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Abstract. Given a sequence of complex square matrices, an, consider
the sequence of their partial products, defined by pn = pn−1an. What
can be said about the asymptotics as n → ∞ of the sequence f(pn),
where f is a continuous function? This paper addresses this question
under the assumption that the matrices an are an l1 perturbation of a
sequence of matrices with bounded partial products. We chiefly apply
the result to investigate the asymptotics of the approximants of con-
tinued fractions. In particular, when a continued fraction is l1 limit
1-periodic of elliptic type, we show that the set of limits of its sequence
of approximants have closures which are circles in C, or are a finite set of
points lying on a circle. More generally, similar results are found in the
context of Banach algebras. The theory is also applied to (r, s)-matrix
continued fractions, and recurrence sequences of Poincaré type.

1. Introduction

Consider the following recurrence:

xn+1 =
3
2
− 1

xn
.

Taking 1/∞ to be 0 and vice versa, then regardless of the initial (real) value
of this sequence, it is an interesting fact that the sequence is dense in R.
The proof is illuminating.

Take x0 = 3/2 and view xn as n’th approximant of the continued fraction:

(1.1) 3/2− 1
3/2−

1
3/2−

1
3/2−

1
3/2− ...

.

Then, from the standard theorem on the recurrence for convergents of a
continued fraction, the n’th numerator and denominator convergents of this
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continued fraction, An and Bn respectively, must both satisfy the linear
recurrence relation

Yn =
3
2
Yn−1 − Yn−2,

but with different initial conditions.
Now, the characteristic roots of this equation are α = 3/4 + i

√
7/4, and

β = 3/4−i
√

7/4. Thus from the usual formula for solving linear recurrences,
the exact formula for xn is

xn =
An

Bn
=

aαn + bβn

cαn + dβn
=

aλn + b

cλn + d
,

where a, b, c, and d are some complex constants and λ = α/β. Notice that
λ is a number on the unit circle and is not a root of unity, so that λn is
dense on the unit circle. The conclusion follows by noting that the linear
fractional transformation

z 7→ az + b

cz + d

is a homeomorphism from Ĉ to Ĉ and must take the unit circle to R, since
the values of the sequence xn are real. Starting with other real x0 just
changes the constants in the transformation, so with a small modification
the proof works for other real starting values.

After seeing this argument, one is tempted to write down the equality

R = 3/2− 1
3/2−

1
3/2−

1
3/2−

1
3/2− ...

.

This is true so long as one interprets the value of the continued fraction to
be the set of limits of subsequences of its sequence of approximants. In this
paper we generalize such equalities.

Another motivating example of our work is the following theorem, one of
the oldest in the analytic theory of continued fractions [19, 31, 32]:

Theorem 1. (Stern-Stolz, [19, 31, 32]) Let the sequence {bn} satisfy
∑ |bn|

< ∞. Then

b0 + K∞
n=1

1
bn

diverges. In fact, for p = 0, 1,

lim
n→∞P2n+p = Ap 6= ∞, lim

n→∞Q2n+p = Bp 6= ∞,

and
A1B0 −A0B1 = 1.

The Stern-Stolz theorem shows that all continued fractions of the gen-
eral form described in the theorem tend to two different limits, respectively
A0/B0, and A1/B1. (These limits depend on the continued fraction.) Here
and throughout we assume the limits for continued fractions are in Ĉ. The
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motivation for this is that continued fractions can be viewed as the compo-
sition of linear fractional transformations and such functions have Ĉ as their
natural domain and codomain.

Before leaving the Stern-Stolz theorem, we wish to remark that although
the theorem is sometimes termed a “divergence theorem”, this terminology
is a bit misleading; the theorem actually shows that although the continued
fractions of this form diverge, they do so by tending to two limits according
to the parity of the approximant’s index.

A special case of the Stern-Stolz theorem is a fact about the famous
Rogers-Ramanujan continued fraction:

(1.2) 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 · · · .
The Stern-Stolz theorem gives that for |q| > 1 the even and odd approx-

imants of (1.2) tend to two limiting functions. To see this, observe that
by the standard equivalence transformation for continued fractions, (1.2) is
equal to

1 +
1

1/q +
1

1/q +
1

1/q2 +
1

1/q2 · · · +
1

1/qn +
1

1/qn · · · .

The Stern-Stolz theorem, however does not apply to the following contin-
ued fraction given by Ramanujan:

(1.3)
−1

1 + q +
−1

1 + q2 +
−1

1 + q3 + · · · .

Recently in [1] Andrews, Berndt, et al. proved a claim made by Ramanu-
jan in his lost notebook ([24], p.45) about (1.3). To describe Ramanujan’s
claim, we first need some notation. Throughout take q ∈ C with |q| < 1.
The following standard notation for q-products will also be employed:

(a)0 := (a; q)0 := 1, (a)n := (a; q)n :=
n−1∏

k=0

(1− a qk), if n ≥ 1,

and

(a; q)∞ :=
∞∏

k=0

(1− a qk), |q| < 1.

Set ω = e2πi/3. Ramanujan’s claim was that, for |q| < 1,
(1.4)

lim
n→∞

(
1
1 −

1
1 + q −

1
1 + q2 − · · · −

1
1 + qn + a

)
= −ω2

(
Ω− ωn+1

Ω− ωn−1

)
.
(q2; q3)∞
(q; q3)∞

,

where

Ω :=
1− aω2

1− aω

(ω2q, q)∞
(ωq, q)∞

.

Ramanujan’s notation is confusing, but what his claim means is that the
limit exists as n →∞ in each of the three congruence classes modulo 3, and



4 DOUGLAS BOWMAN AND JAMES MC LAUGHLIN

that the limit is given by the expression on the right side of (1.4). Also, the
appearance of the variable a in this formula is a bit of a red herring; from
elementary properties of continued fractions, one can derive the result for
general a from the a = 0 case.

The continued fraction (1.1), the Stern-Stolz theorem, and (1.3) are, in
fact, examples of the same phenomenon. We define this phenomenon and
investigate its implications.

Now (1.1) is different from the other two examples in that it has sub-
sequences of approximants tending to infinitely many limits. Nevertheless,
all of the examples above, including (1.1), are special cases of a general re-
sult on continued fractions (Theorem 7 below). To deal with both of these
situations we introduce the notion of the sequential closure of a sequence.

Define the sequential closure of the sequence in a topological space to
be the set of limits of convergent subsequences.1 To avoid confusion we
designate the sequential closure of a sequence {sn}n≥1 by s.c.(sn).

In this paper we study sequential closures in the specific context of se-
quences of the form

f

(
n∏

i=1

Di

)
,

where Di are elements in a unital Banach algebra and f is a function with
values in a metric space, often compact. Usually in this paper Di is a
sequence of complex matrices.

The main results of section 2 are Theorems 2, 3, and 4 which are the
most general result of the paper. Theorem 2 is the most general and is
stated in the setting of Banach algebras. In section 2 we also discuss recent
results of Beardon, [3], which apply hyperbolic geometry to the analytic
convergence theory of continued fractions. Some of the results of [3] are
related to ours in as much as they deal with generalizing the Stern-Stolz
theorem. Indeed, one of the conclusions of Theorem 2 is implied by one of
the theorems from [3]. The principle difference is that the theorems of [3],
which generalize the Stern-Stolz theorem, do not generalize the particular
conclusion of the Stern-Stolz theorem that the continued fraction’s even
and odd approximants tend to two different limits, and instead focus on the
fact of divergence. The approach of this present paper is to generalize the
convergence of subsequences in the Stern-Stolz theorem.

A special case of Theorem 2 is Theorem 4 which is used to prove Theorem
7 which gives detailed information about the sequential closures of continued
fractions. This result is studied in detail in sections 3 and 4. Section 5

1Thus, for example, the sequence {1, 1, 1, . . . } has sequential closure {1} although the
set of limit (accumulation) points of the set of values of the sequence is empty. Note that
in a survey paper describing some of the research in this paper, the authors previously
used the phrase “limit set”, unaware of the use of this phrase in the theories of discrete
groups and dynamical systems. We thank Peter Loeb for the suggestion of the phrase
“sequential closure”.
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and 6 use Theorem 4 to study (r, s)-matrix continued fractions, and linear
recurrences of Poincaré type, respectively.

Section 3 focuses on limit periodic continued fractions of elliptic and loxo-
dromic types. We discover a rich tapestry of results which weave together the
sequential closure, modifications of the continued fraction, and the asymp-
totics of the approximants of a large class of continued fractions (including
many which represent naturally occurring special functions). Those of ellip-
tic type do not converge, but we find that their sequential closures are well
behaved, computable, and that their approximants have nice asymptotics.
This elliptic case has not previously been studied as far as we know.

We also address the statistics of the sequential closure. In particular, sup-
pose a continued fraction (or matrix generalization) has an infinite sequential
closure. Then which points in the set have the “most” approximants tending
to them, and which have the “fewest”? Thus for example, the approximants
of the continued fraction for R above hovers most frequently around which
real value(s)? These question are answered simply by considering the geom-
etry of the relevant linear fractional transformation.

Section 4 studies a non-trivial example of the theory. The section concerns
a particular continued fraction with three parameters which generalizes not
only the “3/2 continued fraction” above, but also the continued fraction
(1.4). An example of this theorem is a perturbation of the “3/2 continued
fraction”, specifically, the sequential closure of the continued fraction:

(1.5) 3/2− 1
q + 3/2−

1
q2 + 3/2−

1
q3 + 3/2−

1
q4 + 3/2 − · · · ,

where |q| < 1 is complex, can be described exactly. In fact, this sequential
closure is a circle on the Riemann sphere. (Thus as a consequence, when
|q| < 1 and q is real, (1.5) always has sequential closure R.) Viewing this
circle as a linear fractional transformation of the unit circle {z ∈ C : |z| = 1},

z 7→ az + b

cz + d
,

it transpires that the parameters a, b, c, and d are basic hypergeometric
functions.

More generally, in (1.5) if the numbers 1 and 3/2 are changed so that the
limiting recurrence for the convergents of the continued fraction have distinct
characteristic roots that are on the unit circle, there is a coherent formula, in
terms of basic hypergeometric functions, for the sequential closure regardless
of the nature of the roots on the unit circle. Indeed, cases in which the
characteristic roots are roots of unity lead to cases where the continued
fraction has a finite set of limits. Theorem 10 is the general result.

Remarks:
(i) All sequential closure equalities in this paper arise from the situation

lim
n→∞ d(sn, tn) = 0
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in some metric space (X, d). Accordingly, it makes sense to define the equiva-
lence relation ∼ on sequences in X by {sn} ∼ {tn} ⇐⇒ limn→∞ d(sn, tn) =
0. In this situation we refer to sequences {sn} and {tn} as being asymp-
totic to each other. Abusing notation, we often write sn ∼ tn in place of
{sn} ∼ {tn}. More generally, we frequently write sequences without braces
when it is clear from context that we are speaking of a sequence, and not
the nth term. Note that the statements limn→∞ xn = L and xn ∼ L are
equivalent. In this paper, the general theorems are given in the case where
the metric space is a unital Banach algebra; the theorems are then applied
to spaces of matrices.

(ii) It is a fact from general topology that given a compact topological
space X and a Hausdorff space Y , then any continuous bijection g : X → Y
must be a homeomorphism and g and its inverse must both be uniformly
continuous. Under these assumptions an immediate consequence for sequen-
tial closures is: If {sn}n≥1 is a sequence with values in X, then s.c.(g(sn)) =
g(s.c.(sn)).

(iii) Another basic fact is that If {sn} and {tn} are two sequences in
some metric space satisfying sn ∼ tn, then s.c.(sn) = s.c.(tn). Additionally,
if f is some uniformly continuous function, then the following sequence of
implications holds:

sn ∼ tn =⇒ f(sn) ∼ f(tn) =⇒ s.c.(f(sn)) = s.c.(f(tn)).

2. Asymptotics and sequential closures of infinite products in
unital Banach algebras

The classic theorem on the convergence of infinite products of matrices
seems to have been given first by Wedderburn [36, 37]. Wedderburn’s the-
orem is maybe not as well known as it deserves to be, perhaps because
Wedderburn does not state it explicitly as a theorem, but rather gives in-
equalities from which the convergence of infinite matrix products can be
deduced under an l1 assumption. Wedderburn also provides the key in-
equality for establishing the invertibility of the limit, but does not discuss
this important application of his inequality. It is not hard to see that Wed-
derburn’s equations hold in any unital Banach algebra. Because of these
factors, we provide both the statement of the theorem as well as its proof
in the setting of a unital Banach algebra. We will immediately apply the
theorem to obtain our most general result, which gives asymptotics for oscil-
latory divergent infinite products in Banach algebras. This theorem is then
applied to the Banach algebra Md(C) of d× d matrices of complex numbers
topologised using the l∞ norm, denoted by || · ||.

For any unital Banach algebra, let I denote the identity. When we use
product notation for elements of a Banach algebra, or for matrices, the
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product is taken from left to right; thus
n∏

i=1

Ai := A1A2 · · ·An.

Theorems with products taken in the opposite order follow from the the-
orems below by taking the products in the reverse order throughout the
statements and proofs.

Proposition 1. (Wedderburn [36, 37]) Let the sequence Ai consist of el-
ements of a unital Banach algebra U for i ≥ 1. Then

∑
i≥1 ||Ai|| < ∞

implies that
∏

i≥1(I + Ai) converges in U. Moreover, all the elements of
the sequence I + Ai are invertible if and only if the limit

∏
i≥1(I + Ai) is

invertible.

The following corollary provides a convenient estimate of the convergence
rate of the product.

Corollary 1. Under the conditions of Proposition 1, let L =
∏

i≥1(I + Ai)
and Pm =

∏m
i=1(I + Ai). Then

(2.1) ||L− Pm|| ≤ e
P

i≥1 ||Ai|| − e
P

1≤i≤m ||Ai|| = O

(∑

i>m

||Ai||
)

.

Proof of Proposition (Wedderburn). Put

Pm = (I + A1)(I + A2) · · · (I + Am),

and
Qm = (1 + ||A1||)(1 + ||A2||) · · · (1 + ||Am||).

