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Overview

1 Background and Notation

2 Connection to the work in the present talk

3 Properties of Chebyshev polynomials of the second kind

4 Applications to the Fourier Coefficients of Hecke Eigenforms

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 2 / 35



Background and Notation

Background and Notation

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 3 / 35



q-products

For |q| < 1, (q; q)∞ := (1− q)(1− q2)(1− q3) · · ·
f1 := (q; q)∞ fj := (qj ; qj)∞

The series
∑∞

n=0 c(n)q
n is lacunary if

lim
x→∞

|{0 ≤ n ≤ x | c(n) = 0}|
x

= 1.

Serre: for even positive integers s, f s1 is lacunary if and only if

s ∈ {2, 4, 6, 8, 10, 14, 26}.

An eta quotient is a finite product of the form
∏

j f
nj
j , for some integers

j ∈ N and nj ∈ Z.
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A Result of Han and Ono

Define the sequences {a(n)} and {b(n)} by

f 81 =:
∞∑
n=0

a(n)qn,
f 33
f1

=:
∞∑
n=0

b(n)qn. (1)

Theorem

(Han and Ono, 2011) Assuming the notation above, we have that

a(n) = 0 ⇐⇒ b(n) = 0. (2)

Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n
for which ordp(3n + 1) is odd for some prime p ≡ 2 (mod 3).
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Series with identically vanishing coefficients

If A(q) and B(q) are two functions for which the coefficients in the series
expansions satisfy the condition (2) in the theorem

a(n) = 0 ⇐⇒ b(n) = 0,

then for ease of discussion, we say that the coefficients vanish
identically,or that A(q) and B(q) have identically vanishing coefficients.

Theorem 1 motivated the speaker to investigate experimentally if similar
results held for other pairs of eta quotients.

What was discovered as a result of these computer algebra experiments is
summarized as follows.
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Other eta quotients with identically vanishing coefficients I

Let (A(q),B(q)) be any of the pairs{(
f 41 ,

f 81
f 22

)
,

(
f 41 ,

f 101

f 23

)
,

(
f 61 ,

f 42
f 21

)
,

(
f 61 ,

f 141

f 42

)
,(

f 101 ,
f 62
f 21

)
,

(
f 141 ,

f 53
f1

)
,

(
f 141 ,

f 82
f 21

)}
. (3)

For any such pair (A(q),B(q)), define the sequences {a(n)} and {b(n)} by

A(q) =:
∞∑
n=0

a(n)qn, B(q) =:
∞∑
n=0

b(n)qn. (4)

Then, for each pair, a(n) = 0 ⇐⇒ b(n) = 0, with criteria for when exactly
this happens.
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Other eta quotients with identically vanishing coefficients II

For the pairs {(
f 261 ,

f 93
f1

)
,

(
f 261 ,

f 162

f 61

)}
(5)

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.

The proofs needed the theory of modular forms (enter Tim Huber and
later Dongxi Ye).

Aside: The results above on identically vanishing coefficients appear to be
just “the tip of the iceberg”.
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Brief Comment on the method of proof

Brief outline of method of proof:

- Apply a dilation q → qm and multiply by qj (some integers m and j) to
turn the second eta quotient into a modular form.

- Use the LMFDB to express the resulting modular form as a linear
combination of CM forms (by a result of Serre on lacunary forms, and also
using the Sturm bound to verify the equality).

- Use a result of Ribet to express the CM forms as linear combinations of
theta series of the form

∑
m,n(m + n

√
−D)kqm

2+Dn2 , where D is a
positive integer and the m and n run over all the integers or certain
arithmetic progressions (allows the coefficient bp of qp to be computed
explicitly in terms of the m and n in p = m2 + Dn2).

- Use the multiplicativity of the coefficients in the CM forms, and the
recursive formula for prime powers (more on these later) to determine
information about a general coefficient bn (and in particular, when bn = 0).
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Connection to the work in the present talk

Connection to the work in the present talk
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Results involving f 261 Again

Recall:

For the pairs {(
f 261 ,

f 93
f1

)
,

(
f 261 ,

f 162

f 61

)}
(6)

a(n) = b(n) = 0 if 12n + 13 satisfies a criteria of Serre for a(n) = 0.

