k) =

(
q
√
a,−q

√
a, a, a

√
q
k ,−a

√
q
k ,

a√
k
,− aq√

k
, ka ; q

)
n(√

a,−
√
a, q,

√
kq,−

√
kq, q

√
k,−

√
k, qa

2

k ; q
)
n

(
k

a

)n

,(2.12)

βn(a, k) =

(√
k, k

2

a2
; q
)
n

(q
√
k, q; q)n

,

provides the derived pair

α∗
n(a) =

1− aq2n

1− a

(
a, a,−aq, 1/a; q)n(a2q; q2

)
n

(q, q,−1, qa2; q)n(q; q2)n

(
1

a

)n

,(2.13)

β∗n(a) =

(
1/a2; q

)
n

2(q; q)n(1− qn)
.

Corollary 1. If |q|, |qa|, |qa2| < 1, then

∞∑
n=1

a2qn

1− a2qn
−

∞∑
n=1

aqn

1− aqn

(2.14)

=

∞∑
n=1

(−a)nqn(n+1)/2 −
∞∑
n=1

1− aq2n

1− a

(a; q)n(q; q)2n−1

(q; q)n(a2q; q)2n
(−a)nqn(n+1)/2

=
1

2

∞∑
n=1

(
1/a2; q

)
n
a2nqn

(q; q)n(1− qn)
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−
∞∑
n=1

1− aq2n

1− a

(a, a,−aq, 1/a; q)n (q2; q2)n−1a
nqn

(q, q,−1, qa2; q)n (a
2q2; q2)n

.

Proof. Insert the derived pairs, respectively, at (2.11) and (2.13) into (2.1).
�

Before proving Theorem 1, we recall the result from Lemma 4 in [9]: if
(2.15)

f(a, k, z, q) =
∞∑
n=1

kqn

1− kqn
+

∞∑
n=1

qna/z

1− qna/z
−

∞∑
n=1

aqn

1− aqn
−

∞∑
n=1

qnk/z

1− qnk/z
,

then

(2.16) f(a, k, z, q)− f

(
1

a
,
1

k
,
1

z
, q

)
=

(a− k)(1− 1/z)(1− ak/z)

(1− a)(1− k)(1− a/z)(1− k/z)

+
z

k

(z, q/z, k/a, qa/k, ak/z, qz/ak, q, q; q)∞
(z/k, qk/z, z/a, qa/z, a, q/a, k, q/k; q)∞

.

Proof of Theorem 1. Replace k with b and set z = −1 in (2.16), to get (after
some simple rearrangements) that

f(a, b,−1, q)− f

(
1

a
,
1

b
,−1, q

)
=

2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

The result now follows, upon noting that (2.15) and (2.3) imply that

f(a, b,−1, q) =

∞∑
n=1

2bqn

1− b2q2n
−

∞∑
n=1

2aqn

1− a2q2n
= f2(a, q)− f2(b, q),

f(1/a, 1/b,−1, q) = f2(1/a, q)− f2(1/b, q).

�
As remarked earlier, any derived WP-Bailey pair (α∗

n, β
∗
n) may be used

in (1.4), providing the various series involved converge. We note that the
left side of (1.4) contains sixteen different infinite series, so for space saving
reasons we give two example that uses relatively simple derived pairs. Upon
inserting the pair at (2.11) in (1.4) and performing some simple collecting
and rearranging of terms, the following identity results.

Corollary 2. Let a and b be non-zero complex numbers such that a2qn,
b2qn ̸= 1, for n ∈ Z. Then

(2.17)

∞∑
n=0

q2n
2+3n+1

1− q2n+1

[
b2n+1 − a2n+1 +

1

a2n+1
− 1

b2n+1

]

− 1

2

∞∑
n=1

(−1)nqn(n+1)/2(q; q)2n−1

(q; q)n

[
(1− aq2n)(a; q)n
(1− a)(qa2; q)2n

a2n
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− (1 + aq2n)(−a; q)n
(1 + a)(qa2; q)2n

a2n − (1− bq2n)(b; q)n
(1− b)(qb2; q)2n

b2n +
(1 + bq2n)(−b; q)n
(1 + b)(qb2; q)2n

b2n

− (1− q2n/a)(1/a; q)n
(1− 1/a)(q/a2; q)2n

a−2n +
(1 + q2n/a)(−1/a; q)n
(1 + 1/a)(q/a2; q)2n

a−2n

+
(1− q2n/b)(1/b; q)n
(1− 1/b)(q/b2; q)2n

b−2n − (1 + q2n/b)(−1/b; q)n
(1 + 1/b)(q/b2; q)2n

b−2n

]
=

(a− b)(1 + ab)

(1− a2)(1− b2)
− a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

One fact about the identity above, and indeed Theorem 1 generally, that
is somewhat interesting, is that while the series involving “a” and “b” on
the left side of the identity are completely separated and distinct, “a” and
“b” are closely bound together on the right side (for example, in the infinite
product (b/a, qa/b,−ab,−q/ab; q)∞). The same comment likewise holds for
the next identity.