Expanding the product for Pm gives

(2.2) Pm = I +
∑

1≤n1≤m

An1 +
∑

1≤n1<n2≤m

An1An2

+
∑

1≤n1<n2<n3≤m

An1An2An3 + · · ·+ A1A2 · · ·Am.

Similarly,

Qm = 1 +
∑

1≤n1≤m

||An1 ||+
∑

1≤n1<n2≤m

||An1 || ||An2 ||

+
∑

1≤n1<n2<n3≤m

||An1 || ||An2 || ||An3 ||+ · · ·+ ||A1|| ||A2|| · · · ||Am||.

Thus for m ≥ k,

(2.3) ||Pm − Pk|| ≤ Qm −Qk,

and

(2.4) ||Pm − I|| ≤ Qm − 1 < e
P

n≥1 ||An|| − 1.
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From the standard condition for the convergence of infinite products of com-
plex numbers, the convergence of

∑
n≥1 ||An|| implies the convergence of∏

i≥1(1 + ||Ai||), and this implies that the sequence Qn is Cauchy. Thus by
(2.3), Pm is also Cauchy, and so

∏
i≥1(I + Ai) exists.

Recall that an element x in a Banach algebra is invertible if ||x− I|| < 1.
For

∏
i≥1(I +Ai) to be invertible, it is obviously necessary that the elements

of the sequence I + Ai be invertible. We show that this is sufficient. Since∑
i≥1 ||Ai|| < ∞, there exists j ∈ Z+ such that

∑
n>j ||An|| < log(2). Then

(2.4) gives that

||(I + Aj+1) · · · (I + Aj+m)− I|| < e
P

n>j ||An|| − 1.

Letting m →∞ yields

lim
m→∞ ||(I + Aj+1) · · · (I + Aj+m)− I|| ≤ e

P
n>j ||An|| − 1 < elog(2) − 1 = 1.

Hence limm→∞(I + Aj+1) · · · (I + Aj+m) is invertible. Multiplying this on
the left by the invertible elements I +Ai, 1 ≤ i ≤ j gives the conclusion. ¤

Proof of Corollary. From Proposition 1,

||L− Pm|| =
∥∥∥∥∥∥
∏

i≥1

(1 + Ai)−
∏

1≤i≤m

(1 + Ai)

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

∏

1≤i≤m

(1 + Ai)

∥∥∥∥∥∥

∥∥∥∥∥
∏

i>m

(1 + Ai)− I

∥∥∥∥∥

≤ e
P

1≤i≤m ||Ai||(e
P

i>m ||Ai|| − 1) = O

(∑

i>m

||Ai||
)

.

¤

There have been a number of theorems more recently on the convergence
of matrix products, see [2, 3, 5, 6, 9, 12, 27, 33, 34]. Closely related to
Wedderburn’s theorem are Theorems 3.7 and 3.8 of [3], originally given in
[10], which gives essentially the same result, restricted to SL2(C).

Our focus here is on cases of divergence and our results concern finding
asymptotics for the nth partial products. These in turn can be used to
describe the sequential closures.

We set some further conventions and fix notation. Let G be a metric
space, typically a subset of Ĉg, where Ĉ is the Riemann sphere and g is
some integer g ≥ 1. Here Ĉ is topologised with the chordal metric and
the corresponding product metric is employed for Ĉg. (This is defined by
taking the maximum of the metrics of all the corresponding elements in two
g-tuples.) Let f be a continuous function from a compact subset (to be
specified) of a unital Banach algebra U, (usually Md(C)) to G. Typically



ASYMPTOTICS OF CONTINUED FRACTIONS 9

we do not distinguish different norms, the correct one being supplied from
context. The topological closure of a set S is denoted by S.

Our first theorem is a perturbation result giving the asymptotics of di-
vergent infinite products in a unital Banach algebra. Although we will only
use a special case of this result, we believe the general result is of sufficient
interest to warrant inclusion, especially since the proof of the general result
requires no additional work. We denote elements of the Banach algebra by
capitol letters to suggest matrices, which is the case to which the result will
be applied.

Theorem 2. Suppose {Mi} and {Di} are sequences in a unital Banach
algebra U such that the two sequences (for ε = ±1)

(2.5)

∥∥∥∥∥

(
n∏

i=1

Mi

)ε∥∥∥∥∥
are bounded and {Di −Mi} ∈ l1(U), that is,

(2.6)
∑

i≥1

‖Di −Mi‖ < ∞.

Let εn =
∑

i>n ||Di −Mi||. Then

(2.7) F := lim
n→∞

(
n∏

i=1

Di

)(
n∏

i=1

Mi

)−1

exists and F is invertible if and only if Di is invertible for all i ≥ 1. Also,

(2.8)

∥∥∥∥∥∥
F −

(
n∏

i=1

Di

)(
n∏

i=1

Mi

)−1
∥∥∥∥∥∥

= O(εn).

As sequences

(2.9)
n∏

i=1

Di ∼ F
n∏

i=1

Mi,

and moreover

(2.10)

∥∥∥∥∥
n∏

i=1

Di − F

n∏

i=1

Mi

∥∥∥∥∥ = O(εn).

More generally, let f be a continuous function from the domain
{

F
n∏

i=1

Mi : n ≥ h

}
∪

⋃

n≥h

{
n∏

i=1

Di

}
,

for some integer h ≥ 1, into a metric space G. Then the domain of f is
compact in U and f(

∏n
i=1 Di) ∼ f(F

∏n
i=1 Mi). Finally

(2.11) s.c.

(
n∏

i=1

Di

)
= s.c.

(
F

n∏

i=1

Mi

)
,
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and

(2.12) s.c.

(
f

(
n∏

i=1

Di

))
= s.c.

(
f

(
F

n∏

i=1

Mi

))
.

We do not assume compactness of G so it is possible that the equalities
in the theorem are between empty sets. When G is compact these sets are
clearly non-trivial. Note that the conditions of the theorem imply that all
the elements Mi are invertible. When Mi = I for i ≥ 1, the first conclusion
of the theorem reduces to Wedderburn’s theorem, Proposition 1.

An interesting special case of Theorem 2 is when the elements Mi are
unitary matrices. The following matrix norm will be used:

||M || =

 ∑

1≤i,j≤d

|mi,j |



1/2

.

It is clear that ||M || =
√

d when M is a d × d unitary matrix (for then
||M ||2 = tr(MM

T) = tr(I) = d), and thus the hypothesis on the sequence
Mi is satisfied. More generally, one can assume that the sequence of matrices
{Mi} are elements of some subgroup of GLd(C) that is conjugate to the
unitary group. This case is important enough that we distinguish it in the
following theorem.

Theorem 3. Let {Mi} be a sequence of elements of a subgroup of GLd(C)
that is conjugate to the unitary group. Then, if {Di} is a sequence GLd(C)
and {Di −Mi} ∈ l1, all of the conclusions of Theorem 2 hold.

The special case of Theorem 2 that will be applied in the next section is
U = Md(C), Mi = M , where M be a diagonalizable complex matrix with
eigenvalues on the unit circle. Since M is diagonalizable, put M = CEC−1.
Then Mk = CEkC−1, and so it follows that ‖Mk‖ ≤ ‖C‖ · ‖C−1‖ and
‖Mk‖ is bounded for k ∈ Z. Thus the boundedness hypothesis is satisfied
and Theorem 2 simplifies to the following.

Theorem 4. Under the above conditions,

F = lim
n→∞

(
n∏

i=1

Di

)
M−n

exists in Md(C) and det(F ) 6= 0. Moreover, ||F − (
∏n

i=1 Di)M−n|| = O(εn),
and

(i) ||∏n
i=1 Di − FMn|| = O(εn) . Thus s.c.(

∏n
i=1 Di) = s.c.(FMn).

(ii) Let f be a continuous function from the domain

{FMn : n ≥ h} ∪
⋃

n≥h

{
n∏

i=1

Di

}
,

for some integer h ≥ 1, into a metric space G. Then the domain of f is com-
pact and f(

∏n
i=1 Di) ∼ f(FMn). Hence s.c.(f (

∏n
i=1 Di)) = s.c.(f(FMn)).
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Note that because M is diagonalizable, this theorem enables one to deter-
mine the exact structure of the sequential closure using Pontryagin duality.

A special case of Theorem 4 is Proposition 1 of [7] in which the eigenvalues
are roots of unity. It considers asymptotics, but not the limit set. This
special case is roughly equivalent to Theorem 1.1 of [28].

Proof of Theorem 2. Observe that
(

n∏

i=1

Di

)(
n∏

i=1

Mi

)−1

=
n∏

i=1







i−1∏

j=1

Mj


Di

i−1∏

j=0

M−1
i−j




=
n∏

i=1


I +




i−1∏

j=1

Mj


Di

i−1∏

j=0

M−1
i−j −




i−1∏

j=1

Mj


Mi

i−1∏

j=0

M−1
i−j




=
n∏

i=1


I +




i−1∏

j=1

Mj


 (Di −Mi)

i−1∏

j=0

M−1
i−j




=
n∏

i=1

(I + Ai),

where

Ai :=




i−1∏

j=1

Mj


 (Di −Mi)

i−1∏

j=0

M−1
i−j .

Hence

‖Ai‖ ≤
∥∥∥∥∥∥

i−1∏

j=1

Mj

∥∥∥∥∥∥
· ‖Di −Mi‖ ·

∥∥∥∥∥∥

i−1∏

j=0

M−1
i−j

∥∥∥∥∥∥
≤ C‖Di −Mi‖,

for some real absolute bound C. The second inequality followed from the
boundedness assumption on the sequences (2.5). By (2.6) it follows that∑

i≥0 ‖Ai‖ < ∞, and so by Proposition 1, it follows that F exists and is
invertible when the Di are invertible for i ≥ 1. Thus we have proved that

(2.13) lim
n→∞

∥∥∥∥∥∥
F −

(
n∏

i=1

Di

)(
n∏

i=1

Mi

)−1
∥∥∥∥∥∥

= 0.

Then again from the boundedness of the sequences in (2.5),

(2.14) lim
n→∞

∥∥∥∥∥F
n∏

i=1

Mi −
n∏

i=1

Di

∥∥∥∥∥ = 0.

That is,
n∏

i=1

Di ∼ F
n∏

i=1

Mi.
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Using this and the boundedness of the sequences in (2.5) gives that the
domain of f is compact. Thus f is not only continuous, but is uniformly
continuous. This uniform continuity and (2.14) give

lim
n→∞

∥∥∥∥∥f

(
F

n∏

i=1

Mi

)
− f

(
n∏

i=1

Di

)∥∥∥∥∥ = 0,

and so

f

(
F

n∏

i=1

Mi

)
∼ f

(
n∏

i=1

Di

)
.

The sequential closure equalities in the theorem follow from the third
remark in the introduction and the error estimates follow from Corollary 1
and the boundedness assumption. ¤

We conclude this section by comparing these results to some of those
from the recent paper [3], which mainly focuses on applying the hyperbolic
geometry of Möbius maps to the convergence theory of continued fractions
with complex elements. Consider the following two results from [3] that are
closely related the results of this section:

Theorem 5 (Theorem 4.2 of [3]). Suppose that G is a topological group
whose topology is derived from a right-invariant metric σ0, and that (G, σ0)
is complete. Let f1, f2, . . . be any sequence of elements of G. Then, for each
k, there is a neighborhood Nk of fk such that if, for all j, gj ∈ Nj, then
(g1 · · · gn)(f1 · · · fn)−1 converges to some element h of G.

The above theorem shares some of the structure of Theorem 2. In par-
ticular it gives the existence of a limit similar to the limit F in Theorem 2.
The hypotheses are quite different, however, and asymptotics are not given
in Theorem 5. Also, sizes of the neighborhoods are not provided.

For the following corollary, some definitions involving hyperbolic geometry
are useful. A Möbius map acting on R̂N is a finite composition of maps each
of which is an inversion or reflection in some N−1-dimensional hyperplane or
hypersphere in R̂N . The Möbius group acting on R̂N is the group generated
by these inversions or reflections. The conformal Möbius group, denoted
MN is the subgroup of those maps that are orientation preserving which
means that they can be expressed as the composition of an even number of
such inversions. See [3, 4].

Corollary 2 (Corollary 4.3 of [3]). Let f1, f2, . . . be any sequence of Möbius
maps. Then, for each k, there is a neighborhood Nk of fk such that if
gj ∈ Nj, j = 1, 2, . . . , then there is some Möbius map h such that for all z,
σ(g1 · · · gn(z), hf1 · · · fn)) → 0 as n → ∞. In particular, for each point z,
limn g1 · · · gn(z) exists if and only if limn f1 · · · fn(z) exists.

The differences with our theorem are that the setting in Theorem 2 is
more general and the sizes of the neighborhoods are not given in Corollary
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2. However, in the case of complex Möbius maps, in [3] it is shown that the
neighborhoods Nk can be taken to be the set of Möbius maps g that satisfy

(2.15) ||g − fk|| < 1
2k+2||f1||2 · · · ||fk−1||2||fk|| .

Here the norms are of the matrix representations of the Möbius maps fi and
g.

Comparing this with Theorem 2, it can be seen that for the case of com-
plex Möbius maps, unless enough of the norms ||fi|| are small, one expects
our condition {Di−Mi} ∈ l1 to be weaker in general, and thus our result to
be stronger. Note that Theorem 2 also gives information about the sequen-
tial closure as well as asymptotics with error terms. Information about the
sequential closure is implicit, however, in Corollary 4.3 of [3] above.

There is another theorem in [3] which is also related to Theorem 2. In
fact, it is a generalization of the Stern-Stolz theorem presented in the in-
troduction. Before stating the theorem, a couple definitions concerning the
hyperboloid model of hyperbolic space are required.

For x and y in RN+1, let

q(x, y) = x1y1 + x2y2 + · · ·+ xNyN − xN+1yN+1,

and
HN = {x ∈ RN+1 : q(x, x) = 1, xN+1 > 0}.