The present speaker initially mistranslated Serre’s criterion for the
vanishing of an to be an “if and only if” statement (as was the case for
Serre’s results on the other even powers of f1).

While trying to prove the (possibly false) reverse direction, the speaker
was led to the result described in the next few slides.
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Chebyshev polynomials of the second kind

Recall the Chebyshev polynomials of the second kind, {Un(x)}, defined by
U0(x) = 1, U1(x) = 2x ,and the recursive formula

Un+1(x) = 2xUn(x)− Un−1(x). (7)
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Main Result

Proposition

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.
Let p ∤ N be a prime, so that the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (8)

Then, after fixing a value for
√
χ(p),

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√
χ(p)

)
. (9)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 13 / 35



Main Result

Proposition

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.
Let p ∤ N be a prime, so that the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (8)

Then, after fixing a value for
√
χ(p),

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√
χ(p)

)
. (9)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 13 / 35



Main Result

Proposition

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.

Let p ∤ N be a prime, so that the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (8)

Then, after fixing a value for
√
χ(p),

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√
χ(p)

)
. (9)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 13 / 35



Main Result

Proposition

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.
Let p ∤ N be a prime, so that the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (8)

Then, after fixing a value for
√
χ(p),

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√
χ(p)

)
. (9)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 13 / 35



Main Result

Proposition

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.
Let p ∤ N be a prime, so that the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (8)

Then, after fixing a value for
√

χ(p),

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√
χ(p)

)
. (9)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 13 / 35



Main Result

Proposition

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ.
Let p ∤ N be a prime, so that the following recurrence formula holds

apn+1 = apnap − χ(p)pk−1apn−1 . (8)

Then, after fixing a value for
√

χ(p),

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√

χ(p)

)
. (9)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 13 / 35



Proof of Main Result I

Proof.

Divide the expression (8) through by
(
−
√
χ(p)p(k−1)/2

)n+1
to get

apn+1(
−
√
χ(p)p(k−1)/2

)n+1
=

ap

−
√
χ(p)p(k−1)/2

apn(
−
√
χ(p)p(k−1)/2

)n
−

apn−1(
−
√
χ(p)p(k−1)/2

)n−1
. (10)

Now define the sequence {uj} by uj =
apj(

−
√

χ(p)p(k−1)/2
)j ,

so that (10) becomes un+1 = 2x un − un−1, with
x = −ap/(2p

(k−1)/2
√
χ(p)), so that u1 = 2x and u0 = a1 = 1.
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Proof of Main Result II

proof continued.

Thus the sequence {uj} satisfies the recurrence for the Chebyshev
polynomials with the correct initial conditions.
Hence

uj = Uj

(
−ap

2p(k−1)/2
√

χ(p)

)
,

and the result follows.

Remarks: (1) Upon asking around, this result would not seem to be widely
known, although known to experts in the field (Larry Rolen provided a
reference in which something equivalent was stated somewhat obliquely).

(2) Known results about Chebyshev polynomials of the second kind can
now be used to derive various identities for terms in the sequence {apn},
where p is a prime.
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Properties of Chebyshev polynomials of the second kind I

The following properties of the Chebyshev polynomials of the second kind
are known.
The generating function

∞∑
n=0

Un(x)t
n =

1

1− 2tx + t2
. (11)

The closed form

Un(x) =

(
x +

√
x2 − 1

)n+1
−
(
x −

√
x2 − 1

)n+1

2
√
x2 − 1

. (12)

Un(x)
2 − Un+1(x)Un−1(x) = 1. (13)
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Properties of Chebyshev polynomials of the second kind II

Un(x) =

⌊n/2⌋∑
j=0

(−1)j
(
n − j

j

)
(2x)n−2j . (14)

Umn−1(x) = Um−1(Tn(x))Un−1(x). (15)

( if n + 1|m + 1 then Un(x)|Um(x))

Um(x)− Um−2(x) = 2Tm(x). (16)

For integers 1 ≤ n ≤ m

Um−n(x) = Um(x)Un(x)− Um+1(x)Un−1(x). (17)