Corollary 3. Let a and b be non-zero complex numbers such that aqn,
bqn ̸= ±1, for n ∈ Z, and |q| < max{|a2|, 1/|a2|, |b2|, 1/|b2|}. Then

(2.18)

∞∑
n=1

[(
(1/a; q)n
(qa; q)n

− (−1/a; q)n
(−qa; q)n

)
a2nqn

1− qn

−
(

(a; q)n
(q/a; q)n

− (−a; q)n
(−q/a; q)n

)
qn

a2n(1− qn)

−
(
(1/b; q)n
(qb; q)n

− (−1/b; q)n
(−qb; q)n

)
b2nqn

1− qn

+

(
(b; q)n
(q/b; q)n

− (−b; q)n
(−q/b; q)n

)
qn

b2n(1− qn)

]
=

2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

Proof. Insert the derived pair at (2.8) into (1.4). �

3. q-series/products that are representable in terms of
certain Lambert Series

Many q-series and q-products have been represented by Ramanujan and
others in terms of Lambert series of the types encountered earlier. The var-
ious expressions for f1(a, q) and f2(a, q) stated previously now permit these
q-series and q-products to expressed in several ways as basic hypergeometric
series, one way for each derived WP-Bailey pair (or arbitrarily many ways,
if a derived pair contains one or more free parameters). We give several
examples to illustrate the different ways in which this may be accomplished.

Let

a(q) :=

∞∑
m,n=−∞

qm
2+mn+n2

.
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Here we are using the notation for this series employed in [6].

Corollary 4. If ρ1, ρ2 ̸= 0 and 0 < |q| < 1, then

a(q) = 1 + 6

∞∑
n=1

(q; q3)nq
n

(q2; q3)n(1− q3n)
,(3.1)

= 1− 6

∞∑
n=1

(1− q6n−1)(1/q, 1/q; q3)n(q
3; q3)2n−1q

2n

(1− 1/q)(q3, q3; q3)n(q; q3)2n
,

= 1 + 6
∞∑
n=1

(ρ1q, ρ2q, q
2/ρ1ρ2; q

3)nq
n

(q2/ρ1, q2/ρ2, ρ1ρ2q; q3)n(1− q3n)

− 6
∞∑
n=1

(1− q6n−1)(1/q, ρ1, ρ2, q/ρ1ρ2; q
3)n(q

3; q3)2n−1q
2n

(1− 1/q)(q2/ρ1, q2/ρ2, ρ1ρ2q, q3; q3)n(q; q3)2n
,

= 1 + 6
∞∑
n=1

(−1)nq(3n
2+n)/2

1− q3n

− 6

∞∑
n=1

(1− q6n−1)(1/q; q3)n(q
3; q3)2n−1(−1)nq(3n

2−n)/2

(1− 1/q)(q3; q3)n(q; q3)2n
.

Proof. The following result is Entry 18.2.8 of Ramanujan’s Lost Notebook
(see [3, page 402]):

a(q) = 1 + 6
∞∑
n=1

q−2q3n

1− q−2q3n
− 6

∞∑
n=1

q−1q3n

1− q−1q3n
.

Thus a(q) = 1+ 6f1(1/q, q
3), where f1(a, q) is as defined at (2.2).. The first

two equalities follow from the other two representations of 1 + 6f1(1/q, q
3)

that derive from the right side of (2.2). The last two equalities follow from
substituting the derived pairs at (2.10) and (2.11) into 1 + 6×(the left of
(2.1)) (with q replaced with q3 and a replaced with 1/q). �

Recall that

ψ(q) :=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞.

Corollary 5. Let |ρ1| > 1 and i =
√
−1. Then

ψ2(q4) =
i

2q

( ∞∑
n=1

(1 + iq4n−1)(−i/q,−i/q; q2)n(q2; q2)2n−1(−iq)n

(1 + i/q)(q2, q2; q2)n(−1; q2)2n

(3.2)