HN is one branch of a hyperboloid of two sheets. It can be shown that
HN can be endowed with a hyperbolic metric and that the matrix group
O+(N + 1, 1) which preserve q as well as th condition xN+1 > 0 act as
isometries on this space. Let g be a Möbius map which acts on RN , and
hence by the Poincaré extension, on HN+1. Suppose then that g corresponds
to the (N + 2)× (N + 2) matrix A which acts on HN+2. In [3] the following
beautiful generalization of the Stern-Stolz theorem is given:

Theorem 6 (“The General Stern-Stolz Theorem” [3]). Suppose that g1, g2

. . . are Möbius maps in MN , and that gn is represented by the (N + 2) ×
(N + 2) matrix An as above. If

(2.16)
∞∑

n=1

√
||An||2 − ||I||2

converges, then the sequence g1 · · · gn is strongly divergent.

Consider the N = 0 case. Then, this theorem should be compared with
the case of Theorem 3 in which H is unitary, and the matrices Mi represent
Möbius maps. In Theorem 6, (2.16) is exactly the condition required for∑

n ρ(j, gn(j)) to be bounded in H. (Here ρ is the hyperbolic metric on
H, where H := {(x1, x2, x3) ∈ R3 : x3 > 0}, and j = (0, 0, 1).) Next,
(2.16) is sufficient to guarantee that ρ(j, g1 · · · gn(j)) is finite, and thus the
orbits of the product g1 · · · gn never leave H. This later condition is what
is meant by “strong divergence”. Now the Möbius maps that fix j are the
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unitary maps and g(j) = j if and only if ||g||2 = 2. The condition (2.16) can
thus be interpreted as saying that the elements gn approach some sequence
of unitary elements sufficiently rapidly. This is roughly the same as the
condition on the sequence {Di} in Theorem 3 when H is unitary. Of course
the conclusion of the theorems go in different directions.

In the next section we apply the d = 2 case of Theorem 4 to get detailed
information about the sequential closures of continued fractions.

3. Limit 1-periodic continued fractions of elliptic type

We begin by reviewing the correspondence between 2 × 2 matrices and
continued fractions. First recall that a finite continued fraction is a rational
function of the form:

b0 +
a1

b1 +
a2

b2 +
. . .

an−1

bn−1 +
an

bn

.

For easier reading continued fractions are usually typeset as:

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn
.

The correspondence between continued fractions and matrices is best un-
derstood by first remembering the correspondence between compositions of
linear fractional transformations and products of 2 × 2 matrices, and then
noting that the composition of linear fractional transformations can be writ-
ten as a continued fraction. To see the later, observe that for a general linear
fractional transformation (avoiding cases such as c = 0):

az + b

cz + d
=

a

c
+

(
bc−ad

c2

)
d
c + z

,

Thus, generically, any composition of a finite number of non-trivial linear
fractional transformations can be written as a finite continued fraction. But
to generate a continued fraction, one does not need to work with such gen-
eral linear fractional transformations. For example, working with transfor-
mations of the form (

ai

bi + z−1

)−1

=
bz + 1

az

leads to the correspondence between matrices and continued fractions that
will be used below:

(3.1)




Pn Pn−1

Qn Qn−1


 =




b0 1

1 0







b1 1

a1 0


 · · ·




bn 1

an 0


 ,
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where
Pn

Qn
= b0 +

a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn
.

Here Pn and Qn are the numerator and denominator polynomials (called
convergents) in the variables ai and bi obtained by simplifying the rational
function that is the finite continued fraction. Their ratio, Pn/Qn, is called
the nth approximant of the continued fraction. From (3.1) one reads off
immediately the fundamental recurrences for the convergents Pn and Qn:

(3.2)




Pn Pn−1

Qn Qn−1


 =




Pn−1 Pn−2

Qn−1 Qn−2







bn 1

an 0


 .

Taking the determinant on both sides of (3.1) gives at once the determinant
formula for the convergents of a continued fraction:

(3.3) PnQn−1 − Pn−1Qn = (−1)n−1a1a2 · · · an.

An infinite continued fraction

(3.4) K∞
n=1

an

bn
:=

a1

b1 +
a2

b2 +
a3

b3 + · · ·
is said to converge in C (respectively in Ĉ) if

lim
n→∞

a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn

exists in C (respectively in Ĉ). Let {ωn} be a sequence of complex numbers.
If

lim
n→∞

a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn + ωn

exist, then this limit is called the modified limit of K∞
n=1an/bn with respect

to the sequence {ωn}. Detailed discussions of modified continued fractions
as well as further pointers to the literature are given in [19]. Note that by
(3.1) and (3.2),

(3.5) b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn + ωn
=

Pn + ωnPn−1

Qn + ωnQn−1
.

In the following theorem, the sequential closure of the sequence of approx-
imants of a general class of continued fractions is computed. It transpires
that the sequential closure is a circle (or a finite subset of a circle) on the
Riemann sphere.

The following theorem studies the continued fraction

(3.6)
−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · · +
−αβ + qn

α + β + pn
,

where the sequences pn and qn approach 0 in l1 and the constants α 6= β are
points in the complex plane. Specifically assume that

∞∑

n=1

|pn| < ∞ and
∞∑

n=1

|qn| < ∞.(3.7)
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Let

εn := max

(∑

i>n

|pi|,
∑

i>n

|qi|
)

,

and put

fn(w) :=
−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · · +
−αβ + qn

α + β + pn + w
,

so that fn := Pn/Qn = fn(0) is the sequence of approximants of the contin-
ued fraction (3.6).

We follow the common convention in analysis of denoting the group of
points on the unit circle by T, (and also by T∞), and its subgroup of roots
of unity of order m, m finite, by Tm. (Note: T∞ often denotes the group of
all roots of unity; here it denotes the whole circle group.)

Theorem 7. Let {pn}n≥1, {qn}n≥1 be complex sequences satisfying (3.7).
Let α and β satisfy |α| = |β| = 1, α 6= β with the order of λ = α/β in T
being m (where m may be infinite). Assume that qn 6= αβ for any n ≥ 1.
The following asymptotics for the convergents Pn and Qn hold as n →∞:

(3.8)
∣∣∣∣Pn − aαn + bβn

α− β

∣∣∣∣ = O(εn) and
∣∣∣∣Qn − cαn + dβn

α− β

∣∣∣∣ = O(εn).

Also

(3.9) fn ∼ h(λn+1) where h(z) =
az + b

cz + d
.

Moreover

(3.10) s.c. (fn) = h(Tm) =
aTm + b

cTm + d
,

with the constants a, b, c, d ∈ C given by the (existent) limits

a = lim
n→∞α−n(Pn − βPn−1),(3.11)

b = − lim
n→∞β−n(Pn − αPn−1),

c = lim
n→∞α−n(Qn − βQn−1),

d = − lim
n→∞β−n(Qn − αQn−1).

Also,

(3.12) det(h) = ad− bc = (β − α)
∞∏

n=1

(
1− qn

αβ

)
6= 0.

Finally, if either |c| 6= |d|, or for 0 ≤ n < m , cλn + d 6= 0 when |c| = |d|
and λ is a root of unity, then as n →∞,

(3.13)
∣∣fn − h(λn+1)

∣∣ = O(εn).
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This theorem is foundational for what follows. We give two corollaries
before the proof. Further results follow the proofs. The next corollary gives
enough information for specifically identifying the linear fractional transfor-
mation h in the theorem in terms of modifications of the original continued
fraction. The succeeding corollary makes that identification.

Corollary 3. Under the conditions of the theorem the following identities
involving modified versions of (3.6) hold in Ĉ:

h(∞) =
a

c
= lim

n→∞ fn(−β)

(3.14)

= lim
n→∞

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · · +
−αβ + qn−1

α + β + pn−1 +
−αβ + qn

α + pn
;

h(0) =
b

d
= lim

n→∞ fn(−α)

(3.15)

= lim
n→∞

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · · +
−αβ + qn−1

α + β + pn−1 +
−αβ + qn

β + pn
;

and for k ∈ Z, we have

h(λk+1) =
aλk+1 + b

cλk+1 + d
= lim

n→∞ fn(ωn−k)

= lim
n→∞

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · · +
−αβ + qn

α + β + pn + ωn−k
,(3.16)

where

ωn = − αn − βn

αn−1 − βn−1
∈ Ĉ, n ∈ Z.

The following corollary gives (up to a factor of ±1) the numbers a, b,
c, and d in terms of the (convergent) modified continued fractions given in
Corollary 3.

Corollary 4. The linear fractional transformation h(z) defined in Theorem
7 has the following expression

h(z) =
A(C −B)z + B(A− C)

(C −B)z + A− C
,

where A = h(∞), B = h(0), and C = h(1). Moreover, the constants a, b, c,
and d in the theorem have the following formulas

a = sA(C −B), b = sB(A− C), c = s(C −B), d = s(A− C),

where

s = ±

√√√√ (β − α)
∏∞

n=1

(
1− qn

αβ

)

(A−B)(C −A)(B − C)
.
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Some remarks before the proofs:
(i) It is interesting to note that the sequence of modifications of (3.6)

occurring in (3.16) converge exactly to the sequence h(λn+1) which is as-
ymptotic to the approximants fn of (3.6).

(ii) Dividing through the numerator and denominator of the definition of
ωn by βn−1 gives that the sequence ωn occurring in (3.16) is either a discrete
or a dense set of points on the line

−αT+ β

T+ 1
,

according to whether λ is a root of unity or not. Observe that −ωn+2 is the
nth approximant of the continued fraction

α + β +
−αβ

α + β +
−αβ

α + β + . . .
−αβ

α + β
,

which, except for the initial α + β, is the non-perturbed version of the
continued fraction under study. That the sequential closure of ωn lies on a
line follows from Theorem 8 below. Combining the continued fraction for
ωn with (3.16) and Theorem 7 yields the intriguing equation:

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · · +
−αβ + qk

α + β + pk

= lim
n→∞

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 + · · ·

· · ·
−αβ + qn−1

α + β + pn−1 +
−αβ + qn

pn −
−αβ

α + β +
−αβ

α + β + . . .
−αβ

α + β︸ ︷︷ ︸
n− k − 1 terms

.

(3.17)

The continued fraction on the left hand side is divergent, while its trans-
formed version on the right hand side converges to the kth approximant of
the continued fraction on the left. (3.17) is naturally valid under the condi-
tion of Theorem 7 and can be viewed as a continued fraction manifestation
of Theorem 4.

(iii) We have assumed that |α| = |β| = 1 and α 6= β. Actually, by using
an equivalence transformation on the continued fraction (3.6), the theorem
can be applied under the weaker assumptions |α| = |β| and α 6= β to yield
asymptotics for the approximants in these cases. To be more specific, if
ci 6= 0 for i ≥ 1, then the continued fractions

(3.18)
a1

b1 +
a2

b2 +
a3

b3 + · · ·
and

(3.19)
c1a1

c1b1 +
c1c2a2

c2b2 +
c2c3a3

c3b3 + · · ·
are said to be equivalent since they have the same set of approximants.



ASYMPTOTICS OF CONTINUED FRACTIONS 19

The continued fraction at (3.18) is called a limit 1-periodic continued
fraction when limn→∞ an = a and limn→∞ bn = b, for some a, b ∈ C.

The associated linear fractional transformation for the continued fraction
above is

a

z + b
.

Denote the fixed points of this transformation by

z1 :=
b +

√
b2 + 4a

2
, z2 :=

b−√b2 + 4a

2
.

The continued fraction at (3.18) is said to be a limit 1-periodic continued
fraction of elliptic type when z1 6= z2, but |z1| = |z2|, see [19].

We consider the case where the continued fraction at (3.18) is a limit
1-periodic continued fraction of elliptic type and, in addition,

∑

n≥1

|an − a| < ∞,
∑

n≥1

|bn − b| < ∞.

Set

d :=

∣∣∣∣∣
b +

√
b2 + 4a

2

∣∣∣∣∣ =

∣∣∣∣∣
b−√b2 + 4a

2

∣∣∣∣∣ ,

and define

α =
b +

√
b2 + 4a

2d
, β =

b−√b2 + 4a

2d
.

Then α 6= β, |α| = |β| = 1. Define, for n ≥ 1, pn and qn by

an = a + pn, bn = b + qn.

Thus

K∞
n=1

a + qn

b + pn
= dK∞

n=1

−αβ + qn/d2

α + β + pn/d
,

this equality following upon setting ci = 1/d in (3.19). The second contin-
ued fraction satisfies the conditions of Theorem 7. Thus this theorem can
be applied to all limit 1-periodic continued fractions of elliptic type with
limn→∞ an = a and limn→∞ bn = b, providing

∑
n≥1 |an − a| < ∞ and∑

n≥1 |bn − b| < ∞. Our theorem thus gives detailed information about
limit 1-periodic continued fractions of elliptic type of this general class.

Of course, it is known that without any restrictions on how the limit
periodic sequences tend to their limits, the behavior can be quit complicated,
see [19].

(iv) Our last remark showed that we can loosen the assumption that
|α| = |β| = 1 and α 6= β to just |α| = |β| and α 6= β. In fact, suitably
interpreted, the asymptotic formula for the fn in the theorem continues to
hold even when |α| 6= |β|. This is the loxodromic case.
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To see this, recall the asymptotic for fn in the theorem in the following
form:

(3.20) fn ∼ a(α/β)n+1 + b

c(α/β)n+1 + d
.

Clearly when |α| < |β| and n →∞ the right hand side tends to b/d = h(0),
assuming that this makes sense. Thus the conclusion of the theorem would
be:

(3.21) fn ∼ b

d
.

However, in this case, the continued fraction is limit 1-periodic of loxodromic
type, and thus converges to a value f . Moreover, it has attractive fixed
point −α. In this situation it is well-known, see [19], that its modified
limit fn(−α) also tends to f . But fn(−α) is exactly the modified continued
fraction (3.15) converging to h(0) = b/d. Thus (3.21) holds if b/d is defined
by (3.15). Obviously the same argument holds when |α| > |β|, only with
the limit a/c = h(∞) in this case. Thus, interpreting the right hand side
of (3.20) as the convergent limit (3.15) for b/d when |α| < |β| and as the
convergent limit (3.14) for a/c when |α| > |β|, it follows that (3.20) is true
for all finite α 6= β.