For integers m, n ≥ 1,

Um+n(x) = Um(x)Un(x)− Um−1(x)Un−1(x). (18)
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Properties of Chebyshev polynomials of the second kind III

For all integers m ≥ 1 and n ≥ 0,

Um−1(x) + Um+1(x) + Um+3(x) + · · ·+ Um+2n−1(x) = Un(x)Um+n−1(x)
(19)

For integers m > n ≥ 0,

Um(x)
2 − Un(x)

2 = Um+n+1(x)Um−n−1(x) (20)

The exponential generating function

∞∑
n=0

Un(x)
tn

n!
= etx

x sin
(
t
√
1− x2

)
√
1− x2

+ cos
(
t
√
1− x2

) . (21)

∞∑
n=0

Un(x)
tn+1

(n + 1)!
= etx

sin
(
t
√
1− x2

)
√
1− x2

, (22)
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Properties of Chebyshev polynomials of the second kind IV

∞∑
n=0

U2
n(x)t

n =
(t + 1)

(1− t) ((t + 1)2 − 4tx2)
. (23)

Define

F± = xy ±
√

(1− x2) (1− y2),

Φ± = y
√

1− x2 ± x
√

1− y2.

Then

∞∑
n=0

Un(x)Un(y)
tn+1

(n + 1)!
=

etF+ cos(tΦ−)− etF− cos(tΦ+)

2
√
1− x2

√
1− y2

. (24)

∞∑
n=0

Un(x)Un(y)t
n =

1− t2

(1− t2)2 − 4t(y − tx)(x − ty)
. (25)
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Applications to the Fourier Coefficients of Hecke
Eigenforms

Applications to the Fourier Coefficients of Hecke Eigenforms
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Application of identities for Chebyshev polynomials of the
second kind I

Let f (q) = q +
∑∞

n=2 anq
n be a normalized Hecke eigenform of weight k,

level N, and Nebentypus χ. Let p ∤ N be a prime. .
The identities in the previous section are used in conjunction with the
identity

apn =
(
−p(k−1)/2

√
χ(p)

)n
Un

(
−ap

2p(k−1)/2
√
χ(p)

)
, (26)

to derive identities for the members of the sequence {apn}.
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Application of identities for Chebyshev polynomials of the
second kind II

These general identities mentioned on the previous slide are illustrated
using the Ramanujan τ function, defined by

q
∞∏

m=1

(1− qm)24 =:
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5

− 6048q6 − 16744q7 + 84480q8 − 113643q9 − 115920q10 + 534612q11

− 370944q12 − 577738q13 +401856q14 +1217160q15 +987136q16 − . . .

Recall: (1) τ(m)τ(n) = τ(mn) if gcd(m, n) = 1.
For example, τ(3)τ(5) = 252× 4830 = 1217160 = τ(15).

(2) For any prime p and any integer r ≥ 1,
τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1).
For example,
τ(2)τ(23)− 211τ(22) = (−24)84480− 211(−1472) = 987136 = τ(24)
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For example, τ(3)τ(5) = 252× 4830 = 1217160 = τ(15).
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Formal Derivation of the Product Form of the L-Function

From
∞∑
n=0

Un(x)t
n =

1

1− 2tx + t2
, (27)

one gets
∞∑
n=0

apn

psn
=

1

1− app−s + χ(p)p−2spk−1
. (28)

From this, the multiplicative property, aman = amn when gcd(m, n) = 1,
gives that

L(f , s) :=
∞∑
n=1

an
ns

=
∏
p

∞∑
n=0

apn

psn
=
∏
p

1

1− app−s + χ(p)p−2spk−1
. (29)
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An L-function for the sequence {a2n}

From
∞∑
n=0

U2
n(x)t

n =
(t + 1)

(1− t) ((t + 1)2 − 4tx2)
(30)

one gets

∞∑
n=0

a2pn

psn
=

1 + χ(p)pk−s−1

(1− χ(p)pk−s−1)
(
(1 + χ(p)pk−s−1)

2 − a2pp
−s
) .