−
∞∑
n=1

(1− iq4n−1)(i/q, i/q; q2)n(q
2; q2)2n−1(iq)

n

(1− i/q)(q2, q2; q2)n(−1; q2)2n

)
,

=
1

2iq

( ∞∑
n=1

(iρ1q; q
2)n (−1)n

(−iq/ρ1; q2)n(1− q2n) ρn1
−

∞∑
n=1

(−iρ1q; q2)n (−1)n

(iq/ρ1; q2)n(1− q2n) ρn1
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+

∞∑
n=1

(1− iq4n−1)(i/q, ρ1; q
2)n(q

2; q2)2n−1(−1)n

(1− i/q)(iq/ρ1, q2; q2)n(−1; q2)2n ρn1

−
∞∑
n=1

(1 + iq4n−1)(−i/q, ρ1; q2)n(q2; q2)2n−1(−1)n

(1 + i/q)(−iq/ρ1, q2; q2)n(−1; q2)2n ρn1

)
,

=

∞∑
n=0

(−1)nq4n
2+4n

1− q4n+2
+

1

2iq

( ∞∑
n=1

(1− iq4n−1)(i/q; q2)n(q
2; q2)2n−1q

n2−n

(1− i/q)(q2; q2)n(−1; q2)2n

−
∞∑
n=1

(1 + iq4n−1)(−i/q; q2)n(q2; q2)2n−1q
n2−n

(1 + i/q)(q2; q2)n(−1; q2)2n

)
.

Proof. By Example (iv) in Section 17 of Chapter 17 of Ramanujan’s second
notebook (see [4, page 139]),

ψ2(q2) =

∞∑
n=0

qn

1 + q2n+1
,

so that

ψ2(q4) =

∞∑
n=1

q2n−2

1 + q4n−2
=

1

2iq

∞∑
n=1

−2
(

1
iq

)
q2n

1−
(

1
iq

)2
q4n

(3.3)

=
1

2iq
f2

(
1

iq
, q2

)
=

1

2iq

(
f1

(
1

iq
, q2

)
− f1

(
−1

iq
, q2

))
.

The first equality now follows from (2.2), using the second representations
for f1(1/iq, q

2) and f1(−1/iq, q2).
The second equality is a consequence of letting ρ2 → ∞ in the derived

pair at (2.10) and substituting the resulting derived pair into the expression
for f2(1/iq, q

2)/(2iq) that follows from (1.3).
The third equality is a consequence of letting ρ1 → ∞ in the second

equality. �
For a third example, we recall another identity of Ramanujan (see Entry

3 (i), Chapter 19, page 223 of [4]):

(3.4) qψ(q2)ψ(q6) =
∞∑
n=1

q6n−5

1− q12n−10
−

∞∑
n=1

q6n−1

1− q12n−2
,

From (2.3),

qψ(q2)ψ(q6) =
1

2

(
f2(q

−1, q6)− f2(q
−5, q6)

)
=

1

2

(
f1(q

−1, q6)− f1(−q−1, q6)− f1(q
−5, q6) + f1(−q−5, q6)

)
Thus any derived pair (α∗

n(a, q), β
∗
n(a, q)) inserted in Lemma 1, with q re-

placed with q6 and a taking the values q−1,−q−1, q−5,−q−5 will give an
expression for qψ(q2)ψ(q6) containing 8 series. However, for simplicity, we
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use the pair at (2.6) (so β∗n(a) = 0, reducing the 8 series to 4) to get the
following identity.

Corollary 6.

2qψ(q2)ψ(q6) =

∞∑
n=1

1 + q12n−1

1 + 1/q

(−1/q,−1/q; q6)n(q
6; q6)2n−1(−q)5n

(q6, q6; q6)n(q4; q6)2n

−
∞∑
n=1

1− q12n−1

1− 1/q

(1/q, 1/q; q6)n(q
6; q6)2n−1q

5n

(q6, q6; q6)n(q4; q6)2n

+

∞∑
n=1

1− q12n−5

1− 1/q5
(1/q5, 1/q5; q6)n(q

6; q6)2n−1q
n

(q6, q6; q6)n(1/q4; q6)2n

−
∞∑
n=1

1 + q12n−5

1 + 1/q5
(−1/q5,−1/q5; q6)n(q

6; q6)2n−1(−q)n

(q6, q6; q6)n(1/q4; q6)2n
.

There are a number of other identities, for example Entry 34 (p.284)
in chapter 36 of Ramanujan’s notebooks (see [5, page 374]),

(3.5) q
ψ3(q3)

ψ(q)
=

∞∑
n=1

q3n−2

1− q6n−4
−

∞∑
n=1

q3n−1

1− q6n−2
,

where theta functions are expressed in terms of certain Lambert series, which
may be treated similarly to derive results like those in this section.

4. Concluding Remarks

In the present paper and its companion [9] we considered limiting cases of
the two WP-Bailey chains described by Andrews in [1]. There are a number
of other WP-Bailey chains described in the literature (see the papers of
Warnaar [14], Liu and Ma [8] and Mc Laughlin and Zimmer [10]), and it may
be that a similar analysis of some of these chains may also have interesting
consequences.
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