If β = α, then the continued fraction at (3.6) is equivalent to one of the
form K∞

n=1an/1, where an → −1/4. The convergence of continued fractions
of this type were studied in [14], [15], [16] and [20]. We remark in passing
that they may converge or diverge, depending on the direction and speed of
convergence of the an to −1/4 (see [19], page 158).

Proof of Theorem 7. Define

(3.22) Dn :=
(

α + β + pn 1
−αβ + qn 0

)
, M :=

(
α + β 1
−αβ 0

)
.

For later use, note that

(3.23) M =
(−β−1 −α−1

1 1

) (
α 0
0 β

)(−β−1 −α−1

1 1

)−1

,

that for n ∈ Z

(3.24) Mn =




αn+1 − βn+1 αn − βn

−αβ (αn − βn) αβn − αnβ


 1

α− β
,

and that for n ∈ Z

(3.25) M−n =




αn−1 − βn−1 αn − βn

αβ

βn − αn βn+1 − αn+1

αβ


 gn,

where, to save space later, we have put gn = (α1−nβ1−n)/(β − α).
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Clearly

||Dn −M ||∞ = max{|pn|, |qn|}.
and thus ∑

n≥1

||Dn −M ||∞ < ∞.

It follows that the matrix M and the matrices Dn satisfy the conditions of
Theorem 4.

Let Pn and Qn denote the nth numerator and denominator convergents of
the continued fraction (3.6). By the correspondence between matrices and
continued fractions (3.1),

(3.26)




Pn Pn−1

Qn Qn−1


 =




0 1

1 0




n∏

j=1

Dj ,

and using Theorem 4, there exists F ∈ GL2(C) defined by

F = lim
n→∞




0 1

1 0




n∏

j=1

DjM
−n

(3.27)

= lim
n→∞




Pn Pn−1

Qn Qn−1


M−n

= lim
n→∞




Pn Pn−1

Qn Qn−1




(−β−1 −α−1

1 1

) (
α−n 0
0 β−n

)(−β−1 −α−1

1 1

)−1

(3.28)

= lim
n→∞




Pn Pn−1

Qn Qn−1







αn−1 − βn−1 αn − βn

αβ

βn − αn βn+1 − αn+1

αβ




α1−nβ1−n

β − α
.

(3.29)

Taking determinants in (3.28) gives an expression for det(F ):

F1,1F2,2 − F1,2F2,1 = − lim
n→∞(PnQn−1 − Pn−1Qn)

1
(αβ)n

= −
∞∏

n=1

(
1− qn

αβ

)
.

The last equality follows from the determinant formula for continued frac-
tions (3.3). Note that qn 6= αβ implies that PnQn−1 − Pn−1Qn 6= 0, for
n ≥ 1.
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Let f : GL2(C) → Ĉ be given by

f :
(

u v
w x

)
7→ u

w
.

Note that f is continuous, and thus using Theorem 4, is uniformly continuous
on the compact set

{FMn : n ≥ 1} ∪
⋃

n≥1

(
Pn Pn−1

Qn Qn−1

)
.

Theorem 4 and the matrix product representation of continued fractions
then give that

Pn

Qn
∼ f (FMn) .

Hence using (3.24) and the definition of f ,

Pn

Qn
∼F1,1(αn+1 − βn+1) + F1,2(−αβ (αn − βn))

F2,1(αn+1 − βn+1) + F2,2(−αβ (αn − βn))
(3.30)

=
(F1,1 − βF1,2)

(
α
β

)n+1
+ (αF1,2 − F1,1)

(F2,1 − βF2,2)
(

α
β

)n+1
+ (αF2,2 − F2,1)

= h(λn+1),

where

(3.31) h(z) =
az + b

cz + d
,

with a = F1,1 − βF1,2, b = αF1,2 − F1,1, c = F2,1 − βF2,2, d = αF2,2 − F2,1,
and Fi,j ∈ C are the elements of F . The limit expressions for a, b, c, and
d in the theorem follow by simplifying the constants in h defined here, and
then using (3.29). The non-vanishing and the product formula for ad − bc
follow immediately from the product for det(F ) above and the expressions
for a, b, c, and d. Note that we can compactly express the definition of a, b,
c, and d in the following matrix equation:

(
a b
c d

)
=

(
F1,1 F1,2

F2,1 F2,2

)(
1 −1
−β α

)
.

Solving for F gives

(3.32) F =
(

a b
c d

) (
α 1
β 1

)
1

α− β
.

Now h : Ĉ→ Ĉ is a continuous bijection (since det(h) 6= 0), and thus by
the remarks in the introduction,

s.c.

(
Pn

Qn

)
= s.c.(h(λn+1)) = h(s.c.(λn+1)) = h(Tm).
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From Theorem 4 (i),

(3.33)
(

Pn Pn−1

Qn Qn−1

)
∼ FMn.

Substituting (3.24) and (3.32) into (3.33) yields
(

Pn Pn−1

Qn Qn−1

)

∼
(

a b
c d

)(
α 1
β 1

)(
αn+1 − βn+1 αn − βn

−αβ(αn − βn) αβn − βαn

)
1

(α− β)2

=
(

a b
c d

)(
αn+1 ∗
βn+1 ∗

)
1

α− β

=
(

aαn+1 + bβn+1 ∗
cαn+1 + dβn+1 ∗

)
1

α− β
.

Thus the sequences Pn and Qn have the claimed asymptotics by Theorem
4.

Finally, put An = aαn + bβn, Bn = cαn + dβn, and observe that

∣∣fn − h(λn+1)
∣∣ =

∣∣∣∣
Pn

Qn
− An

Bn

∣∣∣∣ ≤
∣∣∣∣
PnBn −AnBn

QnBn

∣∣∣∣ +
∣∣∣∣
AnBn −QnAn

QnBn

∣∣∣∣

≤
∣∣∣∣

1
Qn

∣∣∣∣ εn +
∣∣∣∣

An

QnBn

∣∣∣∣ εn,

and this error is O(εn) providing that Bn is bounded away from 0. (Recall
that Qn ∼ Bn/(α − β).) It is easy to see that Bn is bounded away from 0
under precisely the two conditions given in the theorem. ¤

Proof of Corollary 3. (3.14) and (3.15) follow immediately from the value
of a modified continued fraction (3.5), with ωn = −β and ωn = −α, respec-
tively, and the limit expressions for a, b, c, and d.

To get (3.16), observe that

h(λk+1) = f(FMk) = f

(
lim

n→∞

(
Pn Pn−1

Qn Qn−1

)
M−nMk

)

= f

(
lim

n→∞

(
Pn Pn−1

Qn Qn−1

)
M−(n−k)

)

= f




lim
n→∞

(
Pn Pn−1

Qn Qn−1

)



αn−k−1 − βn−k−1 αn−k − βn−k

αβ

βn−k − αn−k βn−k+1 − αn−k+1

αβ




gn−k




= lim
n→∞

(αn−k−1 − βn−k−1)Pn − (αn−k − βn−k)Pn−1

(αn−k−1 − βn−k−1)Qn − (αn−k − βn−k)Qn−1
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= lim
n→∞

Pn − αn−k − βn−k

αn−k−1 − βn−k−1
Pn−1

Qn − αn−k − βn−k

αn−k−1 − βn−k−1
Qn−1

= lim
n→∞

Pn + ωn−kPn−1

Qn + ωn−kQn−1
,

where

ωj := − αj − βj

αj−1 − βj−1
.

The result now follows from (3.5). ¤

Proof of Corollary 4. The expression for h(z) follows immediately using al-
gebra from (3.14), (3.15), and (3.16) with k = −1. The expressions for a,
b, c, and d follow by using (3.12) along with the fact that the coefficients in
the two expressions for the linear fractional transformation must be equal
up to a constant factor. ¤

Note that putting k = 0 and k = −1 in (3.30) gives the following identi-
ties:

h(λ) =
F1,1

F2,1
,(3.34)

h(1) =
F1,2

F2,2
.

Let T′ denote the image of T under h, that is, the sequential closure of
the sequence {fn}. The asymptotic for fn given in Theorem 7 is

(3.35) fn ∼ h(λn+1),

where h is the linear fractional transformation defined in the theorem.
Some observations can immediately be made. It is well known that when

λ is not a root of unity, λn+1 is uniformly distributed on T. However, the
linear fractional transformation h stretches and compresses arcs of the circle
T, so that the distribution of h(λn+1) in arcs of T′ is no longer uniform.
(Recall uniform distribution on a curve happens when as n → ∞ each
segment of the curve get’s the proportion of the first n points equal to the
ratio of the segment’s length to the length of the whole curve.) Additionally,
T′ may not be compact in C. So we consider a probability measure on T′
giving the probability of an element h(λn+1) being contained in a subset
of T′. This measure is easy to write down. Let S ⊂ T′, then h−1(S) is
a subset of the unit circle. Then since λn is uniformly distributed on T,
P (S) := µ(h−1(S))/2π gives the probability that for any n, h(λn) ∈ S.
Here µ denotes the Lebesgue measure on T. Note that P depends entirely
on h, and thus only on the parameters a, b, c, and d.

In general fn /∈ T′, but because of (3.35), as n → ∞, the terms of the
sequence fn get closer and closer to the sequence h(λn+1) which lies on T′.
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Thus we speak of P as the limiting probability measure for the sequence fn

with respect to T′.
More specifically, (3.35) implies that there is a one-to-one correspondence

between the convergent subsequences of h(λn+1) and those of fn such that
the corresponding subsequences tend to the same limit. As h is a homeomor-
phism and λn is uniformly distributed on T, it follows that the probability
of an element of s.c.(fn) being contained in a subset S of T′ is exactly
P (S) = µ(h−1(S))/2π.

Fortunately, this distribution is completely controlled by the known pa-
rameters a, b, c, and d. The following theorem gives the points on the
sequential closures whose neighborhood arcs have the greatest and least
concentrations of approximants.

Theorem 8. When m = ∞ and cd 6= 0, the points on
aT+ b

cT+ d

with the highest and lowest concentrations of approximants are
a

c
|c|+ b

d
|d|

|c|+ |d| and
−a

c
|c|+ b

d
|d|

−|c|+ |d| ,

respectively. If either c = 0 or d = 0, then all points on the sequential
closure have the same concentration. The radius of the sequential closure
circle in C is ∣∣∣∣∣

α− β

|c|2 − |d|2
∞∏

n=1

(
1− qn

αβ

)∣∣∣∣∣ ,

and its center is the complex point

|h(1)|2(h(−1)− h(i)) + |h(−1)|2(h(i)− h(1)) + |h(i)|2(h(1)− h(−1))
h(1)(h(i)− h(−1)) + h(−1)(h(1)− h(i)) + h(i)(h(−1)− h(1))

.

The sequential closure is a line in C if and only if |c| = |d|, and in this
case the point of least concentration is ∞.

Proof. Let g(θ) = h(eiθ). Thus g(θ) parametrizes T′ for θ ∈ [0, 2π] and eiθ

moves with a uniform speed around T as θ moves uniformly from 0 to 2π.
Then g(θ) moves around T′ at different speeds depending on how the length
g(θ) change with θ. Accordingly, we wish to compute the rate of change of
the length of g(θ) with respect to θ. We then wish to know when this value
is minimum and maximum. To this end put

l(θ) :=
∫ θ

0
|g′(θ)|dθ.

Accordingly, l′(θ) = |g′(θ)|. An easy computation gives

l′(θ) =
|ad− bc|

|c|2 + |d|2 + cdeiθ + cde−iθ
,
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and thus

l′′(θ) = i
|ad− bc|(cde−iθ − cdeiθ)

(|c|2 + |d|2 + cdeiθ + cde−iθ)2
.

Clearly l′′(θ) = 0 if and only if eiθ = ±|c|d/c|d|. Plugging these values into
h gives the points where the length of g(θ) is changing most and least with
respect to θ.

To compute the radius of T′, one computes l(2π)/2π:

l(2π)
2π

=
1
2π

∫ 2π

0

|ad− bc|
|c|2 + |d|2 + cdeiθ + cde−iθ

dθ

=
|ad− bc|

2πi

∮
dz

(c + dz)(d + cz)
,

where the contour on the last integral is the unit circle. A routine evaluation
by the residue theorem along with (3.12) gives the result. The center can
easily be computed as it is the circumcenter of the triangle formed by any
three points on the circle, for example, z1 = h(1), z2 = h(−1), and z3 = h(i).
The well-known formula for the circumcenter of three non-collinear points
in the complex plane

|z1|2(z2 − z3) + |z2|2(z3 − z1) + |z3|2(z1 − z2)
z1(z3 − z2) + z2(z1 − z3) + z3(z2 − z1)

thus gives the center of the sequential closure circle. The final conclusions of
the theorem follow immediately from the formulas for the points of highest
and lowest concentration. ¤
Corollary 5. If the sequential closure of the continued fraction in (3.6) is
a line in C, then the point of highest concentration of approximants in the
sequential closure is exactly

h(∞) + h(0)
2

=
1
2

(
a

c
+

b

d

)
,

the average of the first two modifications of (3.6) given in Corollary 3. More-
over, if the sequential closure is R, then the limiting probability density func-
tion for the approximants is given by

(3.36) p(x) =
h(∞)− h(0)

2πi(x− h(∞))(x− h(0))
.

Proof. If the sequential closure is a line, then Theorem 8 implies that |c| =
|d|. The same theorem also implies that the point of highest concentration
is given by

a
c |c|+ b

d |d|
|c|+ |d| .