Then using the multiplicity property once again,one gets that

L2(f , s) :=
∞∑
n=1

a2n
ns

=
∏
p

1 + χ(p)pk−s−1

(1− χ(p)pk−s−1)
(
(1 + χ(p)pk−s−1)

2 − a2pp
−s
) .

For convergence we may take Re(s) > k.
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Ramanujan τ -function, Example I

Example

For any prime p and any complex s with Re(s) > 12,

∞∑
n=0

τ2(pn)

psn
=

1 + p11−s

(1− p11−s)
(
(1 + p11−s)2 − τ2(p)p−s

) . (31)

For any complex s with Re(s) > 12,

∞∑
n=1

τ2(n)

ns
=
∏
p

1 + p11−s

(1− p11−s)
(
(1 + p11−s)2 − τ2(p)p−s

) .
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Exponential Generating Functions of the sequence apn

From the exponential generating functions at (21) and (22):

Theorem

Let the sequence apn be as defined in Proposition 2.1 and let t ∈ C. Then

∞∑
n=0

apnt
n

n!
= exp

(
apt

2

)(
cos

(
1

2
t
√
4pk−1χ(p)− a2p

)

+
ap sin

(
1
2 t
√
4pk−1χ(p)− a2p

)
√
4pk−1χ(p)− a2p

)
, (32)

∞∑
n=0

apnt
n+1

(n + 1)!
= exp

(
apt

2

) 2 sin
(
1
2 t
√
4pk−1χ(p)− a2p

)
√
4pk−1χ(p)− a2p

. (33)
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Ramanujan τ -function, Example II

Example

For any prime p and any t ∈ C,

∞∑
n=0

τ (pn) tn

n!
= e

tτ(p)
2

(
τ(p) sin

(
1
2 t
√

4p11 − τ(p)2
)

√
4p11 − τ(p)2

+ cos

(
1

2
t
√

4p11 − τ(p)2
))

,

∞∑
n=0

τ (pn) tn+1

(n + 1)!
=

2e
tτ(p)

2 sin
(
1
2 t
√
4p11 − τ(p)2

)
√
4p11 − τ(p)2

.
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Identities from the Bivariate Generating Functions I

From the bivariate generating functions at (24) and (25):

Theorem

Let p1 and p2 be distinct primes and define

F± = ap1ap2 ±
√

4pk−1
1 χ (p1)− a2p1

√
4pk−1

2 χ (p2)− a2p2 ,

Φ± = ap1

√
4pk−1

2 χ (p2)− a2p2 ± ap2

√
4pk−1

1 χ (p1)− a2p1 .

Then for any t ∈ C,

∞∑
n=0

apn1apn2
tn+1

(n + 1)!
= 2

et/4F+ cos(t/4Φ−)− et/4F− cos(t/4Φ+)√
4pk−1

1 χ (p1)− a2p1

√
4pk−1

2 χ (p2)− a2p2

. (34)
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apn1apn2
tn+1

(n + 1)!
= 2

et/4F+ cos(t/4Φ−)− et/4F− cos(t/4Φ+)√
4pk−1

1 χ (p1)− a2p1

√
4pk−1

2 χ (p2)− a2p2

. (34)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 29 / 35



Identities from the Bivariate Generating Functions I

From the bivariate generating functions at (24) and (25):

Theorem

Let p1 and p2 be distinct primes and define

F± = ap1ap2 ±
√
4pk−1

1 χ (p1)− a2p1

√
4pk−1

2 χ (p2)− a2p2 ,

Φ± = ap1

√
4pk−1

2 χ (p2)− a2p2 ± ap2

√
4pk−1

1 χ (p1)− a2p1 .