When |c| = |d|, this simplifies to

1
2

(
a

c
+

b

d

)
,
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which is the average of h(∞) and h(0).
Suppose the sequential closure is R. Let the point x ∈ R be related to

the point z on the unit circle via

x = h(z) =
az + b

cz + d
,

and suppose z = eiθ. Let θ0 ∈ (0, 2π] be the angle for which z is mapped
to ∞ by h(z), and put z0 = eiθ0 . Let p(x) denote the probability density
function and let fi denote the i-th approximant of (3.6). Then for any
interval [a, b],

∫ b

a
p(x)dx = lim

n→∞
#{fi ∈ [a, b]}0≤i≤n

n

=
µ(h−1([a, b]))

2π
,

where, the second equality follows from remarks made in the discussion
preceding Theorem 8. In particular,

∫ x

−∞
p(t)dt =

length of the arc clockwise from z0 to z

2π
=

θ0 − θ

2π
.

Using the Fundamental Theorem of Calculus, one obtains

p(x) =
−1
2π

dθ

dx
=

−1
2πiz

dz

dx
=

ad− bc

2πi(cx− a)(dx− b)
.

The result now follows from the definition of h(z). ¤

It is also possible to derive convergent continued fractions which have the
same limit as the modified continued fractions in Theorem 7.

Corollary 6. Let α, β, {pn}, {qn}, h(z), and the matrix F be as in Theorem
7 and its proof. Then

(3.37) h(∞) = −β +
q1 + βp1

α + p1 +
(q1 − αβ)(q2 + βp2)

(α + p2)(q1 + βp1) + β(q2 + βp2)

+ K∞
n=3

(qn−1 − αβ)(qn + βpn)(qn−2 + βpn−2)
(α + pn)(qn−1 + βpn−1) + β(qn + βpn)

,

(3.38) h(0) = −α +
q1 + αp1

β + p1 +
(q1 − αβ)(q2 + αp2)

(β + p2)(q1 + αp1) + α(q2 + αp2)

+ K∞
n=3

(qn−1 − αβ)(qn + αpn)(qn−2 + αpn−2)
(β + pn)(qn−1 + αpn−1) + α(qn + αpn)

.

Let k ∈ Z and assume that α/β is not a root of unity. Set

ωn = − αn−k − βn−k

αn−k−1 − βn−k−1
, for n ≥ k′ := max{3, k + 3}.
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Then

(3.39) h(λk+1) =
−αβ + q1

α + β + p1 + · · · +
−αβ + qk′−1

α + β + pk′−1 +
−αβ + qk′

α + β + pk′ + ωk′

+
−αβ + qk′+1 − ωk′(α + β + pk′+1 + ωk′+1)

α + β + pk′+1 + ωk′+1 + K∞
n=k′+2

cn

dn
,

where

cn = (qn−1 − αβ)
−αβ + qn − ωn−1 (α + β + pn + ωn)

−αβ + qn−1 − ωn−2 (α + β + pn−1 + ωn−1)

dn = α + β + pn + ωn − ωn−2
−αβ + qn − ωn−1 (α + β + pn + ωn)

−αβ + qn−1 − ωn−2 (α + β + pn−1 + ωn−1)
.

Proof. The continued fraction (3.37) above is equivalent (after a sequence
of similarity transformations have been applied to simplify it) to the Bauer-
Muir transformation (see [19], page 76, for example) of the continued fraction

(3.40)
−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 +
−αβ + q3

α + β + p3 +
−αβ + q4

α + β + p4 + · · ·
with respect to the sequence ωn = −β, n ≥ 0. This in turn equals h(∞) by
(3.14).

The continued fraction at (3.38) is likewise equivalent to the Bauer-Muir
transformation of (3.40) with respect to the sequence ωn = −α, n ≥ 0. This
in turn equals h(0) by (3.15).

The continued fraction at (3.39) above is the Bauer-Muir transformation
of the continued fraction

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 +
−αβ + q3

α + β + p3 +
−αβ + q4

α + β + p4 + · · ·
with respect to the sequence {ωn}, where ωn = 0 for 0 ≤ n ≤ k′ − 1 and

ωn = − αn − βn

αn−1 − βn−1
, for n ≥ k′.

This in turn equals h(λk+1) by (3.16). ¤

An interesting special case of Theorem 7 occurs when α and β are distinct
m-th roots of unity (m ≥ 2). In this situation the continued fraction

−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 +
−αβ + q3

α + β + p3 +
−αβ + q4

α + β + p4 + · · ·
becomes limit periodic and the sequences of approximants in the m different
arithmetic progressions modulo m converge. The corollary below, which is
also proved in [7], is an easy consequence of Theorem 7.

Corollary 7. Let {pn}n≥1, {qn}n≥1 be complex sequences satisfying
∞∑

n=1

|pn| < ∞,
∞∑

n=1

|qn| < ∞.
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Let α and β be distinct roots of unity and let m be the least positive integer
such that αm = βm = 1 . Define

G :=
−αβ + q1

α + β + p1 +
−αβ + q2

α + β + p2 +
−αβ + q3

α + β + p3 + · · · .

Let {Pn/Qn}∞n=1 denote the sequence of approximants of G. If qn 6= αβ for
any n ≥ 1, then G does not converge. However, the sequences of numerators
and denominators in each of the m arithmetic progressions modulo m do
converge. More precisely, there exist complex numbers A0, . . . , Am−1 and
B0, . . . , Bm−1 such that, for 0 ≤ i < m,

lim
k→∞

Pm k+i = Ai, lim
k→∞

Qm k+i = Bi.(3.41)

Extend the sequences {Ai} and {Bi} over all integers by making them peri-
odic modulo m so that (3.41) continues to hold. Then for integers i,

(3.42) Ai =
(

A1 − βA0

α− β

)
αi +

(
αA0 −A1

α− β

)
βi,

and

(3.43) Bi =
(

B1 − βB0

α− β

)
αi +

(
αB0 −B1

α− β

)
βi.

Moreover,

(3.44) AiBj −AjBi = −(αβ)j+1 αi−j − βi−j

α− β

∞∏

n=1

(
1− qn

αβ

)
.

Put α := exp(2πia/m), β := exp(2πib/m), 0 ≤ a < b < m, and r :=
m/ gcd(b − a,m). Then G has r distinct limits in Ĉ which are given by
Aj/Bj, 1 ≤ j ≤ r. Finally, for k ≥ 0 and 1 ≤ j ≤ r,

Aj+kr

Bj+kr
=

Aj

Bj
.

Remark: We refer to the number r in the corollary as the rank of the
continued fraction.

Proof. Let M be as in Theorem 7. It follows from (3.23) that

(3.45) M j =




α1+j − β1+j

α− β

αj − βj

α− β

−α β
(
αj − βj

)

α− β

−αj β + α βj

α− β




,

and thus that

Mm =
(

1 0
0 1

)
, M j 6=

(
1 0
0 1

)
, 1 ≤ j < m.
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Let the matrix F be as in Theorem 7. From the second equality at (3.29),
we have that

(3.46) lim
n→∞




Pmn+i Pmn+i−1

Qmn+i Qmn+i−1


 = lim

n→∞F Mmn+i = F M i.

This proves (3.41).
Now let Ai := limn→∞ Pmn+i, and Bi := limn→∞Qmn+i. Notice by

definition that the sequences {Ai} and {Bi} are periodic modulo m. It
easily follows from (3.46) that




Ai Ai−1

Bi Bi−1


 =




Aj Aj−1

Bj Bj−1


M i−j .

(3.45) also gives that

(3.47) Ai = Aj
α1+i−j − β1+i−j

α− β
−Aj−1

α β
(
αi−j − βi−j

)

α− β
,

and

(3.48) Bi = Bj
α1+i−j − β1+i−j

α− β
−Bj−1

α β
(
αi−j − βi−j

)

α− β
.

Thus

AiBj −AjBi =
(Aj B−1+j −A−1+j Bj) α β

(
αi−j − βi−j

)

α− β
.

Equations (3.42) and (3.43) follow from (3.47) and (3.48) by setting j = 1.
(3.44) follows after applying the determinant formula

AjBj−1 −Aj−1Bj = − lim
k→∞

mk+j∏

n=1

(αβ − qn)

= −(αβ)j
∞∏

n=1

(
1− qn

αβ

)
.

Since
∑∞

j=1 |qj | converges to a finite value, the infinite product on the right
side converges.

For the continued fraction to converge, AiBi−1 −Ai−1Bi = 0 is required.
However, (3.44) shows that this is not the case. ¤

3.1. Computing subsequences of approximants converging to any
point on the sequential closure. We recall one of the main conclusions
of Theorem 7. Namely, that if

∑ |pn| < ∞,
∑ |qn| < ∞, |α| = |β| = 1 and

λ := α/β is not a root of unity, then the n-th approximant of K(−αβ +
qn)/(αβ + pn), fn, satisfies

fn ∼ h(λn+1) :=
aλn+1 + b

cλn+1 + d
,
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for some a, b, c and d ∈ C. Thus the approximants densely approach a
circle in the complex plane and a natural question is the following: is it
possible explicitly to determine a subsequence of approximants converging
to h(e2πiθ), for any θ ∈ [0, 1)? Using the regular continued fraction for θ
this question is answered in the affirmative with the following algorithm.

Let λ = e2πiγ , γ ∈ (0, 1) and let {an/bn} denote the sequence of even
indexed approximants in the regular continued fraction expansion of γ. Since
λ is not a root of unity, it follows that γ is irrational. For real z, let {z}
denote the fractional part of z. Thus {z} = z − bzc. Let θ ∈ [0, 1) and, for
n ≥ 1, let rn denote the least positive integer satisfying 0 ≤ rn/bn−θ < 1/bn.
For any positive integer x,

xγ − θ = x

(
γ − an

bn

)
+

xan − rn

bn
+

(
rn

bn
− θ

)
.

Since gcd(an, bn) = 1, there exists a non-negative integer x < bn satisfying
anx ≡ rn (mod bn). Let kn be this solution. Since (ankn − rn)/bn ∈ Z, it
follows that

{knλ− θ} =
{

kn

(
γ − an

bn

)
+

(
rn

bn
− θ

)}
.

If the sequence {kn} is unbounded, let {jn} be a strictly increasing sub-
sequence. If {kn} is bounded, replace each kn by kn + bn and once again
let {jn} be a strictly increasing subsequence. From the theory of regular
continued fractions we have that in either case

kn

∣∣∣∣γ −
an

bn

∣∣∣∣ < (kn + bn)
∣∣∣∣γ −

an

bn

∣∣∣∣ <
2
bn

,

and thus that
{jnγ − θ} → 0.

It now follows that fjn−1 ∼ h(γjn) → h(e2πiθ). Thus

lim
n→∞ fjn−1 = h(e2πiθ).

Note that for rational λ = m/n, one takes approximants in arithmetic
progressions modulo n to obtain the subsequences tending to the discrete
sequential closure.

Finally, we briefly compare our results with a theorem of Scott and Wall
[26, 35].

Consider the continued fraction

(3.49)
1
b1 +

1
b2 +

1
b3 + · · · .

Theorem 9 (Scott and Wall). If the series
∑ |b2p+1| and

∑ |b2p+1s
2
p|, where

sp = b2 + b4 + · · · + b2p, converge, and lim inf |sp| < ∞, then the continued
fraction (3.49) diverges. The sequence of its odd numerator and denomina-
tors convergents, {A2p+1} and {B2p+1}, converge to finite limits F1 and G1,
respectively. Moreover, if s is a finite limit point of the sequence {sp}, and
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lim sp = s as p tends to ∞ over a certain sequence P of indices, then A2p

and B2p converge to finite limits F (s) and G(s), respectively as p tends to
∞ over P , and

F1G(s)−G1F (s) = 1.
If the sequence {sp} has two different finite limit points s and t, then

F (s)G(t)− F (t)G(s) = t− s.

Finally, corresponding to values of p for which lim sp = ∞, we have

lim
A2p

B2p
=

F1

G1
,

finite or infinite.

As far as we know, this theorem is closest in theme to the idea of this
paper. On the one hand it makes no assumptions about the size of the
sequential closure. On the other hand, it retains much of the structure
of the Stern-Stolz theorem, in as much as it focuses on the parity of the
index of the approximants. To understand sequential closures in general, all
subsequences need to be considered. At any rate, Theorem 9 does not focus
on the sequential closure, but rather on loosening the l1 assumption to the
subsequence odd indexed elements of the continued fraction.

One naturally wonders just how effectively the parameters a, b, c, and d
in Theorem 7 can be computed. In the next section, a particular contin-
ued fraction is considered which generalizes one of Ramanujan’s, as well as
the 3/2 continued fraction given in the introduction, and these parameters
explicitly are computed as well-behaved meromorphic functions of the vari-
ables in the continued fraction. Thus, for the q-continued fraction studied
in the next section, the parameters can not only be computed, but also have
nice formulas.

4. A generalization of a Ramanujan Continued Fraction

In this section we study the non-trivial case of Theorem 7 in which the
perturbing sequences pn and qn are geometric progressions tending to 0. The
inspiration for this is the beautiful continued fraction (1.3) of Ramanujan.
Our theorem is interesting in that it covers both the loxodromic (convergent)
as well as the elliptic (divergent) cases simultaneously. Another point of this
section is that it shows how Theorem 7 gives another approach evaluating
continued fractions. In fact it is interesting to compare the proof of Theorem
10 to the proofs of special cases given previously by different methods, see
[1, 7, 13].

We first recall that a 1φ1 basic hypergeometric series is defined for |q| < 1
by

1φ1(a; b; q, x) =
∞∑

n=0

(a; q)n

(q; q)n(b; q)n
(−1)nqn(n−1)/2xn.

For the q-product notation used here, please see the introduction.
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Theorem 10. Let |q| < 1 and α 6= β and put λ = α/β. Then,

(4.1)
−αβ + xq

α + β + yq +
−αβ + xq2

α + β + yq2 +
−αβ + xq3

α + β + yq3 + · · · +
−αβ + xqn

α + β + yqn
∼

(xq
α − β

)
1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)
λn+1 −

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

)
λn+1 − 1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

) .

Finally, assuming |α| = |β| = 1, let the order of λ in T be m 6= 1. Then,

(4.2) s.c.

( −αβ + xq

α + β + yq +
−αβ + xq2

α + β + yq2 +
−αβ + xq3

α + β + yq3 + · · ·
)

=

(xq
α − β

)
1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)
Tm −

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

)
Tm − 1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

) .