Then for any t ∈ C,

∞∑
n=0

apn1apn2
tn+1

(n + 1)!
= 2

et/4F+ cos(t/4Φ−)− et/4F− cos(t/4Φ+)√
4pk−1

1 χ (p1)− a2p1

√
4pk−1

2 χ (p2)− a2p2

. (34)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 29 / 35



Identities from the Bivariate Generating Functions II

Theorem (continued)

For any t ∈ C satisfying |t| < (p1p2)
−k/2,

∞∑
n=0

apn1apn2 t
n

=
1− t2pk−1

1 pk−1
2 χ (p1)χ (p2)(

1− t2pk−1
1 pk−1

2 χ (p1)χ (p2)
)

2

− t
(
ap1 − tap2p

k−1
1 χ (p1)

)(
ap2 − tap1p

k−1
2 χ (p2)

) .
(35)
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Ramanujan τ -function, Example III

Example

Let p1 and p2 be primes (distinct or otherwise) and define

F± = τ(p1)τ(p2)±
√

4p111 − τ2(p1)
√

4p112 − τ2(p2),

Φ± = τ(p1)
√
4p112 − τ2(p2)± τ(p2)

√
4p111 − τ2(p1).

Then for any t ∈ C,

∞∑
n=0

τ(pn1)τ(p
n
2)

tn+1

(n + 1)!
= 2

et/4F+ cos(t/4Φ−)− et/4F− cos(t/4Φ+)√
4p111 − τ2(p1)

√
4p112 − τ2(p2)

.

(36)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 31 / 35



Ramanujan τ -function, Example III

Example

Let p1 and p2 be primes (distinct or otherwise) and define

F± = τ(p1)τ(p2)±
√

4p111 − τ2(p1)
√

4p112 − τ2(p2),

Φ± = τ(p1)
√

4p112 − τ2(p2)± τ(p2)
√

4p111 − τ2(p1).

Then for any t ∈ C,

∞∑
n=0

τ(pn1)τ(p
n
2)

tn+1

(n + 1)!
= 2

et/4F+ cos(t/4Φ−)− et/4F− cos(t/4Φ+)√
4p111 − τ2(p1)

√
4p112 − τ2(p2)

.

(36)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 31 / 35



Ramanujan τ -function, Example III

Example

Let p1 and p2 be primes (distinct or otherwise) and define

F± = τ(p1)τ(p2)±
√

4p111 − τ2(p1)
√

4p112 − τ2(p2),

Φ± = τ(p1)
√

4p112 − τ2(p2)± τ(p2)
√

4p111 − τ2(p1).

Then for any t ∈ C,

∞∑
n=0

τ(pn1)τ(p
n
2)

tn+1

(n + 1)!
= 2

et/4F+ cos(t/4Φ−)− et/4F− cos(t/4Φ+)√
4p111 − τ2(p1)

√
4p112 − τ2(p2)

.

(36)

James Mc Laughlin (WCUPA) Hecke Eigenforms/Chebyshev Polynomials Saturday, 12/17/2022 31 / 35



Ramanujan τ -function, Example III Continued

Example (continued)

For any t ∈ C satisfying |t| < (p1p2)
−6,

∞∑
n=0

τ(pn1)τ(p
n
2)t

n

=
1− p111 p112 t2(

1− p111 p112 t2
)
2 − t

(
τ (p1)− p111 τ (p2) t

) (
τ (p2)− p112 τ (p1) t

) .
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An Identity Implying a Divisibility Property of the
Sequence apn

Theorem

Let the sequence apn be as defined in Proposition 2.1. If m ≥ 1 and n ≥ 2
are integers, then

apmn−1 = apn−1×
⌊(m−1)/2⌋∑

j=0

(−1)j
(
m − 1− j

j

)(
apn − pk−1χ(p)apn−2

)m−1−2j
p(k−1)njχj(p).

(37)

Remark: Note that if the numbers apn are integers, then (37) implies that
if n + 1|m + 1, then apn |apm .
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Ramanujan τ -function, Example IV

Example

If m ≥ 1 and n ≥ 2 are integers, then

τ(pmn−1) = τ(pn−1)×
⌊(m−1)/2⌋∑

j=0

(−1)j
(
m − 1− j

j

)(
τ(pn)− p11τ(pn−2)

)m−1−2j
p11nj .

If m and n are positive integers such that n + 1|m + 1, then

τ(pn)|τ(pm).

For example, taking m = 119 and considering the divisors of 120, then for
any prime p,

τ(pn)|τ(p119) for any n ∈ {1, 2, 3, 4, 5, 7, 9, 11, 14, 19, 23, 29, 39, 59}.
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Thanks

Thank you for listening/watching.
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