Note that when |α| 6= |β|, (4.1) shows that the continued fraction con-
verges and provides its limit. It is also in agreement with remark (v) follow-
ing Theorem 7. For this theorem, we have not provided the error term for
the difference between the left and right hand sides of (4.1). But Theorem 7
implies that in the elliptic case (when |α| = |β|), this error is O(qn). In the
loxodromic case (|α| 6= |β|), the error term can be computed from Corollary
11 in Chapter IV of [19].

Before preceeding with the proof, we note a couple of corollaries. Theorem
10 generalizes many well-known continued fraction evaluations. For exam-
ple, setting α = y = 0 and β = 1, dividing by x, changing x to x/q, taking
reciprocals, and letting n →∞ in (4.1) yields the well-known evaluation of
the Rogers-Ramanujan continued fraction:

Corollary 8. For x, q ∈ C and |q| < 1,

1 +
xq

1 +
xq2

1 + · · · =

∑
m≥0

qm2
xm

(q)m∑
m≥0

qm2+mxm

(q)m

.

The next corollary generalizes Ramanujan’s continued fraction (1.3) with
three limits given in the introduction.

Corollary 9. Let ω be a primitive m-th root of unity and let ω̄ = 1/ω. Let
1 ≤ i ≤ m. Then

(4.3) lim
k→∞

1
ω + ω̄ + q −

1
ω + ω̄ + q2 − · · ·

1
ω + ω̄ + qmk+i

=
ω1−i

1φ1

(
0; qω2; q,−q2ω

)− ωi−1
1φ1

(
0; q/ω2; q,−q2/ω

)

ω−i
1φ1 (0; qω2; q,−qω)− ωi

1φ1 (0; q/ω2; q,−q/ω)
.

Proof. This is immediate from (4.1), upon setting x = 0, y = 1, α = ω,
β = ω−1, n = mk + i, then noting that ωmk = 1. ¤
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Remark: This result in its present form first appeared in [13]. A different
proof was given in our paper [7].

We now continue with the proof of Theorem 10. Following the proof,
other special cases are studied, including the 3/2 continued fraction from
the introduction.

Proof. First consider the case |α| = |β|. It is convenient to work with the
related continued fraction

(4.4)
1
1 +

−αβ + xq

α + β + yq +
−αβ + xq2

α + β + yq2 +
−αβ + xq3

α + β + yq3 + · · · .

Let An and Bn denote the n-th numerator convergent and n-th denominator
convergent, respectively, of this continued fraction.

Let M be defined by (3.22) and recall from (3.23) that

(4.5) M =
(−β−1 −α−1

1 1

) (
α 0
0 β

)(−β−1 −α−1

1 1

)−1

.

Note that by (3.1), (4.4) corresponds to the matrix product

Un :=
(

An An−1

Bn Bn−1

)
=

(
0 1
1 0

)(
1 1
1 0

) n−1∏

j=1

(
α + β + yqj 1
−αβ + xqj 0

)
.

Put Fn = UnM−n. By Theorem 7, there exists a matrix F defined by
F = limn→∞ Fn. Following the ideas of Theorem 7, define the sequences Gn

and Hn by

Gn =
Un+1 − βUn

αn(α− β)
, Hn =

Un+1 − αUn

βn(β − α)
.(4.6)

From (3.11) one can see that limn→∞Gn and limn→∞Hn exist. It is clear
that

(4.7) Un = Gnαn + Hnβn.

We next determine limn→∞Gn. For n ≥ 1, let

Dn =
(

α + β + yqn 1
−αβ + xqn 0

)
.

Since Un+1 = UnDn,

Gn+1 =
Un+1(Dn+1 − βI)

αn+1(α− β)
=

UnDn(Dn+1 − βI)
αn+1(α− β)

= α−1Gn(Dn − βI)−1Dn(Dn+1 − βI)

= Gn

(
1 + α−1βq + α−1yqn+1 α−1

−β q + α−1xqn+1 0

)
.

Let (
an bn

cn dn

)
:= Gn.
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Then

an+1 = (1 + α−1βq + α−1yqn+1)an + (−β q + α−1xqn+1)bn(4.8)

= (1 + α−1βq + α−1yqn+1)an + α−1(−β q + α−1xqn+1)an−1.

We use the generating function F (t) :=
∑∞

n=1 antn to find limn→∞ an. Mul-
tiply (4.8) by tn+1 and sum over n ≥ 1 to get

F (t)− a1t = (1 + α−1β q)tF (t) + α−1q ytF (tq)− α−1β q t2(F (t) + a0)

+ α−2xt2q2(F (tq) + a0),

or

(4.9) F (t) =
t(a1 + (xq/α− β)a0qt/α)

(1− t)(1− βqt/α)
+

qyt/α(1 + xtq/yα)
(1− t)(1− βqt/α)

F (tq).

Upon iteration (note that F (0) = 0) this yields
(4.10)

F (t) =
1
q

∞∑

n=1

tn(y/α)n−1qn(n+1)/2(−xqt/yα)n−1(a1 + a0(xq/α− β)tqn/α)
(t)n(βqt/α)n

.

Since |q| < 1, this series is convergent and satisfies (4.9). Thus

(4.11) lim
n→∞ an = lim

t→1−
(1− t)F (t)

=
1
q

∞∑

n=1

(y/α)n−1qn(n+1)/2(−xq/yα)n−1(a1 + a0(xq/α− β)qn/α)
(q)n−1(βq/α)n

.

We next find a1 and a0. From (4.4),

U0 =
(

0 1
1 0

)
,

U1 =
(

0 1
1 0

)(
1 1
1 0

)
=

(
1 0
1 1

)
,

U2 =
(

0 1
1 0

)(
1 1
1 0

)(
α + β + yq 1
−αβ + xq 0

)
=

(
yq + α + β 1

xq + yq + α + β − αβ 1

)
.

From (4.6),

G0 =
U1 − βU0

α− β
=

1
α− β

(
1 −β

1− β 1

)
,

G1 =
U2 − βU1

α(α− β)
=

1
α(α− β)

(
yq + α 1

xq + yq + α− αβ 1− β

)
.

Thus,

a0 =
1

α− β
, a1 =

yq + α

α(α− β)
,
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and

lim
n→∞ an =

1
q(α− β)

∞∑

n=1

( y
α

)n−1
qn(n+1)/2

(
−xq
yα

)
n−1

(
1 + qy

α +
(xq

α − β
) qn

α

)

(q)n−1(βq/α)n

=
1

q(α− β)

∞∑

n=1

(y/α)n−1qn(n+1)/2(−xq/yα)n−1

(q)n−1(βq/α)n−1

+
1

(α− β)

∞∑

n=1

(y/α)nqn(n+1)/2(−xq/yα)n

(q)n−1(βq/α)n

=
1

(α− β)

∞∑

n=0

(y/α)nqn(n+3)/2(−xq/yα)n

(q)n(βq/α)n

+
1

(α− β)

∞∑

n=1

(y/α)nqn(n+1)/2(−xq/yα)n(1− qn)
(q)n(βq/α)n

=
1

(α− β)

∞∑

n=0

(y/α)nqn(n+1)/2(−xq/yα)n

(q)n(βq/α)n

=
1

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
.

Since bn = α−1 an−1,

lim
n→∞ bn =

α−1

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
.

The sequence {cn} satisfies the same recurrence as {an}, with

c0 =
1− β

α− β
, c1 =

xq + yq + α− αβ

α(α− β)
,

and thus, by reasoning similar to that above,

lim
n→∞ cn =

1
q(α− β)

×
∞∑

n=1

( y
α

)n−1
qn(n+1)/2

(
−xq
yα

)
n−1

(
1− β + qx+qy

α + (1− β)
(xq

α − β
) qn

α

)

(q)n−1(βq/α)n

=
1− β

(α− β)

∞∑

n=0

(y/α)nqn(n+1)/2(−xq/yα)n

(q)n(βq/α)n

+
q(x + βy)

(α− β)(α− βq)

∞∑

n=0

(yq/α)nqn(n+1)/2(−xq/yα)n

(q)n(βq2/α)n

=
1− β

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
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+
q(x + βy)

(α− β)(α− βq) 1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)
.

Also, dn = α−1 cn−1, and so

lim
n→∞ dn =

α−1(1− β)
α− β

1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)

+
α−1q(x + βy)

(α− β)(α− βq) 1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)
.

Thus,

lim
n→∞Gn :=

(
g1,1 g1,2

g2,1 g2,2

)
,

where

g1,1 =
1

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
,

g1,2 =
α−1

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
,

g2,1 =
1− β

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)

+
q(x + βy)

(α− β)(α− βq) 1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)

g2,2 =
α−1(1− β)

α− β
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)

+
α−1q(x + βy)

(α− β)(α− βq) 1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)
.

From (4.6) Hn can be found from Gn by interchanging α and β, so that

lim
n→∞Hn :=

(
h1,1 h1,2

h2,1 h2,2

)
,
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where

h1,1 =
1

β − α
1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)
,

h1,2 =
β−1

β − α
1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)
,

h2,1 =
1− α

β − α
1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)

+
q(x + αy)

(β − α)(β − αq) 1φ1

(−xq

yβ
;
αq2

β
; q,

−yq2

β

)

h2,2 =
β−1(1− α)

β − α
1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)

+
β−1q(x + αy)

(β − α)(β − αq) 1φ1

(−xq

yβ
;
αq2

β
; q,

−yq2

β

)
.

Thus (4.7) gives

lim
n→∞UnM−n = lim

n→∞(Gnαn + Hnβn)M−n

(4.12)

= lim
n→∞(Gnαn + Hnβn)

(−β−1 −α−1

1 1

)(
α−n 0
0 β−n

)(−αβ −β
αβ α

)
1

α− β

=
(

A A′
B B′

)
1

α− β
,

where

A = 1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
− 1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)

A′ =
1
α

1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
− 1

β
1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)

B = (1− β) 1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
+

q(x + βy)
α− βq

1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)

− (1− α) 1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)
− q(x + αy)

β − αq
1φ1

(−xq

yβ
;
αq2

β
; q,

−yq2

β

)

B′ =
1− β

α
1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)
+

q(x + βy)
α(α− βq) 1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)

− 1− α

β
1φ1

(−xq

yβ
;
αq

β
; q,

−yq

β

)
− q(x + αy)

β(β − αq) 1φ1

(−xq

yβ
;
αq2

β
; q,

−yq2

β

)
.

If we let Cn and En denote the n-th numerator convergent and denominator
convergent, respectively of the continued fraction

−αβ + xq

α + β + yq +
−αβ + xq2

α + β + yq2 +
−αβ + xq3

α + β + yq3 + · · · ,
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and define

Vn :=
(

Cn Cn−1

En En−1

)
,

it can be seen that

Vn =
(

0 1
1 0

)(
0 1
1 −1

) (
0 1
1 0

)
Un+1 =

(−1 1
1 0

)
Un+1.

If the matrix F is defined by

F :=
(−1 1

1 0

)(
A A′
B B′

)
M

1
α− β

(4.13)

=
(

(α + β)(B −A) + αβ(A′ −B′) B −A
(α + β)A− αβA′ A

)
1

α− β

and the linear fractional transformation h(z) is as defined following (3.30),
we get that

(4.14) h(z) =
(xq

α − β
)

1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)
z −

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

)
z − 1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

) ,

and (4.1) now follows in the case |α| = |β|. (4.2) follows immediately from
(4.1) and the remarks at the end of the introduction.

Note that we have used the elementary identity

q(x + βy)
α− βq

1φ1

(−xq

yα
;
βq2

α
; q,

−yq2

α

)
− β 1φ1

(−xq

yα
;
βq

α
; q,

−yq

α

)

=
(xq

a
− β

)
1φ1

(−xq

yα
;
βq

α
; q,

−yq2

α

)
,

and similarly with α and β interchanged.
Now assume that |α| 6= |β|. First note that the difference equation

(4.15) Yn = (1 + λ− zqn)Yn+1 + (−λ + azqn)Yn+2

has a solution Yn = 1φ1(a; λq; q, zqn). (This can be checked simply by
equating coefficients.) By Auric’s theorem, see Corollary 11, Chapter IV of
[19], this solution of (4.15) is minimal if |λ| < 1, and thus for |λ| < 1,

1φ1(a; λq; q, z)
1φ1(a; λq; q, zq)

= 1 + λ− z +
−λ + az

1 + λ− zq +
−λ + azq

1 + λ− zq2 + · · · .

Putting a = −β−1xy−1q, λ = α/β, and z = −β−1yq, taking reciprocals,
multiplying both sides by −α + xq/β and applying a simple equivalence
transformation to the continued fraction, yields that for |α| < |β|,

(4.16)

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

) =
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−αβ + xq

α + β + yq +
−αβ + xq2

α + β + yq2 +
−αβ + xq3

α + β + yq3 + · · · .

For |α| > |β|, symmetry gives that
(xq

α − α
)

1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

) =

−αβ + xq

α + β + yq +
−αβ + xq2

α + β + yq2 +
−αβ + xq3

α + β + yq3 + · · · .

The conclusion follows by noting that for |α| < |β|,
(xq

α − β
)

1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)
λn+1 −

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

)
λn+1 − 1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

)

∼

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

) ,

while for |α| > |β|,
(xq

α − β
)

1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)
λn+1 −

(
xq
β − α

)
1φ1

(
−xq
yβ ; αq

β ; q, −yq2

β

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

)
λn+1 − 1φ1

(
−xq
yβ ; αq

β ; q, −yq
β

)

∼
(xq

α − β
)

1φ1

(
−xq
yα ; βq

α ; q, −yq2

α

)

1φ1

(
−xq
yα ; βq

α ; q, −yq
α

) .

¤
Consider the special case of the continued fraction in the theorem in which

x = 0 and y = 1. Then

(4.17) h(z) =
−β 1φ1

(
0; βq

α ; q, −q2

α

)
z + α 1φ1

(
0; αq

β ; q, −q2

β

)

1φ1

(
0; βq

α ; q, −q
α

)
z − 1φ1

(
0; αq

β ; q, −q
β

) ,

and thus that the sequential closure of the continued fraction

G(α, β, q) :=
1
1 −

αβ

α + β + q −
αβ

α + β + q2 −
αβ

α + β + q3 · · ·
is on the circle defined by

f(z) =
1

1 +
−β 1φ1

(
0; βq

α ; q, −q2

α

)
z + α 1φ1

(
0; αq

β ; q, −q2

β

)

1φ1

(
0; βq

α ; q, −q
α

)
z − 1φ1

(
0; αq

β ; q, −q
β

)
.
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Remark: Unless stated otherwise, we continue to restrict to the special case
x = 0 and y = 1 for the remainder of this section, and continue to make use
of the simplified expression for h(z) given by (4.17).

Figure 1 shows the first 3500 approximants of G(exp(ı
√

7), exp(ı
√

5), 0.1)
and the corresponding circle f(T) predicted by the theory. The larger dots
show the points, again predicted by the theory, of highest and lowest con-
centration of approximants. Note that the error, εn = O(10−n) and experi-
mentally, minz∈T |An/Bn − f(z)| ≈ 10−n in agreement with the theory.

0.2 0.4 0.6 0.8 1 1.2

-1

-0.8

-0.6

-0.4

-0.2

Figure 1. The convergence of G(exp(ı
√

7), exp(ı
√

5), 0.1)

Figure 2 shows the first 2700 approximants of G(exp(ı
√

7), exp(ı(
√

7 +
2π/11)), 0.1) and its convergence to the eleven limit points f(2kπ/11), where
f(z) is the associated linear fractional transformation, together with part of
the circle f(T) . The error is in agreement with theory: |An/Bn − f(2(n +
1)π/11))| ≈ 10−n. This rapid convergence is the reason that the graph
appears to show only twelve approximants (the zeroth approximant is a
little removed from all of the limit points).

It was shown in the introduction that the sequence of approximants of
the continued fraction 3/2 + K∞

n=1
−1
3/2 is dense in R. A natural question is:

what is the point of highest concentration of approximants? We can now
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Figure 2. The convergence of G(exp(ı
√

7), exp(ı(
√

7 + 2π/11)), 0.1)

answer this question. We can view the continued fraction 3/2 + K∞
n=1

−1
3/2 as

α + β + K∞
n=1

−αβ

α + β + qn
,

with α = 3/4 + i
√

7/4, β = 3/4− i
√

7/4 and q = 0. By Theorem 10

s.c.

(
α + β + K∞

n=1

−αβ

α + β + qn

)
= α + β − βT∞ − α

T∞ − 1
=

αT∞ − β

T∞ − 1
.

Thus a = α, b = −β, c = 1, and d = −1. From Corollary 5, the point of
highest concentration of approximants is

1
2

(
a

c
+

b

d

)
=

1
2

(
α

1
+
−β

−1

)
=

α + β

2
=

3
4
,

and the limiting probability density function is:

p(x) =
√

7
2π(2x2 − 3x + 2)

.

Figure 3 shows the distribution of the first 3000 approximants of 3/2 +
K∞

n=1
−1
3/2 (with about 300 extreme values omitted and scaled to have area

equal to 1), together with the point x = 3/4 of predicted highest concen-
tration and the limiting probability density function p(x) =

√
7/(2π(2x2 −

3x + 2)). Once again, theory and experiment are in complete agreement.
Corollary 6 is now applied to obtain convergent continued fractions. This

corollary could be applied to the more general continued fraction in Theorem
10, but for the sake of simplicity and ease of notation we restrict once again
to the special case where x = 0 and y = 1. We also revert to series notation
for ease of understanding.

Corollary 10. Let |q| < 1 and let α and β be distinct points on the unit
circle such that α/β is not a root of unity.
(i) Set

ωn = − αn − βn

αn−1 − βn−1
.

Then

(4.18)
−αβ

α + β + q +
−αβ

α + β + q2 +
−αβ

α + β + q3 + ω3 +
−ω3q

4

α + β + q4 + ω4

+ K∞
n=5

−qαβ ωn−1/ωn−2

qn − ωn−1q + α + β + ωn
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Figure 3. The distribution of the first 3000 approximants of
3/2 + K∞

n=1
−1
3/2 , with the point x = 3/4 of predicted highest

concentration and the limiting probability density function
p(x) =

√
7/(2π(2x2 − 3x + 2)).

= −αβ

∞∑

n=0

α−nqn(n+3)/2

(q; q)n(βq/α; q)n
−

∞∑

n=0

β−nqn(n+3)/2

(q; q)n(αq/β; q)n

α
∞∑

n=0

α−nqn(n+1)/2

(q; q)n(βq/α; q)n
− β

∞∑

n=0

β−nqn(n+1)/2

(q; q)n(αq/β; q)n

.

(ii) Set

ωn = −αn+1 − βn+1

αn − βn
.

Then

(4.19)
−αβ

α + β + q +
−αβ

α + β + q2 +
−αβ

α + β + q3 + ω3 +
−ω3q

4

α + β + q4 + ω4

+ K∞
n=5

−qαβ ωn−1/ωn−2

qn − ωn−1q + α + β + ωn

= −
β

∞∑

n=0

α−nqn(n+3)/2

(q; q)n(βq/α; q)n
− α

∞∑

n=0

β−nqn(n+3)/2

(q; q)n(αq/β; q)n

∞∑

n=0

α−nqn(n+1)/2

(q; q)n(βq/α; q)n
−

∞∑

n=0

β−nqn(n+1)/2

(q; q)n(αq/β; q)n

.
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(iii)

(4.20) − β +
βq

α + q + K∞
n=2

−αβq

qn + α + βq
= −β

∞∑

n=0

α−nqn(n+3)/2

(q; q)n(βq/α; q)n

∞∑

n=0

α−nqn(n+1)/2

(q; q)n(βq/α; q)n

.

Proof. (i) In Corollary 6, let k = 0, qn = 0 and pn = qn, and then, for n ≥ 5,
cn simplifies to −qαβωn−1/ωn−2 and dn simplifies to α + β + qn + ωn −
ωn−1q. The fourth partial numerator similarly simplifies to −ω3q

4. Thus
this continued fraction converges to h(λ) and it can be seen from (4.17) that
h(λ) has the valued claimed for the limit of the continued fraction.

The proof of (ii) is similar, except we take k = −1 in Corollary 6 and
noting from (4.17) that h(1) has the valued claimed for the limit of the
continued fraction.

Part (iii) follows from (3.37), after noting from (4.17) that h(∞) has the
valued claimed for the limit of the continued fraction. ¤

In some cases the infinite series in the theorem above can be expressed as
infinite products.

Corollary 11. Let |q| < 1. Then

(4.21) 1− q

1 + q + K∞
n=2

q2

1− q2 + q2n−1
=

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

Proof. In (4.20), replace q by q2, set β = −q and α = q and simplify the
resulting continued fraction by applying a sequence of similarity transfor-
mations.

For the right side we use two identities due to Rogers [25] (see also [30]
and [29], identities A.16 and A.20):

∞∑

n=0

qn(n+2)

(q4; q4)n
=

1
(q2; q5)∞(q3; q5)∞(−q2; q2)∞

,

∞∑

n=0

qn2

(q4; q4)n
=

1
(q; q5)∞(q4; q5)∞(−q2; q2)∞

.

Finally, cancel a factor of q on each side ¤
Remark: The continued fraction above is clearly a transformed version

of the Rogers-Ramanujan continued fraction which converges to the same
limit as the original continued fraction.

4.1. Example: analytic behavior of K −1
a+qn for |q| < 1. The results of

this section provide the opportunity to examine in detail, for |q| < 1, the
relationship between the continued fraction

(4.22) K
−1

a + qn
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and its series equivalents. We begin with some remarks about the conver-
gence of the continued fraction (4.22) for |q| < 1.

First of all, for |q| < 1, (4.22) is a limit periodic continued fraction. Now,
depending on the complex value of a, (4.22) can be of either parabolic,
elliptic, or loxodromic type, see [19] for the definitions. More specifically,
it is easy to check that (4.22) is of parabolic type if and only if a = ±2.
Theorem 32 (with p = 0) of chapter III of [19] gives that in this case the
continued fraction converges. In fact we will give the limit of the continued
fraction when a = ±2 below.

A more involved computation yields that (4.22) is of elliptic type if and
only if a is both real and satisfies −2 < a < 2. It is easy to see that this
is equivalent to a = ω + ω with ω on the unit circle and ω 6= ±1, which
is exactly the β = α case of Theorem 10. The continued fraction (4.22) is
loxodromic in all other cases and hence converges by Theorem 28, chapter
III of [19]. This is, of course, the same as saying that its sequential closure
consists of a single point.

Note that the |α| 6= |β| case of Theorem 10 is in agreement with remark
(v) following Theorem 7. In this case we are able to conclude that the
constants a, b, c, and d still make sense. Putting β = α−1 in Theorem 10
thus gives detailed asymptotics for the approximants when a 6= 2.

We now compute the limit of K −1
a+qn in the loxodromic and parabolic

cases. Define

H(a′, b, c, d, q) :=
1
1 +

−a′b + cq

a′ + b + dq +
−a′b + cq2

a′ + b + dq2 +

· · · +
−a′b + cqn

a′ + b + dqn + · · · .

Let An denote the n-th numerator convergent of this continued fraction and
let Bn denote its n-th denominator convergent.

In Theorem 2.2 in [8], it was shown that if |a′/b| < 1 and |q| < 1, then

lim
N→∞

AN

bN−1
=

∞∑

n=0

(d/b)nqn(n+1)/2(−cq/db)n

(a′/b)n+1(q)n
,(4.23)

lim
N→∞

BN −AN

bN−1
= (cq/b− a′)

∞∑

n=0

(d/b)nqn(n+3)/2(−cq/db)n

(a′/b)n+1(q)n
,

and thus that

1
H(a′, b, c, d, q)

− 1 =

(cq/b− a′)
∞∑

n=0

(d/b)nqn(n+3)/2(−cq/db)n

(a′/b)n+1(q)n

∞∑

n=0

(d/b)nqn(n+1)/2(−cq/db)n

(a′/b)n+1(q)n

.
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Notice that this equation is the same as (4.16). Indeed, we could have
finished the proof of Theorem 10 using these results from [8], but the self-
contained method used seemed preferable.

Let |a| > 2 and set b = (a +
√

a2 − 4)/2 if a > 2 and b = (a−√a2 − 4)/2
if a < −2, a′ = 1/b, d = 1 and c = 0. It is immediate that

K∞
n=1

−1
a + qn

= −1
b

∞∑

n=0

(1/b)nqn(n+3)/2

(1/b2)n+1(q)n

∞∑

n=0

(1/b)nqn(n+1)/2

(1/b2)n+1(q)n

= −1
b

∞∑

n=0

(1/b)nqn(n+3)/2

(q/b2)n(q)n

∞∑

n=0

(1/b)nqn(n+1)/2

(q/b2)n(q)n

.

This gives the limit of the continued fraction in the loxodromic case.
To compute the limit in the parabolic case, we need the following result.

Lemma 1. If s(n) =
∑

k≥0 fk(n) is a finite sum (or a convergent series)
for each n, limn→∞ fk(n) = fk, |fk(n)| ≤ Mk, and

∑∞
k=0 Mk < ∞, then

lim
n→∞ s(n) =

∞∑

k=0

fk.

This result follows as a consequence of the Weierstrass M -test and is also
known as Tannery’s Theorem (see [11], for example).

Let
G(n) := K∞

k=1

−1
2 + 1/(n2 + n) + qk

Let Ck,n denote the k-th numerator convergent of G(n) and let Dk,n denote
its k-th numerator convergent. From (4.23), with b = (n + 1)/n, a′ = 1/b,
d = 1 and c = 0,

Cn := lim
k→∞

Ck,n

(1 + 1/n)k−1
= − 1

1 + 1/n

∞∑

n=0

(n/(n + 1))kqk(k+3)/2

(n2/(n + 1)2)k+1(q)k
,

Dn := lim
k→∞

Dk,n

(1 + 1/n)k−1
=

∞∑

n=0

(n/(n + 1))kqk(k+1)/2

(n2/(n + 1)2)k+1(q)k
.

Define

s1(n) =
1 + 2n

(1 + n)2
Cn,

s2(n) =
1 + 2n

(1 + n)2
Dn.

Next,

K∞
k=1

−1
2 + qk

= lim
n→∞K∞

k=1

−1
2 + 1/(n2 + n) + qk

= lim
n→∞

Cn

Dn
= lim

n→∞
s1(n)
s2(n)

.

Since s1(n) =
∑

k≥0 fk(n), where

fk(n) = − 1
1 + 1/n

(n/(n + 1))kqk(k+3)/2

(n2q/(n + 1)2; q)k(q; q)k
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and

lim
n→∞ fk(n) = −qk(k+3)/2

(q; q)2k
=: fk,

|fk(n)| ≤ 2
|q|k(k+3)/2

(|q|; |q|)2k
=: Mk,

∑

k≥0

Mk =
∑

k≥0

2
|q|k(k+3)/2

(|q|; |q|)2k
< ∞,

it follows that

lim
n→∞ s1(n) =

∑

k≥0

fk = −
∑

k≥0

qk(k+3)/2

(q; q)2k
.

Likewise

lim
n→∞ s2(n) =

∑

k≥0

qk(k+1)/2

(q; q)2k
,

and so

K∞
n=1

−1
2 + qn

= −

∞∑

n=0

qn(n+3)/2

(q; q)2n
∞∑

n=0

qn(n+1)/2

(q; q)2n

.

By a similar argument, we get that

K∞
n=1

−1
−2 + qn

=

∞∑

n=0

(−1)nqn(n+3)/2

(q; q)2n
∞∑

n=0

(−1)nqn(n+1)/2

(q; q)2n

.

5. Applications to (r, s)-matrix continued fractions

In [18], the authors define a generalization of continued fractions called
(r, s)-matrix continued fractions. This generalization unifies a number of
generalizations of continued fractions including “generalized (vector valued)
continued fractions” and “G-continued fractions”, see [19] for terminology.

Here we show that our results apply to limit periodic (r, s)-matrix con-
tinued fractions with eigenvalues of equal magnitude, giving estimates for
the asymptotics of their approximants so that their sequential closures can
be determined.

For consistency we closely follow the notation used in [18] to define (r, s)-
matrix continued fractions. Let Ms,r(C) denote the set of s × r matrices
over the complex numbers. Let θk be a sequence of n × n matrices over
C. Assume that r + s = n. A (r, s)-matrix continued fraction is associated
with a recurrence system of the form Yk = Yk−1θk. The continued fraction
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is defined by its sequence of approximants. These are sequences of s × r
matrices defined in the following manner.

Define the function f : D ∈ Mn(C) → Ms,r(C) by

(5.1) f(D) = B−1A,

where B is the s× s submatrix consisting of the last s elements from both
the rows and columns of D, and A is the s× r submatrix consisting of the
first r elements from the last s rows of D.

Then the k-th approximant of the (r, s)-matrix continued fraction associ-
ated with the sequence θk is defined to be

(5.2) sk := f(θkθk−1 · · · θ2θ1).

To apply Theorem 4 to this situation, we endow Ms×r(C) with a metric by
letting the distance function for two such matrices be the maximum absolute
value of the respective differences of corresponding pairs of elements. Then,
providing that the f is continuous, our theorem can be applied. (Note that
f will be continuous providing that it exists, since the inverse function of a
matrix is continuous when it exists.)

Let limk→∞ θk = θ, for some θ ∈ Mn(C). Then the recurrence system is
said to be of Poincaré type and the (r, s)-matrix continued fraction is called
limit periodic.

After this definition Theorem 4 can be applied and the following theorem
results.

Theorem 11. Suppose that the condition
∑

k≥1 ||θk−θ|| < ∞ holds, that the
matrix θ is diagonalizable, and that the eigenvalues of θ are all of magnitude
1. Then the kth approximant sk has the asymptotic formula

(5.3) sk ∼ f(θkF ),

where F is the matrix defined by the convergent product

F := lim
k→∞

θ−kθkθk−1 · · · θ2θ1.

Note that because of the way that (r, s)-matrix continued fractions are
defined, we have taken products in the reverse order than the rest of the
paper.

As a consequence of this asymptotic, the sequential closure can be deter-
mined from

s.c.(sk) = s.c.(f(θkF )).

In one general case, detailed in the following theorem, we actually get a
convergence theorem.

Theorem 12. Let θk be a sequence of n× n matrices over C satisfying
∑

k≥1

||θk − θ|| < ∞,
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where θ is a diagonal (or antidiagonal) matrix with all diagonal (or antidi-
agonal) elements of absolute value 1. Let r and s be positive integers with
r + s = n.

Then the matrix

F := lim
k→∞

θ−kθkθk−1 · · · θ2θ1

exists. Suppose further that the bottom right s × s submatrix of F is non-
singular. Then the (r, s)-matrix continued fraction defined by equation (5.2)
converges to f(F ). If θ is antidiagonal, then the even approximants of (r, s)-
matrix continued fraction defined by equation (5.2) tend to f(F ), while its
odd approximants tend to f(AF ), where A is the antidiagonal matrix with
1s along its antidiagonal.

Proof. The matrix F exists by Theorem 4 (or more precisely, the “trans-
posed” version of Theorem 4). Let

θ = diag(λ1, . . . , λn).

By (5.3),

sk ∼ f(θkF )

=







λk
n−s+1 . . . 0

...
. . .

...
0 . . . λk

n







Fn−s+1,n−s+1 . . . Fn−s+1,n
...

. . .
...

Fn,n−s+1 . . . Fn,n







−1

×




λk
n−s+1 . . . 0

...
. . .

...
0 . . . λk

n







Fn−s+1,1 . . . Fn−s+1,r
...

. . .
...

Fn,1 . . . Fn,r




=




Fn−s+1,n−s+1 . . . Fn−s+1,n
...

. . .
...

Fn,n−s+1 . . . Fn,n




−1 


Fn−s+1,1 . . . Fn−s+1,r
...

. . .
...

Fn,1 . . . Fn,r




= f(F ).

Thus sk converges to the final matrix product above.
For the case where θ is an antidiagonal matrix, θ2k is a diagonal matrix

and the proof for the even approximants is virtually the same as for the case
where θ is a diagonal matrix. If θ is an antidiagonal matrix, θ2k+1 is also
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an antidiagonal matrix. Once again by (5.3),

s2k+1 ∼ f(θ2k+1F )

=







0 . . . (θ2k+1)n−s+1,s
... . .

. ...
(θ2k+1)n,1 . . . 0







F1,n−s+1 . . . F1,n
...

. . .
...

Fs,n−s+1 . . . Fs,n







−1

×




0 . . . (θ2k+1)n−s+1,s
... . .

. ...
(θ2k+1)n,1 . . . 0







F1,1 . . . F1,r
...

. . .
...

Fs,1 . . . Fs,r




=







0 . . . 1
... . .

. ...
1 . . . 0







F1,n−s+1 . . . F1,n
...

. . .
...

Fs,n−s+1 . . . Fs,n







−1

×




0 . . . 1
... . .

. ...
1 . . . 0







F1,1 . . . F1,r
...

. . .
...

Fs,1 . . . Fs,r




= f(AF ),

where A is the antidiagonal matrix with 1’s along the antidiagonal. Thus
s2k+1 converges to the final matrix product above. ¤

With additional information, this last conclusion can often be strength-
ened, for example, to s.c.(sn) = h(s.c.(θkF )), as in the case of continued
fractions studied in section 3. The computation of s.c.(θkF ) can then be
accomplished through Pontryagin duality.

Consider now the n = 2 antidiagonal case of Theorem 12. The matrix θ
then has the form

θ =
(

0 1
1 0

)
.

Choose θk to have the form

θk =
(

bk 1
1 + ak 0

)
.

Using the correspondence between matrices and continued fractions (3.1),
we at once obtain the following corollary, first given in [7].

Corollary 12. Let the sequences {an} and {bn} satisfy an 6= −1 for n ≥ 1,∑ |an| < ∞ and
∑ |bn| < ∞. Then

b0 + K∞
n=1

1 + an

bn
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diverges. In fact, for p = 0, 1,

lim
n→∞P2n+p = Ap 6= ∞, lim

n→∞Q2n+p = Bp 6= ∞,

and

A1B0 −A0B1 =
∞∏

n=1

(1 + an).

In fact, Corollary 12 is also the α = 1, β = −1 (so m = 2), qn = an and
pn = bn case of Corollary 7. When an = 0, this corollary reduces to the
famous Stern-Stolz theorem discussed in the introduction.

One of the main results of the paper [7] was Corollary 7, which we applied
to obtain an infinite sequence of theorems, similar to the Stern-Stolz theo-
rem, but with continued fractions of different ranks. Notice that Theorem
12 provides yet another family of generalizations.

It is interesting to compare Corollary 12 with the “The General Stern-
Stolz Theorem” from [3] in the case of continued fractions. The corollary
for the case of complex continued fractions is:

Corollary 13. [Corollary 7.5 of [3]] If
∑

n |1− |an|| and
∑

n |bn| converge,
then K(an|bn) is strongly divergent.

The first condition in this result is weaker than analogous condition in
Corollary 12 above. But it should be remarked that that Theorem 1, Corol-
lary 12, and Corollary 13 are, in fact, equivalent. In fact, the two corollaries
follow from Theorem 1 by an equivalence transformation (and a little analy-
sis). Next, the condition on the partial numerators in Corollary 13 encodes
the information that the matrices representing the continued fraction are a
perturbation of unitary matrices. We could have obtained the same result by
using Theorem 3, however in this situation one does not obtain as detailed
information about the limits of the convergents. In particular, Corollary 12
also proves the convergence of the subsequences of convergents {Pn} and
{Qn} of equal parity. Corollary 13 does not furnish this part of the conclu-
sion. On the other hand, it does prove strong divergence, defined in section
2. Indeed, the continued fraction in Corollary 13 is not necessarily limit
peoridic.

6. Poincaré type recurrence relations with characteristic
roots on the unit circle

Let the sequence {xn}n≥0 have the initial values x0, . . . , xp−1 and be
subsequently defined by

(6.1) xn+p =
p−1∑

r=0

an,rxn+r,

for n ≥ 0. Suppose also that there are numbers a0, . . . , ap−1 such that

lim
n→∞ an,r = ar, 0 ≤ r ≤ p− 1.(6.2)
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A recurrence of the form (6.1) satisfying the condition (6.2) is called a
Poincaré-type recurrence, (6.2) being known as the Poincaré condition. Such
recurrences were initially studied by Poincaré who proved that if the roots
of the characteristic equation

(6.3) tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0

have distinct norms, then the ratios of consecutive terms in the recurrence
(for any set of initial conditions) tend to one of the roots. See [22]. Because
the roots are also the eigenvalues of the associated companion matrix, they
are also referred to as the eigenvalues of (6.1). This result was improved by
O. Perron, who obtained a number of theorems about the limiting asymptot-
ics of such recurrence sequences. Perron [21] made a significant advance in
1921 when he proved the following theorem which for the first time treated
cases of eigenvalues which repeat or are of equal norm.

Theorem 13. Let the sequence {xn}n≥0 be defined by initial values x0,
. . . , xp−1 and by (6.1) for n ≥ 0. Suppose also that there are numbers
a0, . . . , ap−1 satisfying (6.2). Let q1, q2, . . . qσ be the distinct moduli of the
roots of the characteristic equation (6.3) and let lλ be the number of roots
whose modulus is qλ, multiple roots counted according to multiplicity, so that

l1 + l2 + . . . lσ = p.

Then, provided an,0 be different from zero for n ≥ 0, the difference equation
(6.1) has a fundamental system of solutions, which fall into σ classes, such
that, for the solutions of the λ-th class and their linear combinations,

lim sup
n→∞

n
√
|xn| = qλ.

The number of solutions of the λ-th class is lλ.

Thus when all of the characteristic roots have norm 1, this theorem gives
that

lim sup
n→∞

n
√
|xn| = 1.

Another related paper is [17] where the authors study products of ma-
trices and give a sufficient condition for their boundedness. This is then
used to study “equimodular” limit periodic continued fractions, which are
limit periodic continued fractions in which the characteristic roots of the
associated 2× 2 matrices are all equal in modulus. The matrix theorem in
[17] can also be used to obtain results about the boundedness of recurrence
sequences. We study a more specialized situation here and obtain far more
detailed information as a consequence.

Our focus is on the case where the characteristic roots are distinct num-
bers on the unit circle. Under a condition stronger than (6.2) we will show
that all non-trivial solutions of such recurrences are asymptotic to a linear
recurrence with constant coefficients. Specifically, our theorem is:
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Theorem 14. Let the sequence {xn}n≥0 be defined by initial values x0,
. . . , xp−1 and by (6.1) for n ≥ 0. Suppose also that there are numbers
a0, . . . , ap−1 such that

∞∑

n=0

|ar − an,r| < ∞, 0 ≤ r ≤ p− 1.

Put

εn = max
0≤r<p

(∑

i>n

|ar − ai,r|
)

.

Suppose further that the roots of the characteristic equation

(6.4) tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0

are distinct and all on the unit circle, with values α0, . . . , αp−1. Then there
exist complex numbers c0, . . . , cp−1 such that

(6.5)

∣∣∣∣∣xn −
p−1∑

i=0

ciα
n
i

∣∣∣∣∣ = O (εn) .

Proof. Define

M :=




ap−1 ap−2 . . . a1 a0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




.

By the correspondence between polynomials and companion matrices, the
eigenvalues of M are α1, . . . , αp, so that M is diagonalizable. For n ≥ 1,
define

Dn :=




an−1,p−1 an−1,p−2 . . . an−1,1 an−1,0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




.

Thus the matrices M and Dn satisfy the conditions of Theorem 4. From
(6.1) it follows that




xn+p−1

xn+p−2
...

xn


 =

n∏

j=1

Dj




xp−1

xp−2
...

x0


 .
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Let F have the same meaning as in Theorem 4. Part (i) then gives that
∣∣∣∣∣∣∣∣∣




xn+p−1

xn+p−2
...

xn


− F Mn




xp−1

xp−2
...

x0




∣∣∣∣∣∣∣∣∣
= O (εn) .

(6.5) follows immediately by considering the bottom entry on the left side.
This completes the proof. ¤

The following corollary, proved in [7], is immediate.

Corollary 14. Let the sequence {xn}n≥0 be defined by initial values x0,
. . . , xp−1 as well as (6.1) for n ≥ 0. Suppose also that there are numbers
a0, . . . , ap−1 such that

∞∑

n=0

|ar − an,r| < ∞, 0 ≤ r ≤ p− 1.

Assume that the roots of the characteristic equation

tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0

are distinct roots of unity α0, . . . , αp−1. Let m be the least positive integer
such that, for all j ∈ {0, 1, . . . , p−1}, αm

j = 1. Then, for 0 ≤ j ≤ m−1, the
subsequence {xmn+j}∞n=0 converges. Set lj = limn→∞ xnm+j, for integers
j ≥ 0. Then the (periodic) sequence {lj} satisfies the recurrence relation

ln+p =
p−1∑

r=0

arln+r,

and thus there exist constants c0, · · · , cp−1 such that

ln =
p−1∑

i=0

ciα
n
i .

7. Conclusion

We have studied convergent subsequences of approximants of complex
continued fractions and generalizations. There is an interesting pattern of
relationships between the limits and asymptotics of subsequences and the
modified approximants of the original sequence. This suggests the general
question of in which other situations do similar patterns of relationships
exist? In section 2, it was shown that (at least some of) this behavour
extends to the setting of products of invertible elements in Banach algebras.
From of [3] it is clear that there are some similar results available in the
setting of topological groups. But more generally, are there other classes of
sequences that diverge by oscillation, but for which “nice” asymptotics for
the sequences exist thus enabling the computation of the sequential closure?
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Even more generally, when “nice” asymptotics do not exist, is the sequential
closure non-trivial and interesting or useful?
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